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COMBINING THE QMR METHOD WITH FIRST PRINCIPLES 
ELECTRONIC STRUCTURE CODES 

NoGI M. Nachtigal 
William A. Sheltori 

George M. Stocks 

Abstract 

First principles methods are used to aid the metallurgist in the investigation and 
design of new materials. However, these methods suffer from an 0 ( N 3 )  scaling which 
restricts the problem sizes that can be addressed. By incorporating the QMR method 
into a first principles algorithm we are able to attain 0 ( N )  scaling for the problem 
sizes of interest. This advancement will provide researchers with the necessary tools 
to treat large systems. 
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1. Introduction 

The design of new technologically advanced materials is of extreme importance to the 
industrial and economical competitiveness of the US. For example. the design of a high 
temperature ductile intermetallic alloy could save the power generation and aerospace in- 
dustries billions of dollars. The modern design of new materials makes use of local-density 

approximation (LDA) based, first principles electronic structure calculations. These meth- 
ods are parameter-free methods, requiring no experimental input. They are predictive 
methods that can be used to accurately calculate materials properties. Other types of 
simulations that require input parameters, such as ones based on pse-defined potential 
functions, cannot always be used to calculate physical properties where the microscopic 

interactions (electronic structure) play a dominant role. 
Unfortunately, current LDA based, first principles electronic structure methods exhibit 

0 ( N 3 )  scaling that renders the study of systems comprised of hundreds of atoms compu- 
tationally intractable. The 0 ( N 3 )  scaling arises due to either an eigenvalue-eigenvector 
computation or a matrix inversion. Our problem concerns the latter and by incorporating 
a quasi-minimal residual (QMR) method into our codes, we are able to achieve O ( N )  
scaling for the problem sizes of interest. 

The remaining sections of the paper are organized as follows, a brief description of the 
local density approximation will be given in section 2. In section 3. multiple-scatterng 
theory, the real-space method and group-theoretical techniques will be described. The 
results are presented in section 4 and the conclusions axe given in section 5.  

2. Local Density Approximation 

The density functional theory (DFT) is an exact method for calculating the energetics of 
an electron system in the field of the atomic nuclei within a single-particle framework [8]. 
This theory in principle includes all collective excitations of the many-body quantum 
mechanical system; in particular, it includes the quantum mechanical effects of electron 
exchange (Pauli-exclusion principle) and correlation. 

The crux of the theory is that the electron density is used as a basic variable. The 
total energy of the system is then expressed as a unique functional of the electron density. 
This functional has a unique minimum, and the electron density that yields this minimum 

corresponds to the correct ground-state energy. At the heart of this formalism is the 
calculation of a non-local, exchange-correlation potential that accounts for the many-body 
effects of electron exchange and correlation. However, the non-local exchange-correlation 
potential is unknown, requiring an approximation. 

The local-density approximation to density functional theory is a technique for treat- 

ing the unknown non-local exchange-correlation potential within a mean-field theoretical 
framework. It results in a set of single-body Schrodinger-like equations, the Kohn-Sham 
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equations. with an effective potential containing a local exchange-correlation potential [lo]: 

[-V2 + v e q T ) ] ? & ( T )  = €&(7). 

Once the eigenvalues and the eigenvectors are computed. the new charge density is 

obtained by summing over products of an eigenvector with its complex conjugate. 

where the summation is performed only over the occupied electronic states. A new V e f f ( F )  
is obtained by solving Poisson‘s equation with the new charge density and, together with 
the eigenvalues’ sum, is used to calculate the new total energy. This procedure is repeated 
until the difference between successive iterates of the total energy is less than a pre-defined 
tolerance; typically, 1 .OE-6 is used. At this point self-consistency has been achieved 
and the program terminates. There are various ways to solve the above Schrodinger- 

like equations and the technique used in this report is a Green’s function based multiple 
scattering method that will be described in the following section. 

It should be noted that the DFT-LDA theory is a ground-state theory. The eigenvalues 
of the Kohn-Sham equations represent the true eigenvalues of the system only in its ground 
state and are not the true eigenvalues for the excited states. 

3. Multiple Scattering Theory 

Multiple scattering theory is a specialization rather than a generalization of scattering the- 

ory. It can be visualized as a succession of scattering events and has the added advantage 
of expressing the scattering properties of the entire system in terms of the scattering prop- 
erties of the individual scatterers. Its usage dates back to 1892 when Lord Rayleigh [13] 
first developed the theory of light scattering. Ewald [l] further developed the theory and 
applied it to electromagnetic waves, while Korringa, Kronig and Smit [12] used it to study 
acoustic waves. The focus of this article is based on the work of Korringa [ll], who was 
the first to apply multiple scattering theory to the calculation of the electronic structure of 
periodic systems. It should be mentioned that at approximately the same time Kohn and 
Rostoker [9] arrived at the same set of equation.. as Korringa. However, they used a vari- 
ational technique rather than multiple scattering theory. The method has since become 

known as the Korringa, Kohn and Rostoker (KKR) theory. The modern extension of this 
theory to include self-consistency, multiple atoms per unit cell, multiple-component co- 
herent potential approximation (CPA), scalar relativity and spin polarization was carried 
out by Shelton and co-workers (see [14][6][7]). 

The KKR method makes use of scattering theory to calculate the single-impurity 
scattering-path operator T::! (E) that is then used to construct the single-site Green’s 
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function: 

where 

i is an atomic site; 
E is the complex energy; 

CY indexes the atomic species in the system; 
L refers to the angular momentum quantum numbers (f?,m); 

Zz(F, E )  is the regular single-site wave function; 
JE(F, E )  is the irregular single-site wave function. 

CY[,,, is the Kronecker delta; 

The scattering-path operator T; :~ (E)  describes the conversion of an incoming electron wave 

function at site i, with angular momentum index L,  into an outgoing wave function at 
site i, with angular momentum L', while taking into account all possible scattering paths 
that start and end at site i. Because the system is periodic, the ath  site can be assigned 
to any of the atomic sites in the system; we choose it to be the the origin, indexed by 0. 

The general expression for ?-;,",,(E) is written in real-space, within an angular momen- 
tum representation, as 

. .  

where t>L, (e)  is the (L,L ' )  element of the single-site t-matrix. This depends on Veff(,-) 
through the scattering phase shifts of the individual scatters, where the latter are ob- 
tained by solving the Schrodinger equation (or the Dirac equation for relativistic systems). 
G&,(E) is a free-electron propagator that describes how an electron is propagated from 
the i th  site to the kth. .,"",'(E) can be formally solved in the angular momentum space, 
written as a matrix rather than the matrix elements, as 

. .  

and the matrix M is written as 

where &j is the distance between the i th and j t h  sites[2][5]. 
In principle, Equations (4)-(6) describe infinite-dimensional matrices labeled in the an- 

gular momentum index. For the systems under investigation, which are nearly spherically 
symmetric, the index L is typically truncated to a relatively small number, 2 or 3. On the 
other hand, for some systems, such as surfaces, which lack symmetry, or semi-conductors, 
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Figure 1: Schematic representation of the scattering process 

which have a high degree of anisotropy, this truncation may not be justified. A schematic 
representation of this physical process is shown in Figure 1. 

It is assumed that a crystalline solid is composed of an inh i t e  number of atoms. Since 
the system is periodic, a lattice Fourier transform can be performed, resulting in 

This requires an explicit matrix inversion at each k point on a 3-dimensional mesh, which 
is the time consuming step of the calculation. The size of the matrix is n x ( a  + l)’, where 
n is the number of atoms in the unit cell, and is the number of angular momentum states 
per atom. For example, a calculation that includes angular momentum states up to l = 3 
and 13 atoms per unit cell results in a 228 x 228 double precision complex dense matrix. 
To compute the integral in (7) at a given energy E requires a minimum of 300 k-points 
and possibly up to a couple thousand IC-points. This is all performed inside a single self- 
consistent iteration that requires at least 32 energies per iteration to reach self-consistency 

and typically takes 50 iterations. A flow chart which describes the above procedure is given 
in Figure 2. To obtain the minimum in the total energy with respect to volume requires 
at least five self-consistent calculations, each at a different lattice spacing. This results 
in (3(106) matrix inversions for one crystal structure at one concentration. Therefore, to 
calculate the physical properties of systems containing hundreds of atoms per unit cell 
demands an investigation of new techniques to invert a matrix. 

The Green’s function has logarithmic singularities at the eigenvalues of T:$ ( E ) ,  which 
are real. To overcome this difficulty the Green’s function is analytically continued into 
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Figure 2: Flow Chart of the Real-Space Code 
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the complex energy plane where it has no singularities. This has the added advantage 
that as the imaginary part of the energy is increased, the peaks at the singularitics in 

T ~ ~ ,  ( E )  become very broad and thus require fewer Ic-points to perform the integration 
in (7) .  Therefore, the Ic-space mesh is set up at each energy. with the density of the mesh 

being determined by the imaginary part of the energy. 

There are three major advantages in choosing a Green‘s function-based method over 
other band theoretical techniques. Firstly. the best method for calculating the effects of 
random substitutional disorder on the electronic structure is the coherent potential ap- 
proximation (CPA). This method requires the Green‘s function. Secondly, to determine 
possible mechanisms responsible for some of the properties of an alloy and to calculate 
the transition temperature necessitates the calculation of the susceptibility, which again 
requires the Green’s function of the system. Thirdly, there exists a natural separation 
between the underlying lattice structure and the potential V. This can be seen by rewrit- 
ing (7) as 

0.00 

~ L L I  O0 z= - ik /n, d”k[ l -  t:(E)Gl;Lr(i, E ) ] - ’ ~ ; ( C ) .  (8) 

The term te(E) is independent of the spatial coordinates and the information about the 
lattice structure is contained solely in Gr,I,f (i, E ) .  As a result of this separation, the random 
arrangement of te(c), also called the disorder, is associated with a single site only and is 
therefore site-diagonal. In other band theory met hods there exists off-diagonal disorder 
that is diflicult to treat in the CPA and requires further approximation. 

3.1. Real-Space Multiple Scattering Method 

The real-space multiple scattering method is based on multiple scattering theory. It is 
similar in spirit to the KKR method. However, instead of using a Fourier transform to 
calculate the scattering properties of the infinite system, the real-space multiple scattering 
mcthod works directly in real-space; it calculates for each atom in the unit cell by 
including only a finite subset of atoms making up the infinite system. This results in 
the truncation of the summation over the site index k in (4) to a finite number of terms. 
At this point, instead of calculating a Fourier transform, a real-space method requires 
only a single inverse of a large matrix at a given energy to calculate T::,~. The remaining 
computational steps, namely the solution of Poisson’s equation and the total energy of 
the system, use all the atoms in the unit cell. Therefore, the only approximation occurs 
in the calculation of T ~ L ,  ( E ) ,  and this affects the calculation of the single-site properties, 
such as the electronic density of states and charge density surrounding an atom at site i, 
through the single-site Green’s function Gr(F, F, e ) .  The advantage of this method, in the 
context of this study, is that it is a straightforward procedure to increase the matrix size, 
by including more atoms in the calculation of T , ” ; ” ~ ( E ) .  This provides a direct procedure 
for testing the accuracy and robustness of the QMR method on large scale systems. In 
contrast, in the KKR method, the problem size cannot be increased so easily. It should be 

a 00 
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Figure 3: Schematic display of the real-space multiple scattering method. The atom at 
the center of the prescribed boundary calculates its scattering properties by including only 
those atoms that fall within the boundary. The solution to Poisson’s equation and the 
calculation of the total energy is obtained by including all the atoms in the finite system. 

noted that the results of the analysis do not depend on which code is used. The physics 
of the problem is the same for both codes and both codes are based on multiple scattering 
theory. Hence, the results of the analysis are invariant with respect to the codes. 

3.2. Group-Theoret ical Techniques 

The application of group-theoretical techniques to solid-state physics results in the devel- 
opment of computationally efficient algorithms and is an effective tool for aiding in the 
interpretation of the results. These techniques are also extremely useful in the develop- 
ment process and also provide a mechanism for debugging and performance tuning. The 
non-zero and equal matrix elements of T ; ~ ( E )  can be determined strictly on the basis of 
the symmetry of the crystal structure. In addition, the QMR method provides a natural 
and direct framework for implementing various types of symmetry, such as tetragonal or 
hexagonal, into the overall inverse algorithm. 

As previously discussed, the real-space method employed here only includes a finite 
number of atoms to calculate the scattering properties for each atom comprising the unit 

cell. The number of atoms included in the calculation of T;?(E) i s  determined by a 

real-space cutoff distance and this procedure is used for both the periodic and aperiodic 
cases. 

The systems dealt with in this paper are periodic, hence they are invariant to transla- 
tions made up of linear combinations of the basis vectors that can be used to construct the 
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Body-centered cubic h t ice  

The three primitive lalice translation vectors 
of the body-centered cubic lattice 

Figure 4: Schematic representation of the body-centered cubic lattice and its primitive 
translation vectors 

crystal structure. These vectors are called the primitive translation vectors. A schematic 

display of the body-centered cubic (BCC) crystal structure is given in Figure 4. 
Crystal structures are classified according to which space group they transform under. 

The space group is comprised of translation and point group operations. As seen in 
Figure 4, the system is invariant under certain point group operations, such as rotations 
or mirror reflections. and thus transforms under a particulas lattice point group. The 
BCC crystal structure transforms under the cubic group, which means that the z, y, and 

z axes are equivalent, with the origin at the center of the cube. The cubic group is a 

sub-group of the full rotation group (spherical symmetry), and is made up of 48 point 
group operations. These can be easily obtained by applying all possible permutations to 
z, y. and z ,  includiug sign changes (reflections). 

The structure of T O O ,  such as which matrix elements are equal and non-zero, is deter- 
mined by the point group it transforms under. For example, the matrix elements of the 
integrand in (7) can be thought of as being a tensor product of two spherical harmonics, 
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where Tf,f ,r(e)  is a scalar and Y L ( ~ )  is a spherical harmonic of order L G (4,m). The 
structure of T"(E) is found by applying the point group operators to YL (i) arid determining 
the group and, for a given L ,  the irreducible representation (I'i) it transforms under. 
For the case of complete spherical symmetry this leads to the well-known orthogonality 
condition for the spherical harmonics, 

where fi,m(i) transforms under the mth row of the irreducible representation. For 
a system that has complete spherical symmetry, the number of degeneracies is equal to 
2 x l + 1 and is unbounded. This reflects the fact that any infinitesimal rotation leaves 
the sphere invariant. However, for the cubic case there exists only a finite number of 
irreducible representations. For any given e,  the number of degeneracies cannot exceed 
the dimensionality of the system, which is 3 in the cubic case. 

For example, consider the case where L,, = 2, so that e = 0,1,2. For the complete 
spherical case, T " ( E )  is 9 x 9, diagonal, and has 3 distinct matrix elements. There is one 
element for t? = 0, a second that appears in triplicate for t! = 1, and a third that appears 
five times for l = 2. For the cubic case, .''(E) is still 9 x 9, still diagonal, but now has 
4 distinct matrix elements. There is still one element for t! = 0, a second that appears in 
triplicate for e = 1, but for l = 2, there is a doublet and a triplet set. This is because the 
maximum degeneracy is limited to 3, thus forcing a lifting of the five-fold degeneracy. 

A more general orthogonality condition can be written as, 

which is not a diagonal matrix in the angular momentum representation unless the system 
has complete spherical symmetry. Recall that there axe only a finite number of irreducible 
representations for a finite group. This means that different L's will transform under the 
same irreducible represent at ion, which leads to coupling between different L's and hence 

to off-diagonal matrix elements. 

For our example above, let now L,,, = 3, so that l = 0,1,2,3. For the coniplete 
spherical case, TO'(€) is 16 x 16, diagonal, and has 4 distinct matrix elements, with a 
fourth that appears seven times for = 3. For the cubic case, ~ " " ( e )  is still 16 x 16, but 
now it is no longer diagonal, and has 7 distinct matrix elements along the diagonal and one 
off-diagonal. The 9 x 9 leading principal submatrix remains unchanged, but for l = 3, the 
diagonal has two triplet sets and a singleton. In addition, there is coupling between the 
l = 3 spherical harmonic that transforms like z3 and the l = 1 harmonic that transforms 
as z. This will introduce non-zero off-diagonal elements in the (2.13) and (13,2) positions. 



- 1 0 -  

Similar couplings for y and 2 will introduce elements in the (3.14). (4.15). (14,3), arid 
(15.4) positions. All six off-diagonal elements are equal. 

This information is used to significantly reduce the number of linear algebraic opera- 
tions necessary to perform the inverse. A schematic representation of the matrix within 
the real-space multiple scattering method for BCC crystal with eight nearest-neighbors 

in its local scattering region is displayed in Figure 5. The matrix is made up of 16x16 
double precision complex matrices and the upper left sub-block diagonals represent the 
central site in Figure 3 whose properties are to be calculated. It should be mentioned 
that the t-matrix associated with each row block corresponds to a particular neighboring 
atom. Also, it is not necessary to calculate all 16 columns of the inverse. Using the above 
group theoretical analysis reduces the number of columns of the inverse to be solved to 
7. The first, second, fifth, eight, tenth, thirteenth and sixteenth are to be solved. The 
first column transforms as a constant, the second transforms as z, the third and fourth 
columns are equal to the second, shifted down by one and two respectively, and so on. 

‘This analysis is graphically displayed in Figure 5 .  
To implement the above scheme into the QMR method is straightforward. An integer 

array is constructed of length 16 and each element contains a non-zero entry. A DO loop 
whose range is from 1 to 16 is executed and if the corresponding integer element equals 
the DO loop index, then the QMR algorithm is performed. Otherwise, the corresponding 
column of the inverse is set equal to a previously calculated column, whose index is given 
by the integer in the array. To implement such a scheme into an LU-factorization would 
require considerable re-coding. Also, to add other symmetry types, such as tetragonal 
or hexagonal, is trivial in the QMR method but would again require a large amount of 
development in the LU algorithm. 

4. Results 

We have compared two different methods for computing the inverse of a matrix associated 
with perfoming electronic structure calculations on face-centered cubic (fcc) Copper and 
body-centered cubic (bcc) Molybdenum. The first is a direct method based on an LU- 
factorization and the second is the TFQMR method 131 from QMRPACK [4]. Only the 
leading 16 x 16 block of T ; ~ ( C )  is required for the calculation of the single-site Green’s 
function G?(.?,?,C), corresponding to the crth site. Both the LU and the TFQMR algo- 
rithms were implemented in a way that takes advantage of this. In particular, only a 

partial backsolve is required in LU, though the reduction in work is minor, since the full 
factorization is still required. For TFQMR, one needs to compute at most 16 columns. 
In addition, one can take advantage of the group theoretical properties discussed in the 
previous section, and reduce the number of columns to be solved to 7. Copper and Molyb- 
denum were chosen because of their different physical dependencies on T ; ~ ) ( E )  at the Fermi 
energy and the number of atoms that are necessary to accurately calculate T;?(E). It 
will be shown that these physical dependencies can have a dramatic effect on the rate 
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Figure 5: Schematic representation of the T " ( E )  and the 16x16 site-diagonal sub-hlock 

of convergence of the TFQMR method, but that the effects are system dependent and 
obviously do not affect a direct method. 

Figure 6 displays the time required to solve for the inverse for each energy on the 
contour for a specific cluster size. The time per iteration for Cu is about 0.7s and for Mo 
is about 3.5s. All the examples shown were run on an IBM/RS6000-590 at Oak Ridge. 
The time rapidly increases as one approaches the Fermi energy (at the right-hand end) 
for both elements, but Molybdenum exhibits a substantial increase in time as compared 
to Copper. This is to be expected because Molybdenum has a more complex electronic 
structure that requires more iterations to resolve. In addition, Molybdenum requires larger 
cluster sizes to accurately calculate this type of behavior, along with physical properties 
of the system. This exemplifies the dependency of the efficiency of the TFQMR method 
with respect to the type of system to be investigated. 

Figure 7 shows timing versus systern size for the LU-based algorithm aud the TFQMR 
method for Molybdenum. As expected, the LU-based algorithm displays cubic behavior. 
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Cu 55-atoms T=O K 

M o  113-atoms T=O K 

19.07s 
17.15 s 51.86 s 

131.42 s 16.3 s 

130.63 s 

19.07s 
17.15 s 51.86 s 

131.42 s 16.3 s 

130.63 s 

Figure 6: Time required to solve for the inverse for each energy on the contour. 

However, the TFQMR method exhibits near-linear behavior in a regime where one would 
expect quadratic behavior (hundreds of atoms which translates into 1600x 1600 double 
precision complex matrices). This unexpected result illustrates the robustness of the 
TFQMR method and as importantly, means that it may be possible to study even larger 
systems than was anticpiated. 

5. Conclusions 

The efficacious TFQMR method with its efficient use of memory makes it a highly effec- 

tive algorithm that will enable material scieritists to investigate large scale problems which 
would otherwise be untenable due to the poor N 3  scaling of direct methods. In addition, 
the unexpected O ( N )  scaling of the TFQMR algorithm provides researchers with the pos- 
sibility of extending first principles methods to even larger systems which were previously 
not envisioned as being attainable. 
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