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Fa ltipole Tran r Global Climate 

J.  A. Holmes, 2. Wang, J.  B. , B. F. Lyon, and Wen-Tao Chen 
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properties of the associated Legendre  function^,^'^ together with Gaussian integration 
techniques,8 which will be discussed later. With straightforward evaluation of the resulting 
expressions, the scaling of computational work with the number of gridpoints for the 
transformation of each field is O( M - N 2 ,  , so that for higher resolutions this transformation 
increasingly dominates the computational work. Although it is not in general possible to derive 
fast versions of transformations between function and coordinate representations, it will be 
shown in this report that a fast transformation can be derived between functions of Q 
and P," (p) . Such a transformation will be obtained by combining the transformation just 
described with a fast multipole algorithm developed for particle  simulation^.^ This method 
combines partitioning of the domain of p with Taylor series to obtain a transformation that 
scales as O ( M  . N )  in computational work. Because of the convergence of the Taylor 
expansions used here, the fast multipole algorithm can be made to converge to the direct 
summation, limited only by machine precision. Because of the computational overhead 
associated with the fast multipole method, a direct evaluation of the summations is most efficient 
for transforming between coordinate and function space representations in low-resolution 
calculations. However, the favorable scaling of the fast multipole technique leads to a 
substantial reduction in computing time for high-resolution calculations. In addition to 
demonstrating the above scalings, and other properties of the fast multipole transformation that 
will be derived later, this work shows that the resolution at which the fast multipole method 
becomes more efficient than the direct summation is at approximately 300 latitude gridpoints. 
Such resolutions are now being used in grand challenge global climate calculations. 

The remainder of this discussion is organized as follows: the occurrence and form of the 
latitude transformation in climate calculations will be presented in Sect. 2 as a motivation for the 
fast multipole algorithm; the details of the fast multipole algorithm will be considered in Sect. 3; 
numerical calculations will be presented in Sect. 4 to demonstrate and compare the properties of 
the fast multipole algorithm with those of direct summation; and Sect. 5 will highlight our 
conclusions. 
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2. MOTIVATION 
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D1 

where y m  (p) = y: P," (p) . When written in a function space representation using Q. (3) 

and the orthogonality and projection properties of complex Fourier series and associated 
Legendre f~nct ions ,~  Eq. (2) takes the following forms: 

n=h l  

m 

00 m 

or 

where the nonlinear terms are evaluated in coordinate space and projected as combined quantities 
in function space. If, in the nonlinear terms, each factor, U and f for example, is independently 
projected in function space, then each multiplication becomes a convolution over a large set of 
contributing terms. The simplicity of the tern involving s in E/s. (4) is a result of the fact that 
the associated Legendre functions satisfy the equation (v' + n(n + l)}( P," (p)e'"' ) = 0 .  The 
simplicity of Eqs. (4) and ( 5 )  is the primary factor motivating this form of the coordinate to 
function space transformation. 

To solve the above equations numerically it is necessary to work with finite 
representations, both through discretization of the coordinate representation and truncation of the 
function space representation. Because of the necessity of retaining full information in 
transforming between the two representations, there is a relationship between the number of 
spatial gridpoints and function space terms retained. A discussion of this problem, known as 
aliasing, is given in Hamming.* Let us assume a discretization of the spherical coordinate grid 
having I longitude gridpoints and J latitude gndpoints, and let us also assume a truncation of 
the function space, with -A4 I m d M constraining the h coefficients and 1.11 5 n 5 N ( m )  

limiting the associated Legendre function series. For interfacing with the FFT routines, the 
longitude gndpoints hi , i = 0,. . . , I are chosen to be equally spaced, and I is taken to be a power 
of 2 ,  I = 2" where s is an integer. Periodicity in h requires that point 0 be equivalent to 
point I .  To avoid the loss of information associated with aliasing it is also necessary to to 
choose I 2 3 M  + 1, so the number of Fourier amplitudes that can be meaningfully retained is 
limited by the spatial resolution. The amount of computational work in carrying out the 
longitude transformations using FFTs is of the order I ln(Z) at each latitude p, compared 

with order Z 2  using direct methods. Thus the total work for all latitudes is of order J I . In( I )  

or .I I 2  for the FFT and direct transformations, respectively. Similar considerations apply to 
the latitude grid and the associated Legendre functions, as we now describe. 

The transformation between the latitude gnd and the associated Legendre function 
representation i s  conveniently carried out using Gaussian integration. This requires the latitude 
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where g and h are functions such as U , V , or f , and D is a linear differential operator 
acting on Pnm(p).  As stated above, the work associated with this transformation is of order 
N M e J ,  and it is this quantity that we seek to reduce here. To do this, let us carry out the 
inverse projection on Eq. (10) to obtain 

n=Jrnl 

The next step in obtaining a fast method arises from the possibility of simplifying the summation 
involving the associated Legendre functions. For many simple linear differential operators, D , 
including those that appear in the dynamical equations of global climate models, simplifications 
are possible. As an example, consider the simplest of all operators, namely D = I ,  where I is 
the identity operator. In this case, the summation can be reduced, using the Christoffel-Darboux 
formula,I0" 

where E: = J(n' - m2) / (4n2 - 1) . Substituting Eq. (12) into Eq. ( 1  l ) ,  with D = I , gives 

which can be written compactly in the form 

In Eq. (14) the coefficients A: (p j )  , B: (p ) , b: (p ) , C'; (p ) , and c;l: (p ) actually depend 
on N + 1 as well as on N , but since N -t 1 can be viewed as a function of N , we can correctly 
write the coefficients as shown. 
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3. FAST MULTIPOLE TRANSFORMATION IN ONE DIMENSION 

Fast multipole techniques were originally developed to provide fast methods to compute 
sums of pairwise force terms that appear in computer particle pushing.’ Such sums are typically 
of the form 

where the total number of particles is J ,  the indices j and k denote particles, FJ is the total 
force on particle j due to all the other particles, Q, is a charge or strength associated with the 
force on particle j ,qk  is a charge or strength associated with the generation of force by particle 
k , and f ( x ,  - xk ) is a function of the distance between particles. The naive evaluation of the 
summation in &. (16) for all the particles j requires computational work proportional to the 
number of particles squared. For common force or potential distance functions f ( x ,  - xk ) it is 
possible to partition the coordinate domain into bins and to utilize Taylor series expansions about 
selected points within these bins to derive arbitrarily accurate evaluations of the forces that, in 
the limit of many particles, scale as the number of particles to the first power. The approach is 
derived in detail and an algorithm given for a two-dimensional (2-D) coordinate space by 
Greengard and R ~ k h l i n . ~  

This applicability of Taylor expansion is the real motivation for writing the dynamical 
climate equations in the form of Eq. (15). We see that the terms in Q. (15) are of the same form 
as the force term in Eq. (16), with the coefficients A; (p , ) and a: (p ) playing the roles of 
the charges e, and q k ,  and the coordinates p , and p k  serving as x, and x I  . The force 

functions f ( x ,  - xk ) take the form 1 / (p, - p k  ) p  and are conducive to the fast multipole 
approach. The coordinate domain associated with Q. (15) is -1 5 p, p k  5 1. It is not the 
purpose of this section to repeat the entire development of the fast multipole algorithm given by 
Greengard and Rokhlin.’ Rather, we will adapt their procedure to the case at hand: namely, the 
evaluation of summations having the form of Eq. (16) in a one-dimensional (1-D) coordinate 
domain with -1 5 X ,  ,xk 5 1 and force distance functions f (x, - xk ) = 1 / ( x ,  - xk )” The 
purpose of this section is to describe a fast method to evaluate summations of the form 

where 1 5 j ,  k 5 J , -1 5 xi ,xk 1 and p is a positive integer. By a fast method, we mean one 
in which the operation count in the evaluation of Eq. (17) for all J terms scales with large 
values of J as J , rather than J 2  , as in the naive method. Although our application here is the 
evaluation of terms in global climate equations, we will use the particle, charge, and force 
terminology in the discussion of this section because of its intuitive clarity. 

The convergence of the fast multipole method as applied to Q. (17) will depend on the 
convergence properties of the Taylor series expansion of the function 
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containing x,  . The forward sweep proceeds by collecting the multipole forces from each bin 
into successively larger bins, each time re-expressing the force as a multipole series about the 
larger bin center. This force is strongly convergent for points well outside the bin. The reverse 
sweep distributes these collected multipole forces back to successively smaller bins, this time by 
Taylor expansions of the multipole contributions of “remote” bins about the centers of the 
smaller bins. The inclusion of multipole forces only from remote (nonadjacent) bins guarantees 
rapid convergence of the series. Upon completion of the reverse sweep, the remaining forces due 
to individual particles in the same and adjacent bins are summed explicitly. To reduce 
computational work using the fast multipole algorithm, the number of nearby particles with force 
terms to be evaluated explicitly must be small compared with the total number of particles. 
Hence there must be many bins at the most local level. We will now fill in some of the details in 
this description of the fast multipole algorithm. 

In the forward and backward sweeps described above, each step involves either the 
combination of two bins into one or the separation of one bin into two. For that reason we begin 
with z5 bins, where s is an integer. Grouping the forces generated by the particles inside each 
bin to create a bin multipole force is carried out as follows: consider bin b with radius rb and 
center x, , so that particles having coordinates x, - r, I x, < x b  4- rb lie inside bin b . We then 
obtain 

k &  k Eb 

n+ D 

i = p  

where 

This result comes from making a Taylor expansion of 1 / [ 1 - (x, - x b )  / (x - x, )]” , and 
truncating at n + 1 terns. For particles with coordinates xk inside the bin, Ixk - x,l< r, , and 

for evaluation points x outside the bin, Ix - x b l  > rb , the Taylor expansion converges. In the 
fast multipole algorithm presented here, the field point x is always taken to lie outside bin b and 
even outside the bins adjacent to bin b .  Hence Ix--xbI > 3 . r b  is satisfied, 
(xk - x,) / (x - x b )  < 1 / 3 .  Thus in the error analysis in . (20) and Table 1, the value 
r = 1 / 3 is approriate for this algorithm. The coefficients ~ 1 2 , ~  in the expansion of Eqs. (21) and 
(22) are the multipole moments of the particles in bin b ; hence the force field generated by the 
multipole moments located at the bin center r, is equivalent, up to the error in the truncated 
Taylor expansion, to the force field of the actual particles in the bin. Therefore, this algorithm is 
known as a fast multipole method. 

The second part of the fast multipole procedure involves the forward sweep, in which the 
multipole fields associated with each bin are expressed as expansions about the centers of 
successively larger bins. This process is carried out in a pairwise fashion, with the fields from 
pairs of adjacent bins expressed relative to the center of the combined bin consisting of the two 
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B ,  the Taylor series expansion of 
1 / [I - (X - X,. ) / (X, - X,. ) I J  in Qs. (25) and (26) satisfies r = 1 1 4 in the error analysis of 
Eq. (20) and Table 1. In thc reverse sweep, bins are evenly subdivided at each step. "phis doubles 
the number and halves the size of the bins in the partition. Then at each stage Qs. (25) and (26) 
are used to gather the contributions to each bin from nonadja bins that have not previously 
contributed. For the contributions of larger bins already gathered in previous iterations, it is 
necessary to rccenter the expansion of Eqs. (25) and (26) to the new bins b . Assume that bin b 
with center x b  and radius rb is obtained in the subdivision of bin B .  Then 

n 
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summation by specific evaluation of Eq. (27) multiplied by Q, at point x, for each particle j , 
together With the direct evaluation of the remaining terms due to particles in the same or adjacent 
bins. 
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Upon first examination, E q .  (29) appears to give an operation count that scales as J 2 ,  rather than 
J ,  in which case the complications of the fast multipole approach would yield no gain. 
However, Q. (29) depends on the three parameters J ,  n , and s . Clearly, J is determined by 
the number of particles, and n is fixed by the desired accuracy of the multipole expansion. 
However, the number of bins, 2" is still free to choose. In order to minimize the amount of 
work in Eq. (29), we differentiate with respect to s and equate the result to zero. The result is 
n2 [4 - 3 / ( 2 s  - ln(2)] - 3( J / 2 s ) 2  = 0 and, assuming 2' is significantly greater than 1 we 
obtain the result 

T z J3J/(2n) . 

Substituting Q. (30) back into Eq. (29) and ignoring 3s in comparison with 2s+2 we find that 
the overall work in the fast multipole method scales as 

Work QC J(2n)( l+2&) . (31) 
Hence for any desired precision, determined by T I ,  the work scales linearly with the number of 
particles in the fast multipole method (m. (31)), provided that the number of  bins is determined 

This section completes our description of the 1-D adaptation of the fast multipole 
method and its properties. The next section presents numerical studies that both demonstrate the 
properties of the fast multipole method and evaluate the tradeoff between its computational 
overhead and linear scaling in comparison with direct summation of Eq. (16). 

by Es" (30). 

14 



4. RESULTS 
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Convergence of Multipole Expansion 
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Fig. 1. Relative error in fast multipole expansion vs n for various numbers of particles. 

The execution times of the fast multipole algorithm are shown as functions of the 
number of terms retained in the Taylor series expansion in Fig. 2.  The several curves correspond 
to various choices of the bin parameter s .  We note that each curve for the execution time 
corresponds to Eiq. (29), with J and s fixed as n is varied. Consistent with Eq. (29), the curves 
show a parabolic behavior with increasing n . For any given values of J and n , EQ. (30) can be 
used to obtain the optimal value of s with respect to minimization of work. For J = 1oo00, Eq. 
(30) gives the following values of optimal s as a function of n : (n , s )  = (10, 9 . Q  (20, 8.8), 
(30, 8.2), (35, 8.0), (40, 7.8), (45, 7.6), and (50, 7.4). Since the fast multipole algorithm 
constrains s to be an integer, the results of E2q. (30) predict the observed set of optimal s :  
(n , s )  = (10, lo), (20, 9), (30, S), (40, 8), (45, 8), and (50, 7). These results are completely 
consistent with the timings presented in Fig. 2. We note that the combination of the convergence 
requirements discussed above and the optimal timing indicate “best case” parameters for J =1 

loo00 when (n,s)  == (35-40, 8). For such cases the fast multipole algorithm completes the 
summation of Eq. (16) for all j in about 5 to 6 s of cpu time. Although the results presented 
here are for cases with p = 1 and randomly selected coordinates and charges, the errors and 
timings are similar for other selections of these parameters (including gaussian integration 
coordinates). 



Effect of Multipole Expansi eter s on Execution Times for loo00 
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Execution Time vs Bin Parameter 
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Fig. 3. Fast multipole algorithm execution time vs bin parameter s for various numbers of particles J .  

The comparison between the prediction of Eq. (30) for the optimal bin parameter s ,  
given J particles in the summation and n terms in the truncated Taylor expansion, and the 
observed optimal value is plotted in Fig. 4 for J = 30 - 10000 and n = 20 and 40. Given the 
constraints of the fast multipole algorithm that s is an integer and s 2 2 ,  the agreement between 
the observed and theoretical curves is exact: the observed values are as close as possible to the 
theoretical results. 

The results to this point have been in the nature of tuning and studying the behavior of 
the fast multipole algorithm. The convergence of the truncated multipole expansion to the results 
of direct summation has been studied as a function of the number n of terms retained. Also, the 
systematics of execution time with the number of particles J ,  number of expansion terms n , 
and bin parameter s have been examined. In both these areas, the results have been 
demonstrated to agree with the predictions of Sect. 3. We conclude this study by comparing the 
timings of the fast multipole algorithm with those obtained by direct summation. The scaling 
and magnitude of these quantities with the number of particles J constitutes the central question 
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Fig. 4. Theoretical and observed optimal bin parameter s vs number of particles J for tt = 20 and n = 40. 
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considered in this work. The answer is shown in Fig. 5 ,  which plots the execution times for the 
fast multipole algorithm and for direct summation as a function of J from J =30 - 1oooO. In 
the fast multipole calculations, cases were carried out with the Taylor series truncated to n =I 20 
and n = 40 terms, and optimal values of bin parameter s were used throughout. As predicted in 
Sect. 3, the execution time is proportional to J 2  for the direct summation method and to J for 
the fast multipole algorithm. For small values of J the direct summation of Eq, (16) is faster 
than its evaluation by fast xnultipoles because, for few enough particles, the overhead involved in 
connstructing and executing the steps of the fast multipole algorithm exceeds the work involved 
in simply carrying out the summation. However, for large numbers of particles the fast multipole 
algorithm is much faster than direct summation, and the speed advantage of the fast multipole 
approach increases with J . For example, when J = loo00 the fast multipole algorithm requires 
more than an order of magnitude less computer time than direct summation. Figure 5 indicates 
that the crossover point at which the fast multipole approach becomes faster than direct 
sunmation is in the vicinity of J =300 to 500 particles. Hence for more than about 500 
particles, or latitudes in the global climate models, it is advantageous to use the fast multipole 
algorithm to cany out summations of the form of Eq. (16). 



5. CONCLUSIONS 
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