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ABSTRACT 

It is widely accepted that dead reckoning based on the rolling n.ith 110 slip condition on 
wheels is not a reliable method to ascertain the position aiid orientation of a Inobilc robot 
for an\- reasonable distance. \ l e  establish that lvheel slip is inevitable under the dynamic 
model of motion using classical results on the accessibility and controllahilit\ in  nonlinear 
control theory and an  analytical model of rolling of t\vo linearly elastic tmdies. 





1 INTRODUCTION 

The mobility literature of \vheeled mobile robots n i t h  fixed. centered. off-centered. and 
omnidirectional wheels is traditionally founded on tlie equations of motion derii c ~ l  froni the 
rolling with 710 d i p  constraint on the  nhcels. Together bvitli the n.lieel orientation encoders 
that are used to infer the configuration (end-point) of the mobile robot, these constraints are 
convenient i n  reducing the order of the state-space description of the mobile robot. H o u n e r .  
dad-reckoning error is substantial for large distances. I t  renders the reduced state-space 
model and the corresponding dead-reckoning method of inferring the configuration of the 
mobile robot, a t  best. questionable. 

Our objective in this paper is to esplore the implications of imposing the rolling with 
no slip condition using classical results on the accessibility and controllability i n  nonlinear 
control theory [St' 901. When the rolling constraints are iniposed, the! alloxv forces at the 
Ivheel-ground interface to be transmitted up to the frictional bound with perfect rolling 
contact. The analytical theory of two bodies in rolling contact, however, establishes a 
definite slip associated with the traction forces at the wheel-ground interface. !Ye consider 
that the traction forces at  the wheel-ground interface are determined under the following 
Conditions: 

Hypothesis 1 

a. The rolling bodies are linearly elastic. 

b. Quasi-identity relation 071 the elastic properties of the two bodies in  contact holds. 
(This includes the case uphen the two Godies are elastically similar and approximates 
the situation when one body, say a rubber wheel, is  incornpressible, and tlie other body, 
say the concrete ground, is relatively rigid.) 

c.  The areo of contact between the two bodies is symmetric about the direction of the 
rolling of the wheels. 

The conditions we identify are roughly the following: 

1.  If the constraints in the lateral (sideways) and longitudinal (rolling) directions of a 
wheel transmit traction forces determined under the conditions of Hypothesis 1, then 
only mobile robots with off-centered wheels can, in  general, preserve the kinematic 
constraints imposed by the wheels. The state of rest is, however, a n  equilibrium point 
of the dynamic system. 

2. If the constraints in the lateral (sideways) direction of the wheels are satisfied, then 
preserving the longitudinal direction constraint of rolling uiith no slip with wheel- 
ground traction determined under the conditions of Hypothesis 1 implies that  the 
base of those mobile robots with fixed, centered, and omnidirectional wheels cannot 
change its state from the state of rest - a case of zero accessibility (and controllability) 
for the base of the mobile robot. 

1 



1 1 1  effect. xve identifJ- conditions for ivhich ivheel slip is inevitable. -4 key aspect of our 
study is the analytical formulation of the theor!. of rolling of t\vo liiienrly rlnstic bodies iri 

contact. The origiii of such  studies is founded i n  the Ian. of friction of Coulomb-~~niontoirs. 
the anaI>.tic models of deformation of a three-dimensional half-space elastic body due to a 
concentrated load of Boussinesq (188.5) and C'erruti (1882). and Hertz's theory (1882) of 

t\vo elastic surfaces nith curvature i n  contact. Application of these theories to the study 
of rolling contact between tivo bodies was initiated by Carter (1926). u-ho gave solutio~is 
of a two-dimensional problem. i . ~ . .  when the extents of the rolling objects lie i n  a plane. 
Subsequently. Fromm (1927j, Johnson (19.58). de Pater (19.56). Iialker (1957), Haines and 
Ollerton (1964). and Heinricli and Desoyer (19G;) ha\-e estended the solutions under various 
other assumptions: see a revieiv article b!. Iialker [Iialker 791. 

It, arises 
from inconsistent positioning and orientation of the n-heels with respect to  the kinematic 
mobility of the base of the mobile robot. They also offer an analytical justification of 
the phenomena of sideways lurching with uneven rolling friction conditions on the ivheels 
using a minimum work principle on their quasi-static model of motion. The wheel slip we 
consider here and the implication on its existence subsunies kinematic consistency. It  is. 
therefore, different from their wheel scrubbing phenomena. A recent paper of Balakrishna 
and Ghosal [BG 9.51 considered a model of the traction forces arising from a rolling tire. 
Their model of traction force and wheel slip arises from an empirical model of tire mechanics 
analysis. An analytical model of a rolling tire, i n  the sense we present here for two 1inea.rly 
elastic rolling bodies, is a difficult probleni [lialker 901. Their empirical model, however. 
incorporates essential aspects of the analytical theory of rolling under Hypothesis 1 that 
we consider. The numerical simulation results, therefore, exhibit the presence of wheel 
slip, a conclusion we prove based entirely on a n  analytical theory. Oiir primary results are 
theorems 6 and 8. 

Previously. Alexander and h,laddocks [AL,l  891 considered u:heel scrubbing. 
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2 KINEMATICS 

This section introduces the kinematic constraints imposed b\- the nature and configuration 
of various types of I$ heels of the mobile robot. First. n e  consider the transformation of  
kinematic quantities in a general framervorl; of the chuicP of coordinate sFstems. The 
sut~sections following the first consider the form of the specific instances of the kinematic 
constraints of a wheel type of a mobile robot. The kinernatic model ~ v e  derive is based 011 a 
model of a zero width non-deformable planar circle rolling wi th  no slip on the ground. The 
subsequent analysis and results of the paper, ltorvever. are not restricted by this intrrmediatc 
step in deriving the model. 

2.1 Kinematic Transformation 

The set of rigid body motion in a space S is called Special Orthogonal Euclidean Group. 
denoted SE(n) .  An element q E SE(71) is a map q:S -+ S:p  c) q(p) that  preserves the 
norm. Consider also a choice of coordinate system on the space S as a n  assignment of n 

real-valued norm-preserving orthogonal map 3:s -+ Xn:p c) (F1(p) ,  . . ., F ( p ) ) .  Given 
a choice of coordinate system on a space S .  an element of S E ( n )  has several prevalent rep- 
resent a ti on s including ho rnoge n eo us m rat rix t rcl ns f orm ut io ii and PI uke r Sc re ti' Coo rd ina t c .s. 

Consider a n  element q E S E ( n )  and its representation q7 in  the choice of a coordinate sys- 
tem F such that q3(p) = 3 o q o  3 - ' ( p )  for p E Rn, where o represents map composition 
operator. A representation of a n  element q3 i n  the homogeneous matrix transformation is 

3 

a linear transformation 

where RF is a n x n matrix representing rotation and t3 is a n-dimensional translational 
vector both expressed in the choice of coordinate system 7 so that q(p) = F1 (RF3(p) + 
tF) for all points p E S. The elements RF and tF, called rotations and translations, 
respectively, are representations of R and t ,  members of the space S E ( n ) ,  in the choice of 
coordinate system F. In general, a n  arbitrary element q E S E ( n )  is composed of a rotation 
and translation, ie., q = tq  o Rq. 

Another choice of a coordinate system on the space S, say G, induces different repre- 
sentation of an element q f S E ( n ) .  Let the two choices of coordinate systems 3 and  6' 
be related by a map h E SE(n) ,  such that L7 = F o h-', then two representations of an 
element q E S E ( n )  are related by 

Consider the space of infinitesimal rigid body motions at  the identity c' E S E ( n ) ,  the initial 
configuration. The space denoted se(n) is the tangent space 'T,SE(n) of the manifold 
S E ( n )  at the identity. Any choice of coordinate system 3 on the space also induces a 

representation of a n  element v, in se(n)  denoted v:. For example, v: E . se(3) ,  v c  = 
[z,: u% ~2 LJ; .ig uz I T ,  where [uz v g  .;I' is tile translational velocity 
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and [del -ti 33 b;3]T e: is the angular velocity. both expressed i n  the choice of coordinate 
system F. 

.Another choice of coordinate s!.stem. say cj. on the space S induces a map of an element 
v, E S C ( R )  from one representation to the other. For a given element h E S E ( u ) .  define the 
adjoint as a map -4rlil: x t ( n )  i s ~ ( n ) .  For example. if h is represented as a homogeneous 

transformation matris i n  the coordinate system F ivith R*' as the rotation matris and 
t h F  as the translation vector. then the adjoint .4di1 is represented as 

where [t] represents the cross-product operator of the vector t = ( t l .  f2. t 3 )  defined for rt  = 3 
as 

0 --tg f2 

The representations of v, i n  coordinate system F and cj are related as 

V$ = (vr). 

2.2 Kinematic Model of Motion of the  Base of Wheeled Mobile Robot 

First consider S. t h e  plane of motion of the base of the wheeled mobile robot. Let F be a 

choice of a coordinate system in the plane so that 3: S + R2: p tj ( F ' ( P ) ~  S2(p) ) .  Let the 
configuration of the base of the mobile robot, a n  element of S E ( 2 ) ,  be denoted x1 = (x. y, 0) 
in the choice of coordinate system F (or more appropriately x: in the notation of the 
previous section). The rigid body configuration x1 is also equivalent to  t (5 ,  y) o R(8) = 
t(x1) o R(x1) '. It is easy to verify that a choice of coordinate M = xT' o 3 is fixed to the 
base of the mobile robot. Lets call M the moving reference frame (see Fig. 1). 

Let the velocity of the base of the mobile robot i n  the plane of motion at the configuration 
x1 be denoted xl = (il y. 4). It is easy to verify that the velocity of the base of the mobile 
robot x;" i n  the moving reference frame is related to  x 1  by x;" = Ad&XIl-l(xl). More 
specifically, this  relation reduces to  

3 

xf = Rx1, (3)  

where R = R(x1) is an orthogonal tranformation matrix of three-by-three of the form 

Cos(0) szn(e) 
R ( 0 )  = ["ox' 3 = [ -Szn(B) Cus(0) 

0 0 

'Items in ( )  denote. depending on the context, elements of a vector or functional dependency of a map 

on variables. I f  f :  'R" 3 'Em is smooth map such that  f = ( f ' ,  f2,. , . , f"), then 8"(r1 'In'  = - DJf '  G 
B=,  

Df[z][j], and Df is the Jacobian of the function f .  

4 



Figure 1: Choice coordinate systems for kinematic constraints. 

2.3 Kinematic Constraints Imposed by Wheels 

Our model of a wheeled mobile robot is a generalized model of such robots considered by 
Campion et. al. [CBD 931. A wheeled mobile robot has either conventional type wheel or 
an omnidirectional type wheel. A conventional type wheel h a s  a given axis about which 
the wheel can rotate and is driven. It is of the following three categories: ( i )  fixed, ( i i )  
centered orientable, and ( i i i )  off-centered orientable. An omnidirectional wheel can rotate 
about a n  arbitrary axis of rotation in the plane of motion of the base of the mobile robot 
and is (usually) driven about one given axis in that plane. The configuration of a mobile 
robot with a n  arbitrary combination of wheels is described by the following: 

0 XI, the three coordinates of the base, 

0 x2, the vector of angular orientations of the plane containing the off-centered wheel: 

0 x3 = (4j1 &, +oc, & d ) ,  the angular orientations of the fixed, centered, off-centered, 
and omnidirectional wheels, respectively, about their driven directions, 

0 xa = ( & d ) ,  an appropriate choice of angular velocities of the omnidirectional wheels 
about directions complementary to the  directions of their drive, and 

e x5, the orientations of the plane containing centered wheel. 

If the number of fixed, centered, off-centered, and omnidirectional wheels are N j ,  Nc,  No,, 
and N o d ,  respectively, then the dimension of an element x, = (xl1 x2, x3, x4, x5) describing 
the configuration of the mobile robot is 3 + No, + ( N j  + N ,  + No, + Nod) + h r o d  + Kc = 

Let O,, , e E {f, c, oc, od},  j E { 1, . . ., N e }  be the choice of coordinate frame of the j t h  
wheel of type e with the origin on the wheel axle above the center point of wheel-ground 
contact for fixed, centered, arid ornnidirectional wheels and a t  the pivot of the arm of off- 
centered wheels. Let a,, be the representation in the choice of coordinate frame M such that 
Oe, = a;' o M .  Let M e J ,  e E {jl c,oc,  od},  j E (1,. . . , N e }  be the d i p  coordinate frames 

3 + iL'f + 2 (Nc + N O C  + A h ) .  
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O,, = a;’ o .tl. Let ,M,,. E E { J . c .  oc. o d } .  j E (1.. . .. be the slip coordi~iatc f m r u c s  
n i t h  the origin on the nheel axle above the center of the area of ivheel-ground contact for all 
n.heels so that +feJ = h;’ o C7,, . irhere he, is the representation i n  the choice of coordinate 
frame OeJ relatirig the frame C7,, and the slip coodinaf t  frnnic .Me,. The maps he, ilia!. 

be the identity for fixed. centered. and omnidirectional ivheels but relates the point on the 
kvheel axle to  the pivot of the off-centered arms on the base of the mobile robot. The velocity 
of a point on the axle of the wheels abok-e the center point of Lvheel-ground cont.act i n  their 

slip coordinate frame.? & I e J  is xiwe’ = tidhel,’idat,Rxl f -.-\dll,,(O. 0 , 3 )  where = (x~), for 
the j t h  off-centered wheel and zero otherwise. 

Let M e J ,  t E {f. c. oc. od}. j E (1.. . . , A-e} be the whet1 coordinntc frame with origin at  
the center of wheel-ground contact, chosen so that vu,. the velocity of the mobile robot due 
to the wheel‘s rolling with no slip condition and no relative angular motion at the uheel- 
ground contact, is expressed conveniently. Let M e J  = g,, o ,!UeJ rehte  the slip coorcliriatc 

frame and the wheel coordinate frame where g,j is expressed i n  the ,*tlej choice of coordinate 
frame. 

The transformation hej’s are chosen such that the y-component of the velocit,; XYeJ i s  
zero. In other words, the slip coordinate frames are chosen so their 2-axis is aligned wi th  
the direction of the velocity of the axle of the wheel at the center point of wheel-ground 
contact. In  addition to the parameters that determine the wheel-ground contact center point 
in  relation to  the moving frame of reference M ,  t h i s  choice makes the transformations heJ‘s 

dependent on X I ,  and depending on the type of the wheel, also on X 2 .  When A;”‘) is zero, 
this choice is arbitrary. The zero of the function 

-1 ~ 

..ldheJAdae,RXi + Adh,,(O, 0, b) - -4d,;l (vW)  (4) 

defines the kinematic constraints on the motion of the base of the mobile robot due to the 
j t h  wheel of the type e E {f, c, oc, od} with wheels rolling with no slip condition. These 
constraints incorporate motion due to  the swing of the arm of the off-centered wheels and 
no relative angular motion of the wheels with respect to  the ground at the center point of 
wheel-ground contact (see Appendix for a specific instantiation of these constraints). 

The three scalar constraints in Eq. (4) for each wheel restrict the motion of the base of 
the mobile robot at the center point of wheel-ground contact in the 2, y, and B directions 
of the slip coordinate system M,j. For convenience, the slip coordinate frame 2-direction 
will also be called the longitudinal direction, the y-direction as the lateral direction, and the 
8-direction as the rotational direction. In this terminology, the scalar kinematic constraints 
for each wheel are also called longitudinal, lateral and rotational constraints due to  the e j th-  
wheel. Let the longitudinal, lateral, and rotational constraints for all the wheels be collected 
in the form J,Xc, J,Xc, and JsX,. respectively, where 

J , l f ( X l . X l I  0 [ J z 3 j ( X i . x i )  0 0 0 1  0 

JZ lOd(Xl .X1)  0 [ 0  0 0 J130d(X1,X1)] J z 4 0 d ( x i . x i I  0 

Jz l c (x1 -  XI )  0 [ o  Jz.sC(x1.x5.X1) o 01 0 :], ( 5 )  

J = l m ( x ( 1 , 2 ) . ~ ( 1 , 2 ) )  J z z o c ( ~ ~ ~ , ~ ) , X ~ l , ~ ) ~  [ O  0 J z ~ o c ( x ( l , ~ ) . x i )  0 1  J z =  [ 0 
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and constraints in  the fourth coluniii due t o  the angulai velocity of the wheels are fu r the r  
expanded into four subcomponents corresponding to  the fixed. centered. off-centered. and 
omnidirectional Lvheels. The constraints in the Eongitudiiinl direction impose rolling with 110 

slipcondition on the wheels of the mobile robot. The constraints i n  the lateral and rotations( 

directions impose no-lateral and no-rotational slips, respectively. There are (*Vvf+ A-,+-Y,, + 
ILro,j) constraints of the longitudinal, lateral, arid rotationnl type. The functional dependency 
of each of the terms i n  the Jacobians J,, J,, and Je as indicated above are based on a model 
of the wheels such that they are valid about a small neighborhood of a n y  state. Although. 
the jacobians are written in a form that is linear in the velocity X,, they include velocit) 
dependent terms arising from the choice of slip coordinate frames M e ,  with zero y-direction 
velocity to  facilitate traction force transformatiori i n  Eq. (14) .  

7 





3 ROLLING CONTACT OF TWO ELASTIC BODIES 

Thr theor!. of frictional rolling of two bodies addresses the problem of detprrnining the 
traction force at the ntieel-ground contact. -4 large fraction of this literature is dedicated 
t o  the rolling of tires founded i n  the empirical models of tire mechanics. \Ye. houeever. limit 
our study to  linearly elastic n.heels. I n  particular. the two bodies in rolling contact are 
assumed to follon our Hypothesis 1. 

The analytical theory of frictional roiling of two  linearlj elastic bodies associates a 
definite slip called creep associated with the traction forces i n  the area of contact. !$‘e 
shon- a certain necr s>mmetr! i n  the creeyforce relation. The remainder of this section 
reviews other symnietries with the elastic yuasi-identity assiiniption of Hypothesis 1 given 
by Kalker [iialker 671. These relations. in effect, alloi\- u s  to  infer tlie traction forces at 
zero slip velocity. Though the new symmetry we sho\v does not require the quasi-identit! 
assumptions, we also need another symmetry that is valid onl! with the quasi-identit! 
assumption. Therefore, i n  general, our conclusions on wheel slip remain valid onl!~ with the 
quasi-identity assumption. 

3.1 Creep-Force Relation Problem Definition 

Consider a linearly elastic circular body, denoted e j .  rolling on a planar linearly elastir 
material. Let the velocity of the center of the wheel axle, .ye’, be i n  the r-direction of the 
slip coordinate frame, ,Ue3, defined i n  Sect. 2.3. Let J.,z,y,B}e, refer to the j t h  row in the cth 
type row block of the Jacobians Jz, J,, or Jg defined in Eqs. ( 5 ) ,  ( G ) ,  and ( T ) ,  respectivelj. 
The terms J(z,,,+3X, represent the rigid slip of the wheel at the wheel ground interface 
in the 5, y,  and 8 directions, respectively. of the slap coordinate frames. Define v,,,, the 
longitudinal creepage. uYe3. the lateral creepage, and use, , the spin for the wheels as 

where = lxEeJl is the magnitude of the %-direction velocity of the point on the axle of 
the wheel (recall that  by the choice of the frame M.,, the y-direction velocity is zero). The 
creepage and spin are ratios of the rigid wheel slip to the magnitude of the translational 
velocity of the axle of a wheel. Let the area of contact of the wheel with the ground be 
denoted C,, described i n  the respective slip coordinate frames (see Fig. 2). The material i n  
the two bodies in the area of contact deform elastically due to the friction-induced tangential 
traction and the vertical load-induced compression. Let the slip coordinate frames be the 
choice of the coordinate system to describe the contact area CeJ. Let u s  add z-axis to  the 
slip frames so that the z-positive direction points into tlie material of the wheel. In this  
description, the two bodies are approximated as half-spaces wi th  the material on z 2 0 and 
2 5 0 of the slip coordinate frames. The elastic deformation on these half-spaces due to  
concentrated normal load in the z-direction and tangential load along the x-axis and the 
y-axis have been given by Boussinesq (1885) and Cerruti (1882) [Love 441. Let the elastic 
s t ra in  denoted ueJ(x,  y. Vge3)  = (uZeJ, uye3. uZe3)  be the difference in the elastic 
strains of the rolling wheel and the ground expressed in the slip coordinate frame. Let 

9 



M Wheel Coordinate 

(VelOClly direnion due lo wheel rolling) 
Frame 

M Slip Coordinate 
e' Frame 

Longirudinal 
Direction (Direcficn 01 

t 
\ 

DLrect'on Contan Area C,, 

Figure 2: 1Z'heel-ground contact and slip directions. 

( - Y e j t  l e j .  Ze j ) ( x .  y. v,,,. VyeJ. VO?,) be the 1. y and 2 components of t h ~  traction and  the 
vertical load at a point ( r . y )  E Cej .  The relation between the material strain function u 
and the traction (S, 1'. Z )  is 

Et71 g )  1 
2 ( 1 + 0 ( . ~ ' . ! ? 1 ) '  c = tvhere R = &(T - z*)* + ( y  - y*)*). the modulus of rigidity G{"J} = 

5(w+z) .  1 1  U - l U W  - 2 ( E G + & ) .  g 
and K = $(------- r ( 1 - 2 0 g )  (1-20") ), with E as the Joung's Modulus 

of Elasticity, o as the Poisson's ratio and superscript ui and g standing for the properties 
of the wheel and the ground, respectively. 

Due to the elastic material flow w i t h  respect to a reference frame moving with the wheel, 
the net relative displacement of one body with respect to the other a t  a point i n  the area of 
contact is the sum of the gross rigid motion component and the relative elastic motion. The 
net relative velocity of one body wi th  respect to the other at  a point (z .y)  E Ce, denoted 

1 
G g  GU 

W ( X .  y, Vxejr  Vye j .  V o e j )  == ( @ r e ] ,  ~ y e j )  is 

- B U y e j  - 
2iJyej J k j  (Vyej  + ZVgeJ )  + i y e g  (x,  97 t )  = \'e] ( v y e j  + X V O e j  -- -), 

d X  

where steady-state assumption on the flow of material is assumed, z.e., % = 0. Then, 
according to the law of Coulomb-Amontons, 

where peJ is the coefficient of friction at the wheel-ground interface of e j t h  wheel. 

The creepforce Inu? problem is defined as follows: 

10 



Determirip (ALe3. A,,?. 
defined as 

the traction forces at  the nheel-groulltl interface 

* f 3 .  .l9& - l / S c , ) d . r d y .  (1'2) J L, ( A Z e 3 . A y e j . A 6 t ~ )  = 

so that Eqs. (9).  (10) .  and (11) are satisfied when the creepages (v,,~.I/~~~. 
voeJ), the iiet load = J JCr, Z,, (x. y ) d s  dy. and the translational velocity 1 LJ 
are known. 

3.2 Symmetry in Creep-Force Relation 

The problem of creep-force lau. as posed in Eq. (12) admits a symnietry relation that enables 
u s  to infer the traction forces on a special subset defined by no-lateral and no-angular slip. 

Proposition 2 Thc traction symmetry relations 

Proof. The governing relations of creepforce law in Eqs. (9), ( l o ) ,  and (11) can be shown 
to satisfy the following symmetry: 

The traction symmetry follows from the integral in  Eq. (12). I 

Corollary 3 With no lateral and angular slip. the lateral and angular tmction disappear 
when the contact area Ce,(s, y) = Cej(x, - y ) ,  i . ~ . ,  A Y e , 7 ( ~ x , J ,  0.0) = )1ef3(uze3, 0,O) = 0. 

Unfortunately, the creepforce problem as posed obeys no other symmetry to  exhibit any 
similar conclusion for the longitudinal traction A,. Kalker [Iialker 791, however, considered 
the following cases of quasi-identity: either the two elastic bodies are elastically similar, i . e . ,  
Eg = E", and C T ~  = a*", or both are incompressible, i . e . ,  C T ~  = (T" = 0.5, then K in Eq. (9) 
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is zero. .Also. nhen one body. sa!. a rubber n-heel. is incompressible. and the other bod!. 
is relati\.ely rigid. 7.c.. nu' = 0.5. and E" << E3. K is close to  zero. \\Tlien K is zero. the 
elastic strain and traction relations of Eq. (9') simplify i n  such a \yay that the probleni of 
determining the vertical strain u,. and therefore the vertical pressure distribution Z(.r. g) .  
separates from that of the tangential probleni of determining u,. u v  and tlie corresponding 
- X ( s . y )  and Y ( x . y ) .  Let u s  call the elastic-traction relation derived from those of Eqs. (9) 
n.ith K = 0 the quasi-identical clastic-trciction Ian- and the corresponding creep-force law 
problem posed in Eq. (12) as the qnnsi-idcnficol creep-forcc lau-. This separatioll of vertical 
and the tangent.ial problem in quasi-identity allons several other syninietries i n  the creep- 
force law [Iialker 671 including a specialization of the Proposition 2 u.e proved earlier. \\.'e 
mention one other: 

Proposition 4 (Kalker, 1967) Thc traction syrnnietry relotions 

verify the quasi-identity creep-force law when the contact area C e j ( . ~ "  y)  = C,,(X. -y) .  

Corollary 5 (Kalker, 1961) IVith no longitudinal slip,  the longitudinal traction in quasi- 
identicalproblem disappears when the contact area Cej(x, y) = Ce,(x .  -y) ,  i.e.. A z e j ( 0 ,  uyej, 
VOej) 0. 

3.3 Kalker's Simplified Linear Theory 

The solution of the creep-force problem ( A r e j ,  AYel, AB,,) as a function of ( u r e J ,  uyej, v e e j )  

with the elasticity-traction relations in Eq. (9) is called Exact Nonlznear Theory. An an-  
alytical solution of the Exact Nonlinear Theory has not yet been possible. If, however, 
a linear elnsticity-traction relation (u,, uy) = (L ,X ,  L y l r )  is used with the quasi-identity 
assumption of elasticity when L,  and L ,  are fixed coefficients, the resulting creep-force re- 
lation i s  given analytically. Consider first the normal problem. The solution is given by the 
Hertzian model [Iialker 791. For twice continuously differentiable surfaces in contact, this  
area is elliptic in  form. The pressure distribution Zel(z', y') on the contact area Ce, due to  

vertical load Ke3 on the wheel is given by Ze,(x',y') = =dl - ( ~ ' / a ) ~  - ( ~ ' / b ) ~ ,  where 
x' and y' are an appropriate choice of a coordinate system. a and b are the lengths of the 
major and the minor semi-axes of the elliptical contact, area Cej determined as a function 
of the local radii of curvature of the two surfaces in contact. elastic properties of the two 
bodies, and the total load Nel. The tangential problem is based on the assumption that 
one of the principal semi-ases of the elliptical contact area is the direction of rolling - the 
x-axis of our  slip coordinate frames. The problem of determining the strain ( u r , u y )  and 
the corresponding tractions ( X ,  I-)  assumes that the net slip W of Eq. (10) vanishes at all 

3Nej  
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points in  the contact area Cfl. The traction at the leading edge of contact area \vi th  respect 
to the direction of the rolliiig also vanishes. The anal!-tical solutioii of the creepforce Ian- 
thus obtained is: 

- n 6GC'11 0 0 [ :tq = [ 0 -ff bCC22 - ( a b )  k ' 2 3  ( 1 3 )  
A b L j  0 -(nb);G'C32 -(ab)'G'C'3? 

where C13's are constants given i n  [Iialker 901 as a functiori of the combined Poisson's 
ratio cr and the shape ratio of the semi-minor axes of the elliptical ITrrti contact a rm 
of the two bodies. The resulting theory is called the Siniyli'ifcl Linear Theory due to 
Iialker [Iialker 671. When the velocity I;, i n  Ecl. (8) is zero. the steady state lotigitudirial 
and lateral traction vanish and the spin traction nioInent can be calculated h!. elementar! 
principles. 
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4 DYNAMIC MODEL OF WHEELED MOBILE ROBOT 

- 
I b o o o 0  
0 I,, 0 0 0 
O O I d O O  
0 0  o r 6 0  

- 0  0 0 0 I ,  

The dynamic model of mobile robot is obtained b) Euler-Lagrangc forrtiulation subject 
to the esternal forces applied at  the  actuated joints. and the forces a t  the nhtc+-ground 
interface. Let the vector of external (generalized) forces he 7- = ( 0 .  T ~ , ~ .  r,. 0.7:). wherc the 
three degrees of freedom of the base of the mobile rol)ot x1 = ( . r . ! / . O )  and the undriveIl 
direction of the ornni-n heels are not directly actuated. The forces at the wheel-ground 
interface are denoted A,. A,. arid Ab. i n  the directions 2. y. and 6’ of the d i p  coordinafc 
f rome respectively, of each of the xvlieeIs.The A’s are vectors n-it11 (-I-! + + iYo, + L77,d) 
components. 

= r + JFX, + JFA, + J T X o ,  ivhere T 
is the total energy of the system. Expanded into components, the qua t ions  of niotion look 

The generalized equations of motion is 5% - 

where Ib, IOc,I4, Id; and I,, are diagonal inertia matrices corresponding to the states x lr  x2. 
x3, x4, and x5, respectively. In this simplified form we have assumed. among other things. 
that  the inertia of the base of the mobile robot 1, is independent of the configuration of the 
plane containing centered and off-centered wheels. 
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5 PARAMETERIZATION OF EQUATION OF MOTION 
WITH 

CONSTRAINTS 

5.1 Lateral Constraints Only 

IVhen lateral constraints are preserved. the kinematic constraints J$- = 0 is imposed and 
the wheel-ground contact allows forces u p  to the frictioiial bound to be transmitted aloiig 
these constraints. The kinematic constraints are reduced to the following form: 

The first type of constraint arises from the  fixed and centered nheels. The second type 
arises from those of the off-centered wheels, and the third type from the omnidirectional 
wheels. If J l l  is of rank three. then any  motion in the plane is impossible. The degree of 
rriobility defined as the rank of the null space of the linear map J11 is the number of degrees 
of freedom the mobile robot h a s  in the plane of motion. If this  degree of mobility is three, 
then the mobile robot is called omnidirectional since it has full mobility in the plane of 
motion. See Campion et. al. [CBD 931 for a classification based on the degree of mobility 
of the wheeled mobile robots. Consider a linear map  S = S(x5) whose columns span the 
nul l  space of the mobility matrix J l l ,  i .e . ,  3115 = 0. The velocity vector X I  of the base of 
the mobile robot is restricted to lie in the following distribution: 

X I  E span{co2(RiTS)} .  

If the dimension of the null space of Jll  is m. then consider a n  element x6 in Tt" that 
parameterizes the mobility of the robot. In addition, assume that elements (x7, xs) i n  
R ( N f + n r c + h r o c - t N ~ d )  x RNc parameterize the velocities x3 and Xs, respectively. The complete 
kinematic model of the wheeled-mobile robot with 110 slip in  the lateral directions in 
Eqs. (15) ,  (16), and (17)  is parameterized by the vector x, = (x6,xqrxg) given by the 
model 

where 

P =  

x, = Pxv, 

-J;; 0 0 
0 I 0 
0 -J i iJ33  0 
0 0 I 

The configuration parameters x, = ( X I ,  x2, x3, xq, x g )  together with x ,  = (x6, xq, x8), the 
independent parameterization of the velocities in  Eq. (18). form the state space of the 
wheeled mobile robot. Let an element of t h i s  state space be denoted x = (xc, xu). 
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\Vitli a nonsingular kinematic parameterization in Eq. (18). the equations of motioii i n  
Eq. (14)  reduce to  a set of first-order differential equations 011 the state space of the form 
x = f ( x )  + gI(x)T,, + g2(x)TC, + g 3 ( x ) ~ ~ .  I n  components 

0 0  
1;'1211;' I,' 0 [ ' I '  - 0 lil  

0 
0 
0 
0 
0 
0 

0 
I, ' 

0 
0 
0 
0 
0 
0 
0 

I;1 

5.2 Lateral and Longitudinal Constraints 

The set of longitudinal constraints impose rolling with no slip condition on the wheels of 
the mobile robot. We derive the conditions on the equations of motion if the longitudinal 
constraints. aside from the lateral ones, are also preserved. Recall that  when longitudinal 
constraints are imposed in this manner, the equations of motion so obtained allow wheel 
torque up to  the frictional bound to  be transmitted a t  the wheel-ground interface along the 
direction of their rolling. 

The set of longitudinal constraints J,X, = 0 is reduced to J,Px, = 0 on the space 
of motion of the mobile robot with the lateral constraints given by the map in Eq. (18). 



Consider the time-derivative of this constraint. i . E . .  

8 
--(J,Px,)X = 0. 
6 X  

To preserve this constraint on the state space. the  set of first-order differential equatioiia 
x = f (x )  + y l ( x ) ~ , , ~  + gz(x)Tr, + g>(x)~:  must satisfy them. \f'ith nonsingidnr model. it 
can be shown that T,, = -(Cgl)-'C(f(x) + gl(x)ror + ~ ~ ( X ) T ~ S ) ,  whert the Jacobian of the 
constraints C(x) = $(J,Px,) = C(x1, x2. xg. xg. x;). The first-order differential equations 
governing the motion of the mobile robot reduces to the form 

where 

f'(x) = f (x )  + (0 ,0.0,0.0,0,  -I;1(cy2)-1cf(x), O ) ,  

g; (x) 

Y 3 X )  = g3(x). 

= g1 (x) + ( O * O ,  0 , O . O .  0, -I,'(Cg2)-'cgl (x).  O) ,  

Notice that since J,Px, is independent of the state Xg, C g 3  is zero. hence gi = g 3 .  
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6 CAN LATERAL AND LONGITUDINAL 
CONSTRAINTS BE 

PRESERVED ? 

Consider the situation when neither lateral (sideivays) nor the longitudinal (rolling) di- 
rection constraints are imposed on the equations of motion of a mobile robot nit11 fised. 
ceritered, off-centered. and oninidirectiorial wheels: i . c . .  the traction forces i n  either of these 
directions are determined by the creepforce law of Sect. 3. 

Theorem 6 In general. only mobile robots trith ofl-ccntercd vheels can yrcservc Intern1 nnd 
longitudinnl constraints. 

Proof. The state-space is defined by the set of independent coordinates (xc, xc) = ( X I .  xl.  
x g ,  x4. x5, X I .  X z ,  x3, X'j,  x5). The dynaniic model of the niobile robot without lateral and 
longitudinal constraints iniposed by the wheels is given by equation (1-1). When the lateral 
and longitudinal constraints are preserved, it follows from the Corollaries 3 and 5 that 
wheel-ground traction forces A, and A, are zero. 

Consider the off-centered wheels. If the lateral constraints are preserved, the longi- 
tudinal constraints in equation Eq. ( 5 )  for the off-centered wheels reduce to  the forrii 
Jzloc(xl ,  x2)xl + Jx:30c()Xg = 0. The Jacobian of the lateral and longitudinal constraints 
are 

The equations of motion in Eq. (14) must preserve these constraints. I t  follows that the 
roc and r40c are determined uniquely as a function of the state. A similar construction for 
t h e  fixed and centered wheels results in state-dependent contraints that  are not satisfied 
in general. For instance, only when (x1)3, the angular velocity of the base of the mobile 
robot, is zero, can t h e  fixed and centered wheels preserve the lateral constraints. Another 
construction for the omnidirectional wheels results in disparate T@,j arising from the lateral 

I and the longitudinal constraints, respectively. 

Corollary 7 if a mobile robot with 08-centered wheels preserves the lateral and the longi- 
tudinal constraints, then the state of rest is an equilibrium point. 

Proof. At the state of rest, the spin is zero. Hence, by Corollary 3, the angular traction 
vanishes. It is easy to  verify that  the drift term and the state-dependent inputs roc and T & ~ ~  

1 determined in the proof of Theorem 6 a11 vanish at the state of rest. 
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7 LOCAL CONTROLLABILITY WITH LATERAL 
CONSTRAINTS 

Consider a control system of the form X = f ( x )  + 5,yt(x)ul  defined on an opal s u h w t  
1' c S of the state space tvhere f , gL : l -  -+ T I -  are smooth sections of the tangent bundle 
TI' Ki th  the control inputs ( 2 1 1 , .  . . , u p )  E I *  c Rp. Let the flon of the dynamic system for 
a control input u: [ O ,  t ]  --+ I ;  be denoted oU: E x 1 * + I-:  x H oL1(t, x) and let T0,(x) tw 
the infimum of the times for which the f l o ~  at x is defined. A n  ottninablc sct A ( t , x )  is a 
time-dependent reachable set defined as A( t .x)  = (x' E 1-J3u: [ O . t ]  -+ l-.x' = ol,(t.x)}. 
Let the forwnrd projection FP(x)  be the tinie-independent reachable set defined as FP(x) = 
{x' E V13u: [O, t ]  -+ U,x' = p U ( t . x ) ,  t E 7,,,,.}. Let Cm(17,T17) he the space of sninoth 
vector fields on I -  wi th  the Lie algebra defined b?. the standard Lie bracket [ , ] of tu.0 vpctor 
fields. 

7.1 Accessibility/ Cont rollability Algebra 

Let the accessibility algebra denoted C be the smallest subalgebra of the Lie algebra 011 

C"(V,TV) containing the vector fields J and the gZ.s. If the dim(C(x)) at a point x is 
equal to the dimension of the state space I,', then the forward projection FP(x) contains an 
open neighborhood of x. If the drift vector field f of the control system vanishes, then this 
local accessibility result also implies local controllability (NV 901. 

Theorem 8 Consider Q mobile robot without off-centered wheels and preserving the rolling 
with no slip condition restricted to the subset where the angular velocity of the plane of the 
centered wheels, if any, is zero. The dimension of the accessibility algebra C of the control 
system is zpro ut the state of rest in the subspace parurneterizing the configuration and thc 
velocity of the base of the mobile robot. 

Proof. The accessibility algebra C is defined by brackets of the form 

where X ,  E {f,gl ,  92,. . .}, for i E {0,1,2,. . .}. Our proof is by induction on the Lie brackets 
of increasing length of the aforementioned kind. 

First. consider the equations of motion with lateral constraints in Eq. (19). The la- 
grangian forces due to the lateral constraints have been eliiriinated and therefore forces up 
to  the frictional bound can be transmitted. In addition, if we assume that the longitudinal 
constraints of rolling with no slip conditions are preserved, then v,,, = 0 and we obtain a 
set of equations resulting from those in Eq. (20) by substituting Xzcg = 0 implied by the 
Corollary 5 .  

There are no off-centered wheels. The state xq, the free-wheeling direction of the omni- 
directional wheels. is decoupled from the rest of the equations of motion. Hence, we drop 



tlie states x2 and x4. the control input T,, and b> renumbering obtain tlie control equa- 
tions nhose functional dependent! is as follon-s: f f ’ ( ~ )  = f f ’  ( ~ 1 . ~ 3 .  x1). f f2 (x )  = f f2(x7) .  

f “ ( X )  = f r ( X s ) .  f f i ( x )  = f f 4 ( X 1 . X 3 . X 4 . X ; . X b ) .  f f ’ (x)  = f f ’ ( X 1 . X 3 . X 1 . X i . X b ) .  f r t  (x) = 
f f c ( x 1 , x g . x 4 . x 5 . x 6 ) .  g3 ix) = 0 . j  = I . ’ L . : ~ . J . ~ .  and g:(x) = g1 0. Let us recapitulate the 
numbering of the states i n  tlie reduced notation. The state x1 parameterizes tlie configura- 
tion of the base of the mobile robot. x2 parameterizes the angular orientation of the wheels 
about their drive ases. x 3  parameterizes the angular orientation of the plane containing tlie 
centered wheels. x1 parameterizes the set of independent velocities of the base of the mobile 
robot. xj parameterizes the angular velocit) of the n-heels about their driven ases. aiid x g  

parameterizes the angular velocity of the plane containing the centered aheels. Consider 
the following assumption of the induction: 

I-) f t  

1. Every bracket‘s first and fourth elements at the state of rest are zero. 

Let [f‘, gz’] be a bracket of length one. The vector fields f’ arid 9; are the zero level brackets 
of the accessibility algebra. The base level of induction is satisfied trivially. The induction 
proof on the brackets of length k is divided into two parts: brackets with f’ as the leading 
element and brackets with 94 as the leading elements. 

Consider an arbitrary bracket Br,t(k) of length k with the leading term f‘ expressed i n  
terms of Br(k - 1) as 

Bry(k)  = DBr(k - 1)f’ - Df’Br(k - 1). 

The drift f ’ l x = o  = 0, D J f ” I X = ~  = 0 , j  # 4 and on the subset x 6  = 0 corresponding to 
the zero angular velocity of the plane of the centered wheel DJf’41X=0 = 0 , j  # 4. By the 
assumptions of the induction Br’(k - l)lx=o = 0 and Br4(k - l)lx=o = 0. it follows that 
Brl(k)lx=o = 0 and Br4(k)IX=0 = 0. Hence. the accessibility algebra does not contribute 
any element to  the xl- and x4-subspace. 

Consider the case when the leading term of a bracket of length k is g;. An arbitrary 
bracket Br,; ( k )  of length k with the leading term gi expressed in terms of Br(k - 1) is 

Br,$k) = DBr(k - l)g$ - DgiBr(k - 1). 

Since Dg; 4 0, and the sixth term of gi is the only non-zero term, it follows that for 
Br,,(k)’s first and fourth term to  be zero a t  the state of rest, the elements DBr(k - 1)[1][6] 
and DBr(k - 1)[4][6] must vanish at x = 0. 

Lets consider the derivative I l l , ,  ..,* ,Brx (k), i, E { 1, .  . . , 6) .  

Dzl,  ..,Z,Br,s(k)[?][j] = ,,}( D,,DBr]y(k - 1)DpY + D,DBr\-(k - l)DpJ-Y 

-DpJD-Y*D$r(k - 1) -- DpD-XzD,,Br(k - 1)0;?2) 

where 2 4  is a set of subsets of the set A and for p E Y’, p is the complement of p in  A .  
The structure of -A7, D,X,  D , D S ’ ,  and D&X4 a t  x = 0 for S E {f’,g;} determine those 
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C l  

Figure 3: Controllability wit11 centered wheel rotation. 

elements of the DBr(k  - 1) that are required to  variish for DBr,(k)[i][j] to  vanish. I t  call 
be verified that f ‘ jx=O = 0. U3 f’lx=0 = 0. D,f’lx=o has a non-zero elerneiit i n  the third 
row arid is otherlvise zero. Z I G ~  f’lx=0 = 0 wi th  a t  least two derivatives with respect to >itl. 

~3,..6...fll~=o = 0. I ) ~ D ~ ~ J J ~ = O  for j E {I ,  J}, p E 2 { 3 .  .Si..) is zero if there is at  least orre 
derivative with respect to  x, and otherwise has a non-zero element in the fourth column 
and all derivatives of g i  are zero. 

For instance, for DBr~r(k)[1][6] to vanish. DBr(k - 1)[1][3] and DBr(k - 1)[4][6] must 
vanish. In general, o u r  claim is that if the terms [1][3], [1][6], [4][3], and [4][6] of D , 9 ,  
D,DX, for X E {f’.gA} at x = 0 and p E 2 { 3 , . 1 6 7 . 1  of length depending on k ,  all vanisli 
then the inductive assumptions are true. Wlien th i s  chain of dependency is followed until 
k = 0, the brackets Br(0) must get instantiated t o  either the vector field f’ or g i  arid we 
have already shown that such terms for f’ or &+ do indeed vanish at the state of rest. 

Example 1 Conszder a mobile robot with two fixed wheels and one centered orientnble uihecl 
as shown in Fig. 3 with all constants such as thp radius, lengths, and the inertias equal to 
one. The mobility of the mobile robot with this configuratzon of the wheels is one - rotatzon 
about the centered wheel. Let the lateral and the longitudinal constraints be preserved and 
consider the corresponding reduced form of the control equations given in  the proof of the 
Theorem 8. The traction moment generated at the wheel ground interfuces of the centered 
and the Jxed wheels giuen by the h‘alker’s Simplified model described in  the Sect. 3.3 arc 

where fjl, f j 2  and fcl arc 

positive constants. The control equations for this example is as follows: f“ (x) = (0.0, xdl),  

xq,+x 

b f l  = -fJl&. b f 2  = -ff2a1 and A R C 1  = -fc1 lxll+x::I’ 

ft6(x) = -fcl ,x:i+x:j,+~c. x +x 

f’*(X) = x 5 ~  f r 3 ( X ) = X G i  f “ ( x ) = - f j l ~ - f f Z ~ - f ~ l , ~ ~ .  f “ ( X ) =  ( 1 ~ 1 . O ) f ’ ~ .  

A is easy to  verify that for f f l +  ff2 # f c l ,  the set of differentid 
equations has a solution such that the orientation of the rriobile robot is changed from the 
state of rest when a torquf T, > fcl is applied to  turn the plane containing the center& 
wheel. This example shouis that the restriction to  zero angular velocity of the plane of the 
centered wheels in the Theorem 8 is necessary. 
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8 CONCLUSION 

\Ye have considered the dynamic model of rnotiori of a niobilr robot with an arbitrar! 
combination of conventional fised Ivlieels, centered wheels. off-centered heels. and orniiidi- 
rectional wheels. It is a standard practice i n  niechanics to reduce the numbe1 of indepeiident 
variables describing the state of the niobile robot b! considering that the 11 heels undergo 
rolling with no slip motion. IYe, however, developed the dynamic niodel without incor- 
porating the rolling with no slip condition. Our model. therefore. included an analytical 
model of the traction forces generated by the rolling of \i heels under a set of assumptions 
given in I-Iypothesis 1 for the linearl) elastic tvheels. 

We established that the lateral (sidewa) s) coristrdiiits and the longit udinnl (rolling di- 
rection) Constraints imposed by tlie 1% heels cannot. i n  general. be preserved by mobile robots 
with fixed, centered. and/or omnidirectional wheels. The dynamic system of those mobile 
robots with off-centered wheels. however, is an autonomous system with no remaining con- 
trol input such that the state of rest is an equilibrium point. Tlicrefore, mobile robots with 
off-centered wheels must  also slip. 

Assuming that the lateral (sideways) slip of wheels for a straight line (large curvature) 
trajectory of the base of the niobile robot is likely to be small, we imposed the lateral 
constraints. We considered mobile robots with a combination of wheels of the conventional 
fixed, centered, or omnidirectional type. We showed that the motion of the mobile robot 
h a s  zero accessibility and controllaldity in the subspace of the position, orientation, and thc 
corresponding velocities of the base of the mobile robot as long as the angular orientation 
of the plane of the centered wheels h a s  zero velocity. Therefore, tlie fixed, centered, and 
omnidirectional wheels cannot preserve the longitudinal (rolling direction) constraints. We 
also gave a n  example where the orientation of the base of the mobile robot can be changed 
by driving the angular orientation of the plane containing the centered wheels. This example 
showed the necessity of the minor condition of zero velocity of the plane of centered wheels 
o n  the zero controllability result. The base of a mobile robot with off-centered wheels can 
also change its configuration by a crab-like motion when the lateral constraints are imposed. 

In summary, wheel slip is inevitable according to  the proposed model. The wheel slip 
we establish in the paper may account for parts of the error in dead reckoning. Our ongoing 
work will address this issue. 
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APPENDIX: INSTANTIATION OF KINEMATIC 
CONSTRAINTS 

\$‘e give an instantiation of the kineniatic constraints in  Eq. (1). Consider that the origin 
of the choice of coordinate system OEJ is given by (1 .  ct) in polar coordinates in t he  choice of 
coordinate system JLI and the radial line n is the x-axis of Ut,. Similarly, the origin of the 
choice of coordinate system M e ,  (or ,VI,,) is ( d .  3 - 5) i n  the choice of coordinate system 

Oej and the radial line D - 5 is the x-axis of the frame ,GeJ (see Fig. 1). Let 7 be the angle 
that the direction of complementary rolling of an omnidirectional wheel makes with the 
direction of 9. the axis about which the wheel is driven. The three scalar components of 
the constraints in  Eq. (4) are as follo\vs: 

[cos(&) sin(6) isin(& - n )  + dcos(ct + D + - 6)] Ric, 

-rsin(cu+p- & ) ~ f d , ! ? c o s ( a + D - 6 )  - r ‘ s i n ( r ~ + ~ ? + - ,  - b ) o ,  

1cos(6 - Q )  + dsin(a + p + 7 - 6) 3 Rjr, 

+dj sin ( n  + p - 6) + r cos(a + B - 6) & + r ’h cos(a + 13 + 7 - 61, 
[ -  sin(6) cos(&) 

[O 0 l ] i t X l + b ,  

where r is the radius of the wheel a.bout the driven direction d, and r’ is the radius of the 
omnidirectional wheel about the complementary direction 6 and b is a quantity determined 
as explained in Sect. 2.3 from the choice of the transformations h,j by equating 

[-s in(&) cos(&) /cos(& - a)  + dsin(a  + p + y - 6 )  ] Rxl + @siri(o + p - 6) 

to  zero in t h i s  instantiation. For fixed wheels d = 0 and ,D is a constant, for centered wheels 
d = 0. For centered and off-centered wheels ,D is a state variable, a component of xj and 
x2, respectively. For fixed, centered, and off-centered wheels, the component containing 6 
does not appear and y = 0. For omnidirectional wheels 0 is a constant. 
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