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ABSTRACT

It is widely accepted that dead reckoning based on the rolling with no slip condition on
wheels is not a reliable method to ascertain the position and orientation of a mobile robot
for any reasonable distance. We establish that wheel slip is inevitable under the dvnamic
model of motion using classical results on the accessibility and controllability in nonlinear
control theory and an analyvtical model of rolling of two linearlyv elastic bodies.






1 INTRODUCTION

The mobility literature of wheeled mobile robots with fixed. centered. off-centered. and
omnidirectional wheels is traditionaliy founded on the equations of motion derived from the
rolling with no slip constraint on the wheels. Together with the wheel orientation encoders
that are used to infer the configuration (end-point) of the mobile robot, these constraints are
convenient in reducing the order of the state-space description of the mobile robot. However.
dead-reckoning error is substantial for large distances. It renders the reduced state-space
model and the corresponding dead-reckoning method of inferring the configuration of the
mobile robot, at best, questionable.

Our objective in this paper is to explore the implications of imposing the rolling with
no slip condition using classical results on the accessibility and controllability in nonlinear
control theory [NV 90]. When the rolling constraints are imposed, they allow forces at the
wheel-ground interface to be transmitted up to the frictional bound with perfect rolling
contact. The analytical theory of two bodies in rolling contact, however. establishes a
definite slip associated with the traction forces at the wheel-ground interface. We consider
that the traction forces at the wheel-ground interface are determined under the following
conditions:

Hypothesis 1

a. The rolling bodies are linearly elastic,

b. Quasi-identity relation on the elastic properties of the two bodies in contact holds.
(This includes the case when the two bodies are elastically similar and approzimates
the situation when one body, say a rubber wheel, is incompressible, and the other body,
say the concrete ground, is relatively rigid.)

¢. The area of contact between the two bodies is symmelric about the direction of the
rolling of the wheels.

The conditions we identify are roughly the following:

1. If the constraints in the lateral (sideways) and longitudinal (rolling) directions of a
wheel transmit traction forces determined under the conditions of Hypothesis 1, then
only mobile robots with off-centered wheels can, in general, preserve the kinematic
constraints imposed by the wheels. The state of rest is, however, an equilibrium point
of the dynamic system.

2. If the constraints in the lateral (sideways) direction of the wheels are satisfied, then
preserving the longitudinal direction constraint of rolling with no slip with wheel-
ground traction determined under the conditions of Hypothesis 1 implies that the
base of those mobile robots with fixed, centered, and omnidirectional wheels cannot
change its state from the state of rest — a case of zero accessibility (and controllability)
for the base of the mobile robot.



In effect. we identifyv conditions for which wheel slip is inevitable. A kev aspect of our
study is the analvtical formulation of the theory of rolling of two linearly elastic bodies in
contact. The origin of such studies is founded in the law of friction of Coulomb-Amontons.
the analvtic models of deformation of a three-dimensional half-space elastic body due to a
concentrated load of Boussinesq (1885) and Cerruti (1882). and Hertz's theory (1882) of
two elastic surfaces with curvature in contact. Application of these theories to the study
of rolling contact between two bodies was initiated by Carter (1926), who gave solutions
of a two-dimensional problem. i.e.. when the extents of the rolling objects lie in a plane.
Subsequently. Fromm (1927), Johnson {1958). de Pater {1956). Kalker (1957), Haines and
Ollerton (1964), and Heinrich and Desover (1967) have extended the solutions under various
other assumptions: see a review article by Kalker [Kalker 79].

Previously. Alexander and Maddocks [AM 89] considered wheel scrubbing. It arises
from inconsistent positioning and orientation of the wheels with respect to the kinematic
mobility of the base of the mobile robot. Thev also offer an analytical justification of
the phenomena of sideways lurching with uneven rolling friction conditions on the wheels
using a minimum work principle on their quasi-static model of motion. The wheel slip we
consider here and the implication on its existence subsumes kinematic consistency. It is,
therefore, different from their wheel scrubbing phenomena. A recent paper of Balakrishna
and Ghosal [BG 93] considered a model of the traction forces arising from a rolling tire.
Their model of traction force and wheel slip arises from an empirical model of tire mechanics
analysis. An analytical model of a rolling tire, in the sense we present here for two linearly
elastic rolling bodies, is a difficult problem [Kalker 90]. Their empirical model, however,
incorporates essential aspects of the analytical theory of rolling under Hypothesis 1 that
we consider. The numerical simulation results, therefore, exhibit the presence of wheel
slip, a conclusion we prove based entirely on an analytical theory. Our primary results are
theorems 6 and 8.



2 KINEMATICS

This section introduces the kinematic constraints imposed by the nature and configuration
of various types of wheels of the mobile robot. First, we consider the transformation of
kinematic quantities in a general framework of the choice of coordinate systems. The
sub-sections following the first consider the form of the specific instances of the kinematic
constraints of a wheel type of a mobile robot. The kinematic model we derive is based on a
mode! of a zero width non-deformable planar circle rolling with no slip on the ground. The
subsequent analysis and results of the paper, however, are not restricted by this intermediate
step in deriving the model.

2.1 Kinematic Transformation

The set of rigid body motion in a space S is called Special Orthogonal Euclidean Group,
denoted SE(n). An element q € SE(n) is a map q:§ — S:p — q(p) that preserves the
norm. Consider also a choice of coordinate system on the space S as an assignment of n
real-valued norm-preserving orthogonal map F:8 — R™:p & (FYp),.... F*(p)). Given
a choice of coordinate system on a space &, an element of SFE(n) has several prevalent rep-
resentations including homogeneous matriz transformation and Pliker Screw Coordinates.
Consider an element q € SE(n) and its representation q” in the choice of a coordinate sys-
tem F such that g (p) = Foqo F~(p) for p € R™, where o represents map composition
operator. A representation of an element q” in the homogeneous matrix transformation is
a linear transformation e [Rf tf]

0 1

where R” is a n x n matrix representing rotation and t” is a n-dimensional translational
vector both expressed in the choice of coordinate system F so that q(p) = F~H(RF F(p) +
t*) for all points p € S. The elements R” and t”, called rotations and translations,
respectively, are representations of R and t, members of the space SFE(n), in the choice of
coordinate system F. In general, an arbitrary element q € SF(n) is composed of a rotation
and translation, i.e., q=t90oRY.

Another choice of a coordinate system on the space §, say G, induces different repre-
sentation of an element q € SE(n). Let the two choices of coordinate systems F and §
be related by a map h € SE(n), such that § = F o h™1, then two representations of an
element q € SE(n) are related by

q¢ = oq” oh”.

Consider the space of infinitesimal rigid body motions at the identity ¢ € SE(n), the initial
configuration. The space denoted se(n) is the tangent space T.SE(n) of the manifold
SE(n) at the identity. Any choice of coordinate system F on the space also induces a
representation of an element v, in se(n) denoted vf. For example, vf € se(3), vf =
[ F F F F F F ]T where [’Uf F _}']T

, >

vy, Up, Up, Wi W, Wi 5, Vo, Vs ]' is the translational velocity



and [wfl <z .u,};]T is the angular velocity. both expressed in the choice of coordinate
svstem JF.

Another choice of coordinate svstem. sav G. on the space § induces a map of an element
v, € se(n) from one representation to the other. For a given element h € SE(n). define the
adjoint as a map Ady,:se{n) — se(n). For example. if h is represented as a homogeneous
transformation matrix in the coordinate svstem F with RY as the rotation matrix and
th” as the translation vector. then the adjoint Ady, is represented as

RIHr [thf]Rh-r

f
.4(1 = 0 Rh}"

(1)

where [t] represents the cross-product operator of the vectort = (¢;.¢;.t3) defined forn =3
as

0 —t3 b
[t] = t3 0 ~*t1
~t; 4 0

The representations of v, in coordinate system F and ¢ are related as

v = Ad] . (v]). (2)

€

2.2 Kinematic Model of Motion of the Base of Wheeled Mobile Robot

First consider S. the plane of motion of the base of the wheeled mobile robot. Let F be a

choice of a coordinate svstem in the plane so that F: S — R%: p % (FY(p), F2(p)). Let the
configuration of the base of the mobile robot, an element of SE(2), be denoted x; = (z,y, )
in the choice of coordinate system F (or more appropriately xf in the notation of the
previous section). The rigid body configuration x; is also equivalent to t(z,y) o R(f) =
t(x;) o R(x1) . It is easy to verify that a choice of coordinate M = x] 1o Fis fixed to the

base of the mobile robot. Lets call M the moving reference frame (see Fig. 1).

Let the velocity of the base of the mobile robot in the plane of motion at the configuration
x; be denoted x; = (z, 1. 8). It is easy to verify that the velocity of the base of the mobile
robot xM in the moving reference frame is related to %; by x{' = Ad(fol]_l()'cl). More

specifically, this relation reduces to
M = Rx,, (3)
where R = R(x;) is an orthogonal tranformation matrix of three-by-three of the form

x Cos(8) Sin(8) 0
- R* 0 .
R(8) = [ 0 1} = —bz(;z(@) Cog(e) [1)

'Items in () denote, depending on the context, elements of a vector or functional dependency of a map
on variables. If f:R™ — R™ is smooth map such that f = (f*, f%,..., f™), then mﬁ%ﬁ—%—"—”—'i =D, f'=

Df[1)[5), and Df = 2L is the Jacobian of the function f.
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Figure 1: Choice coordinate systems for kinematic constraints.

2.3 Kinematic Constraints Imposed by Wheels

Our model of a wheeled mobile robot is a generalized model of such robots considered by
Campion et. al. [CBD 93]. A wheeled mobile robot has either conventional type wheel or
an omnidirectional type wheel. A conventional type wheel has a given axis about which
the wheel can rotate and is driven. It is of the following three categories: (i) fixed, (ii)
centered orientable, and (iii) off-centered orientable. An omnidirectional wheel can rotate
about an arbitrary axis of rotation in the plane of motion of the base of the mobile robot
and is {usually) driven about one given axis in that plane. The configuration of a mobile
robot with an arbitrary combination of wheels is described by the following:

e X, the three coordinates of the base,
® X;, the vector of angular orientations of the plane containing the off-centered wheel,

e X3 = (¢, b, Pocy Pod), the angular orientations of the fixed, centered, off-centered,
and omnidirectional wheels, respectively, about their driven directions,

* X, = (gzgod), an appropriate choice of angular velocities of the omnidirectional wheels
about directions complementary to the directions of their drive, and

® X5, the orientations of the plane containing centered wheel.

If the number of fixed, centered, off-centered, and omnidirectional wheels are N, N, N,
and N,q, respectively, then the dimension of an element x. = (xy, X2, X3, X4, X5) describing
the configuration of the mobile robot is 3 + Noe + (Nf+ Ne+ Noe + Nog) + Nog + Ne =
3+ ]Vf -+ Q(Nc + Noe + ]Vod).

Let O, € € {f,c,0c,0d}, j € {1,..., N} be the choice of coordinate frame of the j
wheel of type e with the origin on the wheel axle above the center point of wheel-ground
contact for fixed, centered, and omnidirectional wheels and at the pivot of the arm of off-
centered wheels. Let a.; be the representation in the choice of coordinate frame M such that
Oej = a;jl oM. Let M,j, e € {f,c,oc,0d}, j € {1,..., N} be the slip coordinate frames



O = a;jl oM. Let M,;. e € {ficcoc.od}.j€ {1...... Ne} be the slip coordinate frames
with the origin on the wheel axle above the center of the area of wheel-ground contact for all
wheels so that M,; = h;l 0(,. where h; is the representation in the choice of coordinate
frame O, relating the frame O.; and the slip coordinate frame M,;. The maps h,; may
be the identityv for fixed. centered, and omnidirectional wheels but relates the point on the
wheel axle to the pivot of the off-centered arms on the base of the mobile robot. The velocity
of a point on the axle of the wheels above the center point of wheel-ground contact in their
slip coordinate frames M.; is X;M” = Ady,,Ada,, Rx; + Ady, (0.0, 3) where 3 = (x2); for
the jth off-centered wheel and zero otherwise.

Let /\;le]-, e € {f.cooc.od}. j € {1....,N.} be the wheel coordinate frame with origin at
the center of wheel-ground contact, chosen so that v, the velocity of the mobile robot due
to the wheel's rolling with no slip condition and no relative angular motion at the wheel-
ground contact, is expressed conveniently. Let M,; = g;jl o /\;lej relate the slip coordinate

frame and the wheel coordinate frame where g.; is expressed in the M,; choice of coordinate
frame.

. M,

The transformation h;’s are chosen such that the y-component of the velocity x]
zero. In other words, the slip coordinate frames are chosen so their zr-axis is aligned with
the direction of the velocity of the axle of the wheel at the center point of wheel-ground
contact. In addition to the parameters that determine the wheel-ground contact center point
in relation to the moving frame of reference M, this choice makes the transformations h,;’s

is

€

dependent on X, and depending on the type of the wheel, also on x3. When x{w is zero,

this choice is arbitrary. The zero of the function

Adp, Ada,, Rx; + Adp,, (0,0, 8) - Adge'f (V) (4)
defines the kinematic constraints on the motion of the base of the mobile robot due to the
jt* wheel of the type e € {f,c,oc,od} with wheels rolling with no slip condition. These
constraints incorporate motion due to the swing of the arm of the off-centered wheels and
no relative angular motion of the wheels with respect to the ground at the center point of
wheel-ground contact (see Appendix for a specific instantiation of these constraints).

The three scalar constraints in Eq. (4) for each wheel restrict the motion of the base of
the mobile robot at the center point of wheel-ground contact in the z, y, and € directions
of the slip coordinate system M.;. For convenience, the slip coordinate frame z-direction

will also be called the longitudinal direction, the y-direction as the lateral direction, and the
@-direction as the rotational direction. In this terminology, the scalar kinematic constraints
for each wheel are also called longitudinal, lateral and rotational constraints due to the ejth-
wheel. Let the longitudinal, lateral, and rotational constraints for all the wheels be collected
in the form J.x., J, Xx., and Jsx,, respectively, where

lef(xl.xl) 0 [Jx3f(x1,xl) o 0 0] 0 o

J J1.0%,. %)) 0 [0 J s (X, X5, X)) o 0] 0 0
x = J - J - . (%)

zloc(x{l,’z}vx{lz}) z2oc(x{1,2}vx{1,2}7 [0 0 Jxaoc(x{l_z}-xl) 0] 0 0

J o 10a(X1. X)) 0 [o 0 0 stod(xl-xl)] J ioalX1. X 0



Iy %X 0 [Jy3f(xl,xl) 0 0 o] 0 0

J. - Jorexy X 0 [0 J,J3C(X1.X3,Xl) 0 o] 0 0 ©
¥y = . . >
JyrocX 12y X 2p) Jy2oc(x(1,2)‘xl’ [0 ° Jy3<>C'x{x.2}*x(x,2}3 0] ° 0
I 10alX. X)) 0 [0 0 0 JysatX; X)) J yaoa(X1. %) 0
o150 0 [o o o0 o o
J, - Joicd o foo o o] o Jy0f -
Jeloc() JG?OC() [0 ¢ o o] o 0
Blod() o} [o o 0o ©]) o 0

and constraints in the fourth column due to the angular velocity of the wheels are further
expanded into four subcomponents corresponding to the fixed. centered, off-centered, and
omnidirectional wheels. The constraints in the longitudinal direction impose rolling with no
slip condition on the wheels of the mobile robot. The constraints in the lateral and rotational
directions impose no-lateral and no-rotational slips, respectively. There are (N;+N.+ N+
N,q) constraints of the longitudinal, lateral, and rotational type. The functional dependency
of each of the terms in the Jacobians J,, J,, and Jg as indicated above are based on a model
of the wheels such that they are valid about a small neighborhood of any state. Although.
the jacobians are written in a form that is linear in the velocity x., they include velocity
dependent terms arising from the choice of slip coordinate frames M.; with zero y-direction
velocity to facilitate traction force transformation in Eq. (14).






3 ROLLING CONTACT OF TWO ELASTIC BODIES

The theory of frictional rolling of two bodies addresses the problem of determining the
traction force at the wheel-ground contact. A large fraction of this literature is dedicated
to the rolling of tires founded in the empirical models of tire mechanics. We, however, limit
our study to linearly elastic wheels. In particular. the two bodies in rolling contact are
assumed to follow our Hypothesis 1.

The analytical theory of frictional rolling of two linearly elastic bodies associates a
definite slip called creep associated with the traction forces in the area of contact. We
show a certain new syvmmetry in the creep-force relation. The remainder of this section
reviews other svmmetries with the elastic quasi-identity assumption of Hypothesis 1 given
by Kalker [Kalker 67]. These relations, in effect, allow us to infer the traction forces at
zero slip velocity. Though the new symmetry we show does not require the quasi-identity
assumptions, we also need another symmetry that is valid only with the quasi-identity
assumption. Therefore, in general, our conclusions on wheel slip remain valid only with the
quasi-identity assumption.

3.1 Creep-Force Relation Problem Definition

Consider a linearly elastic circular body, denoted ej, rolling on a planar linearly elastic
material. Let the velocity of the center of the wheel axle, )'c';we’, be in the z-direction of the
slip coordinate frame, M.;, defined in Sect. 2.3. Let Jy, , gy, refer to the ;' row in the e
type row block of the Jacobians J,, J,, or Jg defined in Eqs. (5), (6), and (7), respectively.
The terms Jy,  g1.;%. represent the rigid slip of the wheel at the wheel ground interface
in the z, y, and @ directions, respectively, of the slip coordinate frames. Define v, ;, the
longitudinal creepage, vye;, the lateral creepage, and vg.;, the spin for the wheels as

J{x,' 8} i X
Vizy0)ei = —%j{““, (8)

where V; = !xfg’( is the magnitude of the z-direction velocity of the point on the axle of
the wheel (recall that by the choice of the frame M,;, the y-direction velocity is zero). The
creepage and spin are ratios of the rigid wheel slip to the magnitude of the translational
velocity of the axle of a wheel. Let the area of contact of the wheel with the ground be
denoted C; described in the respective slip coordinate frames (see Fig. 2). The material in
the two bodies in the area of contact deform elastically due to the friction-induced tangential
traction and the vertical load-induced compression. Let the slip coordinate frames be the
choice of the coordinate system to describe the contact area C';. Let us add z-axis to the
slip frames so that the z-positive direction points into the material of the wheel. In this
description, the two bodies are approximated as half-spaces with the material on =z > 0 and
z < 0 of the slip coordinate frames. The elastic deformation on these half-spaces due to
concentrated normal load in the z-direction and tangential load along the z-axis and the
y-axis have been given by Boussinesq (1885) and Cerruti (1882) [Love 44]. Let the elastic
strain denoted Ug;(Z, ¥, Vrejy Vyejr Voej) = (Ugej, Uyej, Uze;) De the difference in the elastic
strains of the rolling wheel and the ground expressed in the slip coordinate frame. Let
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Latera! Direction Contact Area ca,

Figure 2: Wheel-ground contact and slip directions.

(Xej Yej. Zes N2, Y. Vrey, Vyej  V6e;) be the 2. y and = components of t‘he traction and the
The relation between the material strain function u

vertical load at a point (z.y) € C,.
and the traction (X.,Y,Z)is

1-a alr—~r")? alr—r"Yy—y") {(r—x") . . -
Ugej i N 5 R TR RUSTE N T
Uyej | = rG/] o(r—x" y olz—r ) y-y") 1_;{@_*_0(311—2%/) _ (yﬂg) }f.j(x',y:) de” dy”,
r‘ (y=y") 1-a Zei(27,Y7)
2 K~"Re R
(9)

Uzej
where B = /((z — 2*)% + (y — y*)?). the modulus of rigidity G{®9} = 2_(%%7? é =
G(1=20%) _(1=2¢")) with E as the Young’s Modulus

11 1 _l(g¥ | of .
igetas) &= (Gatge) and v = 3 (43 u
of Elasticity, o as the Poisson’s ratio and superscript w and g standing for the properties

of the wheel and the ground, respectively.
Due to the elastic material flow with respect to a reference frame moving with the wheel

the net relative displacement of one body with respect to the other at a point in the area of
contact is the sum of the gross rigid motion component and the relative elastic motion. The
net relative velocity of one body with respect to the other at a point (z,y) € C,; denoted

W(Z' YiVrejy Vyeys V&ej) = (d’rejs wyej) 1S

. . . Otipe;

Weej = Vej(Vres — Yloes) + tiae; (T, Y, 1) = Vej(Vpe; — Yvge; — a;e] )s (10)

. , . Dy,

Uyej = Vejlvye; + 20ej) + lyej (T, Y, 1) = Ve (Vyej + T00e; 6? ),
where steadyv-state assumption on the flow of material is assumed, i.e., =2 dl.l’ = 0. Then,
according to the law of Coulomb-Amontons,

™ '(‘X'e_,',}"ej‘)] < /iejZej, and
s (11)

o W, #0= (X, Ye;) = ueJZeJI

where p., is the coefficient of friction at the wheel-ground interface of e;!* wheel.

The creep-force law problem is defined as follows:

10



Determine (Az.;.Ayc;. Age;). the traction forces at the wheel-ground interface
defined as

(/\rej.xyej.Aeej)://C (Xej Yoo Yo, — yX,)drdy. (12)
22

so that Eqs. (9). (10). and (11) are satisfied when the creepages (vze;. Vye;.
vge;), the net load N¢; = ffCe] Zej(x, y)dr dy, and the translational velocity V;
are known.

3.2 Symmetry in Creep-Force Relation

The problem of creep-force law as posed in Eq. (12) admits a svmmetry relation that enables
us to infer the traction forces on a special subset defined by no-lateral and no-angular slip.

Proposition 2 The traction symmetry relations

/\xej(’/xeja Vyejvyﬁej) = AICj(Vx€j7 ~Vyejs “Vﬁej)a
/\yej(VrejaVyeijGej) = "')‘yej(Vxejs"Vyej-,—VQEj)v
/\ﬁej(l’xejyl/yejvl’é)ej) = _’\Gej(Vreja"Vyej‘“'VBej),

verify the creep-force law when the contact area Cej(z,y) = Cej(z, —y). ‘

Proof. The governing relations of creep-force law in Eqs. (9), (10), and (11) can be shown
to satisfy the following symmetry:

‘Xej(waya VIejaVyejsl/GCj) = Xej(l'-;”‘yyl/xej1~yyeja_1/98j)7
}/ej(l" Y., Vrej»’/yej’Vﬁej) = "}/ej(zy’“yvl/xejv“"yyeja_Vﬂej)v
Zei(T0 Y, Voejs Vyejs Voe;) = Zej(T, =Y, Vzejs —Vyejs —Voej ),
ur('T’yereijyejvuﬁej) = ux(xa‘yvurcjv‘yycjs_Vﬂej)y
Uy (2, Y, Vejs Vyess Voe;) = —uylz, ~y, Vgejs =Vyejr —Véej)
u:(waysl/xej»”yeﬁl/é’ej) = UZ(xv —Ys Vrejy —Vyej, “Veej)a
du, Uy
3z (z, Yy Veess Vyess Vé’ej) = ‘gx‘(xy —Ys Vzejr —Vyej, “VBej)v
%(ryu-u-u-)“w%(:r— 'y = Vyejy ~Voej
gz LY rejs Vyess Ve = Bz y — Yy Vrejy —Vyej, V@e_))-
The traction symmetry follows from the integral in Eq. (12). 1

Corollary 3 With no lateral and angular slip, the lateral and angular traction disappear
when the contact area Cej(z,y) = Cejlz, —y), i€, Aye;(vzej,0,0) = Ag.j(vre;,0,0) = 0.

Unfortunately, the creep-force problem as posed obeys no other symmetry to exhibit any
similar conclusion for the longitudinal traction A,. Kalker [Kalker 79], however, considered
the following cases of quasi-identity: either the two elastic bodies are elastically similar, i.e.,
E¢ = E*, and 0% = ¢", or both are incompressible, i.e., 09 = ¢ = 0.5, then & in Eq. (9)

11



is zero. Also. when one body. sav a rubber wheel. is incompressible. and the other body
is relatively rigid. i.e.. o% = 0.5. and E¥ << E9. x is close to zero. When ~ is zero. the
elastic strain and traction relations of Eq. (9) simplify in such a way that the problem of
determining the vertical strain u.. and therefore the vertical pressure distribution Z{x.y).
separates from that of the tangential problem of determining u,. u, and the corresponding
X(z.y) and Y (z.y). Let us call the elastic-traction relation derived from those of Eqgs. (9)
with & = 0 the quasi-identical elastic-traction law and the corresponding creep-force law
problem posed in Eq. (12) as the quasi-identical creep-force law. This separation of vertical
and the tangential problem in quasi-identity allows several other svmmetries in the creep-
force law [Kalker 67] including a specialization of the Proposition 2 we proved earlier. We
mention one other:

Proposition 4 (Kalker, 1967) Thc traction symmetry relations

/\rej(VIeijyej-VBej) = _/\rej("‘l/rejvl/ye]~V&ej)*
Ayej(”rep”ye]-”ﬁej) = /\yej("'l/xejJ/yejaVGEj)w
Abej(Vrejs Vyejr Voej) =  Adej(—Vrejs Vyejs Voes )

verify the quasi-identity creep-force law when the contact area Cej(2.y) = Cej(x. ~y).

Corollary 5 (Kalker, 1967) With no longitudinal slip, the longitudinal traction in guasi-
identical problem disappears when the contact area Cej(z,y) = Cej(z. —y). t.e.. Azej(0, vyej,
l/ge]‘) = 0

3.3 Kalker’s Simplified Linear Theory

The solution of the creep-force problem (Azej, Ayej, Agej) as a function of (vi;, Vyej, Voej)
with the elasticity-traction relations in Eq. (9) is called Ezract Nonlinear Theory. An an-
alvtical solution of the Exact Nonlinear Theory has not yet been possible. If, however,
a linear elasticity-traction relation (ugz, uy) = (LzX,L,Y) is used with the quasi-identity
assumption of elasticity when L, and L, are fixed coefficients, the resulting creep-force re-
lation is given analytically. Consider first the normal problem. The solution is given by the
Hertzian model [Kalker 79]. For twice continuously differentiable surfaces in contact, this
area is elliptic in form. The pressure distribution Z.;(z’,y’) on the contact area C¢; due to

vertical load N.; on the wheel is given by Z.;(2',y") = 3]:; V1~ (z'/a)? — (y'/b)2, where
z’ and y’ are an appropriate choice of a coordinate system, a and b are the lengths of the
major and the minor semi-axes of the elliptical contact area C'.; determined as a function
of the local radii of curvature of the two surfaces in contact, elastic properties of the two
bodies, and the total load N.;. The tangential problem is based on the assumption that
one of the principal semi-axes of the elliptical contact area is the direction of rolling — the
z-axis of our slip coordinate frames. The problem of determining the strain (u.,u,) and

the corresponding tractions (X,Y’) assumes that the net slip w of Eq. (10} vanishes at all
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points in the contact area C'¢;. The traction at the leading edge of contact area with respect
to the direction of the rolling also vanishes. The analytical solution of the creep-force law
thus obtained is:

)\rej -abGCy,y 0 Q Vrej
Ayej | = 0 —abGCpn  —(ab)2GCos | | vy | . (13)
/\6’sj 0 —(Gb)§GC'32 -(ab)zGC'gg Vge;

where Cj;’s are constants given in [Kalker 90] as a function of the combined Poisson’s
ratio o and the shape ratio § of the semi-minor axes of the elliptical Hertz contact area
of the two bodies. The resulting theory is called the Simplified Linear Theory due to
Kalker [Kalker 67]. When the velocity 1}; in Eq. (8) is zero. the steady state longitudinal
and lateral traction vanish and the spin traction moment can be calculated by elementary

principles.
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4 DYNAMIC MODEL OF WHEELED MOBILE ROBOT

The dynamic model of mobile robot is obtained by Euler-Lagrange formulation subject
to the external forces applied at the actuated joints. and the forces at the wheel-ground
interface. Let the vector of external {generalized) forces be 7 = (0. 7,.. 7. 0, 7). where the
three degrees of freedom of the base of the mobile robot x; = (2.y.8) and the undriven
direction of the omni-wheels are not directly actuated. The forces at the wheel-ground
interface are denoted A, A,. and A4, in the directions 2, y, and 6 of the slip coordinatc
frarne respectively, of each of the wheels.The X’s are vectors with (Ny 4 N, 4+ Noc + Noa)
components.

The generalized equations of motion is %@,{v - %CT— =74+J0A, + Jg)\y + Jg)\g. where T

is the total energy of the system. Expanded into components, the equations of motion look
like the following:

I 0 0 0 0]/[% 0
0 I, 0 0 Of]% Toc
0 0 Is 0 0 |\%Xs|=|7|+IA+ITX +I]), (14)
0 0 0 Iy 0% 0
0 0 0 0 I [% T,

where Iy, I,:,14, I; and I, are diagonal inertia matrices corresponding to the states x;, X3,
X3, X4, and xs, respectively. In this simplified form we have assumed, among other things,
that the inertia of the base of the mobile robot I, is independent of the configuration of the
plane containing centered and off-centered wheels.
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5 PARAMETERIZATION OF EQUATION OF MOTION
WITH
CONSTRAINTS

5.1 Lateral Constraints Only

When lateral constraints are preserved. the kinematic constraints J,x. = 0 is imposed and
the wheel-ground contact allows forces up to the frictional bound to be transmitted along
these constraints. The kinematic constraints are reduced to the following form:

Jll(xs)ﬁkl = 0. (15)
Jo1(x2)R%; + J22()%2 = 0. (16)
Jaa(x1.X1)%x3 + J34(x1.%1)%x4 = 0. (17)

The first type of constraint arises from the fixed and centered wheels. The second type
arises from those of the off-centered wheels, and the third type from the omnidirectional
wheels. If J;; is of rank three, then any motion in the plane is impossible. The degree of
mobility defined as the rank of the null space of the linear map Jy; is the number of degrees
of freedom the mobile robot has in the plane of motion. If this degree of mobility is three,
then the mobile robot is called omnidirectional since it has full mobility in the plane of
motion. See Campion et. al. [CBD 93] for a classification based on the degree of mobility
of the wheeled mobile robots. Consider a linear map ¥ = ¥(x35) whose columns span the
null space of the mobility matrix Jyy, t.e., J11 ¥ = 0. The velocity vector x; of the base of
the mobile robot is restricted to lie in the following distribution:

%1 € span{col(RT)}.

If the dimension of the null space of J;; is m, then consider an element xg in ™ that
parameterizes the mobility of the robot. In addition, assume that elements (x7,xs) in
RWNr+NetNoc+Noa) 5 RNe parameterize the velocities x3 and X5, respectively. The complete
kinematic model of the wheeled-mobile robot with no slip in the lateral directions as in
Eqgs. (15), (16), and (17) is parameterized by the vector x, = (xg¢,%7,Xg) given by the
model

x. = Px,, (18)
where
RTS 0 0
——.152132153 0 0
P= 0 I 0
0 ~J3433 O
0 0 I

The configuration parameters x, = (X1, X2, X3, X4, X5) together with x, = (xg, X7, Xg), the
independent parameterization of the velocities in Eq. (18), form the state space of the
wheeled mobile robot. Let an element of this state space be denoted x = (x,x,).
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With a nonsingular kinematic parameterization in Eq. (18). the equations of motion in
Eq. (14) reduce to a set of first-order differential equations on the state space of the form
X = f(x)+ g1 (X)Tee + g2{X) 70 + g3(x)7.. In components

r RTYxg 117 0 0 07
"‘J2_21J2]SXG 0 0 0
X7 0 0 0
_ ~ 333 Jaaxs 0 0 0 T (AT T
f(X) - Xs 1 0 0 0 P (JI )‘l‘ +Jt/ /\9)1
17 Axe I;! 0 0
L NInIT A + B)xe L' oo
L 0 J L o 0o Iyt
— 0 7 r 0 r 0
0 0 0
0 0 0
0 0 0
g1(x) = 0 c g2x) =1 gs(x)=| 4 |» (19)
5 ORI ¥ petd 0 0
S ) OF0 Sy oE VA et L' 0
I 0 | L 0 L1t

where diag{xr) is a diagonal matrix with the scalar elements of the state x; on the diagonal,
Q = £(RTY) = Q(X1,X5,X6,X8 Qlx=0 = 0, T = jt( Jo. 1J2123) = T(xg, X4, X5, X7),
Tlx=0 = 0, K = 3—,@(—1( 33d33) = K(x1,%5,%6), L = 5 (I3, J33) = L(x1,%5,X¢), A =
(STRIQ — =TI 3201, T) = A(xy, X2, X4, X5,%7). B = J§3J T1;diag(x7)(KQ+LRE) =
B(x),x4,%X5.%7), I = STRLRT + 3L3571,.3503,1)S = L (x1, X2, %5), Iy = JLIZTI;
diag(x7)KRTY = Ip (X1, X5, X6, %7), Lo = Ly + TLI5T 15350335 = Ip(x1, %5, %6), and I3 =
I. = I3(). In this form, we have assumed that A, and Ag. the components of the traction

forces at the wheel-ground interface, are functions of the state, i.e.. A, = A;(x), and
Ag = Ag(x) (see Sect. 3). '

5.2 Lateral and Longitudinal Constraints

The set of longitudinal constraints impose rolling with no slip condition on the wheels of
the mobile robot. We derive the conditions on the equations of motion if the longitudinal
constraints. aside from the lateral ones, are also preserved. Recall that when longitudinal
constraints are imposed in this manner, the equations of motion so obtained allow wheel
torque up to the frictional bound to be transmitted at the wheel-ground interface along the
direction of their rolling.

The set of longitudinal constraints J,X, = 0 is reduced to J,Px, = 0 on the space
of motion of the mobile robot with the lateral constraints given by the map in Eq. (18).
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Consider the time-derivative of this constraint. i.e..

-_(%{—(JIPXU))'C =0.

To preserve this constraint on the state space. the set of first-order differential equations
X = f(X)+ g1(X¥)7oc + g2(X)75 + ga(x)7. must satisfv them. With nonsingular model, it
can be shown that 7, = —(Cg2) " 1C(f(x) + 91(X)Toc + g3(x)7.), where the Jacobian of the
constraints C(x) = %(JTPXU) = C(xy,X2. X5. X, X7). The first-order differential equations
governing the motion of the mobile robot reduces to the form

x = f{x) + 91(x)Toc + g5(x)Te. (20)
where
fl(x) = f(x)+(0,0.0,0,0,0,~I;'(Cg;) "' Cf(x),0),
gi(x) = g1(x)+(0,0,0,0,0,0, ~I;1(Cgy)"'Cgqy(x),0),
g3(x) = g3(x).

Notice that since J,Px, is independent of the state x5, Cgs is zero, hence ¢} = g3.
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6 CAN LATERAL AND LONGITUDINAL
CONSTRAINTS BE
PRESERVED 7

Consider the situation when neither lateral (sidewayvs) nor the longitudinal (rolling) di-
rection constraints are imposed on the equations of motion of a mobile robot with fixed.
centered, off-centered, and omnidirectional wheels: i.e.. the traction forces in either of these
directions are determined by the creep-force law of Sect. 3.

Theorem 6 In general, only mobile robots with off-centered wheels can preserve lateral and
longitudinal constraints.

Proof. The state-space is defined by the set of independent coordinates (x.,x.) = (x1, X2,
X3, X4. X5, X, X2, X3, X4, X5). The dyvnamic model of the mobile robot without lateral and
longitudinal constraints imposed by the wheels is given by equation (14). When the lateral
and longitudinal constraints are preserved, it follows from the Corollaries 3 and 5 that
wheel-ground traction forces A, and A, are zero.

Consider the off-centered wheels. If the lateral constraints are preserved, the longi-
tudinal constraints in equation Eq. (5) for the off-centered wheels reduce to the form
Jzroc(X1, x2)%; + Jz3,c()%3 = 0. The Jacobian of the lateral and longitudinal constraints
are

Dx1 (jrloci(l)).(l + sz (jxlockl)x‘z + jxlocil + jrBociB == 0,
DX; (J2]R5{1)5§1 + sz (JQIRXI)S('Z 4+ I RX; + Jgoko = 0. (21)

The equations of motion in Eq. (14) must preserve these constraints. It follows that the
Toc and Ty4o. are determined uniquely as a function of the state. A similar construction for
the fixed and centered wheels results in state-dependent contraints that are not satisfied
in general. For instance, only when (x;)3, the angular velocity of the base of the mobile
robot, is zero, can the fixed and centered wheels preserve the lateral constraints. Another
construction for the omnidirectional wheels results in disparate 74,4 arising from the lateral
and the longitudinal constraints, respectively. 1

Corollary 7 If a mobile robot with off-centered wheels preserves the lateral and the longi-
tudinal constraints, then the state of rest is an equilitbrium point.

Proof. At the state of rest, the spin is zero. Hence, by Corollary 3, the angular traction

vanishes. It is easy to verify that the drift term and the state-dependent inputs 7,. and 74,
determined in the proof of Theorem 6 all vanish at the state of rest. 1
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7 LOCAL CONTROLLABILITY WITH LATERAL
CONSTRAINTS

Consider a control svstem of the form x = f(x) 4+ ;g:(x}u; defined on an open subset
V C & of the state space where f,g;:V — TV are smooth sections of the tangent bundle
TV with the control inputs (u;,...,u,) € U C RP. Let the flow of the dvnamic system for
a control input u:[0,¢t] — U be denoted ¢y: R X 17— Vix — oy(t,x) and let T, (x) be
the infimum of the times for which the flow at x is defined. An attainable set A(t.x) is a
time-dependent reachable set defined as A(t.x) = {x’ € V|Fu:[0.t] = U.x' = oy{t.x)}.
Let the forward projection FP({x) be the time-independent reachable set defined as FP(x) =
{x' € V[Fu:[0,t] - U,x" = oult. x), t € Tyyx)}- Let C(V,TV) be the space of smooth
vector flelds on V' with the Lie algebra defined by the standard Lie bracket [, ] of two vector
fields.

7.1 Accessibility/Controllability Algebra

Let the accessibility algebra denoted C be the smallest subalgebra of the Lie algebra on
C*>(V,TV) containing the vector fields f and the g¢;’s. If the dim(C(x)) at a point X is
equal to the dimension of the state space V, then the forward projection FP(x) contains an
open neighborhood of x. If the drift vector field f of the control system vanishes, then this
local accessibility result also implies local controllability [NV 90].

Theorem 8 Consider a mobile robot without off-centered wheels and preserving the rolling
with no slip condition restricted to the subset where the angular velocity of the plane of the
centered wheels, if any, is zero. The dimension of the accessibility algebra C of the control
system is zero at the state of rest in the subspace parameterizing the configuration and the
velocity of the base of the mobile robot. '

Proof. The accessibility algebra C is defined by brackets of the form

[.X’k, [X’k__l, [ .o [le ‘XO] ‘e .]]],

where X; € {f, 91,92, ...}, fori € {0,1,2,...}. Our proof is by induction on the Lie brackets
of increasing length of the aforementioned kind.

First, consider the equations of motion with lateral constraints in Eq. (19). The la-
grangian forces due to the lateral constraints have been eliminated and therefore forces up
to the frictional bound can be transmitted. In addition, if we assume that the longitudinal
constraints of rolling with no slip conditions are preserved, then v..; = 0 and we obtain a
set of equations resulting from those in Eq. (20) by substituting A,.; = 0 implied by the
Corollary 5.

There are no off-centered wheels. The state x4, the free-wheeling direction of the omni-
directional wheels, is decoupled from the rest of the equations of motion. Hence, we drop
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the states x, and Xxy. the control input 7,. and by renumbering obtain the control equa-
tions whose functional dependency is as follows: f’l_(x) = f" (X1.X3.%x4). f’z(x) = f_’g(x,g).
f’g(x) = f’a(XGJ- fﬁ(x) = fl4(X1-X3-X4-X5-X6)~ f’b(x) = f/b(X1~X3-X4~Xs-XG)- f’b(x) =
£ (X1 X3 X4, X5. Xg). g5 (x) = 0.7 = 1.2.3.4.5. and g4 (x) = g5 (). Let us recapitulate the
numbering of the states in the reduced notation. The state x; parameterizes the configura-
tion of the base of the mobile robot, x, parameterizes the angular orientation of the wheels
about their drive axes. x3 parameterizes the angular orientation of the plane containing the
centered wheels, x4 parameterizes the set of independent velocities of the base of the mobile
robot, x5 parameterizes the angular velocity of the wheels about their driven axes. and xg
parameterizes the angular velocity of the plane containing the centered wheels. Consider
the following assumption of the induction:

1. Everyv bracket’s first and fourth elements at the state of rest are zero.

Let [f', g;'] be a bracket of length one. The vector fields f’ and g4 are the zero level brackets
of the accessibility algebra. The base level of induction is satisfied trivially. The induction
proof on the brackets of length k is divided into two parts: brackets with f’ as the leading
element and brackets with ¢} as the leading elements.

Consider an arbitrary bracket Bry/(k) of length & with the leading term f’ expressed in
terms of Br(k — 1} as

Bry/(k) = DBr(k — 1)f — Df'Br(k - 1).

The drift f'|x=¢0 = 0, Djf’llxzo = 0,7 # 4 and on the subset x¢ = 0 corresponding to
the zero angular velocity of the plane of the centered wheel Djf’4|x:0 = 0,7 # 4. By the
assumptions of the induction Br!(k — 1)|x=0 = 0 and Br*(k — 1)|x=0 == 0, it follows that
Br!(k)|x=0 = 0 and Br*(k)|x=0 = 0. Hence, the accessibility algebra does not contribute
any element to the x;- and x4-subspace.

Consider the case when the leading term of a bracket of length & is g5. An arbitrary
bracket Brg (k) of length k with the leading term g3 expressed in terms of Br(k — 1) is

Brg: (k) = DBr(k — 1)g5 — Dg5Br(k — 1).

Since Dg} = 0, and the sixth term of g5 is the only non-zero term, it follows that for
Bry, (k)’s first and fourth term to be zero at the state of rest, the elements DBr(k — 1)[1][6]
and DBr(k — 1)[4][6] must vanish at x = 0.

Lets consider the derivative D;,  ; Brx(k), ¢, € {1,...,6}.

Dy, Brx (B[] = ¥ cptran( Dy DBry(k— 1)DpX + D,DBri (k- 1)Dj; X
—D,;DX*DsBr(k — 1) — D, DX Dy;Br(k — 1)(22)

where 24 is a set of subsets of the set A and for p € 24 p is the complement of p in A.

The structure of X, D, X, D,DX', and D,DX*at x =0 for X € {f’, g4} determine those
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Figure 3: Controllability with centered wheel rotation.

elements of the DBr(k — 1) that are required to vanish for DBryx (k){{][j] to vanish. It can
be verified that f'|x=0 = 0, D3 f'|x=0 = 0. D¢ f'|x=0 has a non-zero element in the third
row and i 15 otherwise zero, Dgg. . f' lx o = 0 with at ledst two derivatives with respect to Xg.

derivative w1th respect to Xg and otherwxse has a non-zero element in the fourth column
and all derivatives of g5 are zero.

For instance, for DBrs(k)[1][6] to vanish, DBr(k — 1)[1]{3] and DBr(k — 1)[4][6] must
vanish. In general, our claim is that if the terms [1][3], [1][6], [4](3], and [4][6] of D,X,
D,DX, for X € {f', g4} at x = 0 and p € 2{3--%+} of length depending on k, all vanish
then the inductive assumptions are true. When this chain of dependency is followed until
k = 0, the brackets Br(0) must get instantiated to either the vector field f’ or g4 and we
have already shown that such terms for f” or g4 do indeed vanish at the state of rest. 1

Example 1 Consider a mobile robot with two fized wheels and one centered orientable wheel
as shouwn in Fig. 8 with all constants such as the radius, lengths, and the inertias equal to
one. The mobility of the mobile robot with this configuration of the wheels is one — rotation
about the centered wheel. Let the lateral and the longitudinal constraints be preserved and
consider the corresponding reduced form of the control equations given in the proof of the
Theorem 8. The traction moment generated at the wheel ground interfaces of the centered
and the fixed wheels given by the Kalker’s Simplified model described in the Sect. 3.3 are
Aoj1 = wfflf%h’ Aofe = -—ff;,,l—’)%ﬁ, and Agop = "fdlzcﬁ_iﬁ%(ﬁ'l’ where fs1, fro and fo are
positive constants. The control equations for this ezample is as follows: f' (x ) (0,0, x41),

FHx) = x5, f20x) =%, [7(x) = =S5y — fropity — Ja it £ (%) = (L1, 07,
f’s( ) =~ fa |§411§611+T‘: It is easy to verify that for fry+ fro # fa, the set of differential
equations has a solution such that the orientation of the mobile robot is changed from the
state of rest when a torque 1. > f. is applied to turn the plane containing the centered
wheel. This example shows that the restriction to zero angular velocity of the plane of the
centered wheels in the Theorem 8 is necessary.






8 CONCLUSION

We have considered the dyvnamic model of motion of a mobile robot with an arbitrary
combination of conventional fixed wheels. centered wheels. off-centered wheels. and omnidi-
rectional wheels. It is a standard practice in mechanics to reduce the number of independent
variables describing the state of the mobile robot by considering that the wheels undergo
rolling with no slip motion. We, however, developed the dvnamic model without incor-
porating the rolling with no slip condition. Our model. therefore, included an analytical
model of the traction forces generated by the rolling of wheels under a set of assumptions
given in Hypothesis 1 for the linearly elastic wheels.

We established that the lateral (sideways) constraints and the longitudinal (rolling di-
rection) constraints imposed by the wheels cannot, in general, be preserved by mobile robots
with fixed, centered, and/or omnidirectional wheels. The dynamic svstem of those mobile
robots with off-centered wheels, however, is an autonomous system with no remaining con-
trol input such that the state of rest is an equilibrium point. Therefore, mobile robots with
off-centered wheels must also slip.

Assuming that the lateral (sideways) slip of wheels for a straight line (large curvature)
trajectory of the base of the mobile robot is likely to be small, we imposed the lateral
constraints. We considered mobile robots with a combination of wheels of the conventional
fixed, centered, or omnidirectional type. We showed that the motion of the mobile robot
has zero accessibility and controllability in the subspace of the position, orientation, and the
corresponding velocities of the base of the mobile robot as long as the angular orientation
of the plane of the centered wheels has zero velocity. Therefore, the fixed, centered, and
omnidirectional wheels cannot preserve the longitudinal (rolling direction) constraints. We
also gave an example where the orientation of the base of the mobile robot can be changed
by driving the angular orientation of the plane containing the centered wheels. This example
showed the necessity of the minor condition of zero velocity of the plane of centered wheels
on the zero controllability result. The base of a mobile robot with off-centered wheels can
also change its configuration by a crab-like motion when the lateral constraints are imposed.

In summary, wheel slip is inevitable according to the proposed model. The wheel slip
we establish in the paper may account for parts of the error in dead reckoning. Our ongoing
work will address this issue.
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APPENDIX: INSTANTIATION OF KINEMATIC
CONSTRAINTS

We give an instantiation of the kinematic constraints in Eq. (4). Consider that the origin
of the choice of coordinate system (J; is given by (I, ) in polar coordinates in the choice of
coordinate system M and the radial line a is the x-axis of ;. Similarly. the origin of the
choice of coordinate system M,; (or ,f\}le]-) is (d. 3 - %) in the choice of coordinate system
O.; and the radial line 3 —  is the x-axis of the frame A;lej (see Fig. 1). Let v be the angle
that the direction of complementary rolling © of an omnidirectional wheel makes with the
direction of ¢, the axis about which the wheel is driven. The three scalar components of
the constraints in Eq. (4) are as follows:

[cos(8) sin(6) Isin(é ~ a)+ dcos(a+ 3+ — 8)]Rx,
—rsin(a+ 8 - 6)(5) +df3 cos{a+ 3 — &) — r'sin(ev+ 3+ 7 — 6)5),
[—sin(8) cos(8) Icos(d —a)+ dsin(a+ 8+ —8)]Rx,
+dj sin(a+ 3~ 6) +recos(a+ 3 — 8)é + r'é)cos(a' + B+ 75— 48),
(0 o 1]?&5(1 + 8,
where r is the radius of the wheel about the driven direction ¢, and r’ is the radius of the

omnidirectional wheel about the complementary direction ¢ and & is a quantity determined
as explained in Sect. 2.3 from the choice of the transformations h.; by equating

[—sin(6) cos(8) lcos(d—a)+dsin(a+ 8+~ —8)]Rx; + disin(a + 8 — 8)

to zero in this instantiation. For fixed wheels d = 0 and 3 is a constant, for centered wheels
d = 0. For centered and off-centered wheels 3 is a state variable, a component of x5 and
x3, respectively. For fixed, centered, and off-centered wheels, the component containing ¢
does not appear and v = 0. For omnidirectional wheels 3 is a constant.
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