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BETA TESTING THE CHEN-1000 SERVER 

Thomas H. Dunigan 

Abstract 

This report summarizes the beta testing of Chen System’s eight pro- 
cessor CHEN-1000 server at Oak Ridge National Laboratory in the fall of 

1995. The performance of the shared-memory multiprocessor is measured 
and compared with other shared-memory multiprocessors. 
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1. Introduction 

The Department of Energy’s Oak Ridge National Laboratory (ORNL) has been 
conducting research in high performance scientific computing for several decades. 
Since the mid 198O’s, ORNL has been a leader in the evaluation and use of 
massively parallel computers. ORNL has developed applications and mathemat- 
ical algorithms to exploit parallelism, and in the 199O’s, DOE selected ORNL as 
one of its high performance computing centers as part of the government’s High 
Performance Computing and Communications (HPCC) initiative. 

One component of ORNL’s research in computational science is the evalu- 
ation of “early systems.” ORNL has worked with computer vendors in beta 
testing early models of various parallel processors. These evaluations involve 
benchmarking the systems, porting and customizing applications, and evaluating 
the effectives of innovative computer architectures in solving scientific applica- 
tions. In 1986, ORNL evaluated the first Intel iPSC/l [a] ,  then beta tested the 
later generation iPSC/2 [3] and iPsC/S60 [4], Paragon [6] ,  and Paragon MP [8]. 
In addition to  these distributed-memory parallel processors, ORNL evaluated the 
first Kendall Square distributed shared-memory multiprocessor [ 5 ] ,  [7].  

In 1995, Chen Systems loaned ORNL one of their CHEN-1000 multiprocessors 
for beta testing. Although aimed at the commercial server market, the CHEN- 
1000 was compared with other multiprocessors that ORNL has evaluated for sci- 
entific computations. This report details the performance of the shared-memory 
CHEN- 1000. 

In the following section, the CHEN-1000 architecture is summarized. Section 
3 describes the performance of the shared-memory architecture and compares 
its performance to other shared-memory and distributed-memory architectures. 
Appendix A provides a time-line of the events during the test and evaluation of 

the CHEN-1000 system, and Appendix B summarizes the architectures of other 
multiprocessors that were compared with the CHEN-1000. 

2. CHEN-1000 Architecture 

The Chen Systems CHEN-1000 server is shared-memory multiprocessor based 
on the Intel Pentium processor. Symmetric multiprocessing is controlled by the 
UnixWare 2 operating system. The server provides high 1/0 throughput via two 
PCI buses that can double data throughput when configured as a dual PCI disk 
subsystem. The server can support almost two terabytes of on-line storage, and 
the High Throughput File System (HTFS) provides transaction-oriented caching 
and journaling. 
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The system tested at ORNL during 1995 consisted of 8 100 MHz Pentiums 
sharing 512 MB of memory over a 400 MB/second bus. Each processor had an 
8KB L1 cache and a 512KB L2 cache. The system included 40 GB of disk space, 
system console, and diagnostic console. A C compiler was provided, and later 
ORACLE and a bus monitor were installed on the system as well. 

3. Performance 

Our first test of the Chen system was to examine the stability and usability 
of UnixWare. We compiled and ran several traditional UNIX benchmark codes 
(BYTE benchmark, fsx, hint, ttcp) and various software packages (ntp, GNU util- 
ities, paranoia). We also built some security extensions (tcpwrappers, logdaemon, 
skey, tripwire). A few of the auto-build facilities failed to identify UnixWare, but 
manual System V building usually succeeded. 

UnixWare is a stable version of UNIX, and its multiprocessor support appears 
quite solid. All of the utilities that we tested performed to specifications, except 
for ntp. We were not able to get tight clock synchronization with ntp. UnixWare 
appeared to be resetting the clock every 30 minutes to an internal time-of-day 
clock. 

We measured the floating point performance of the 100 MHz Pentium at 
10.7 Megaflops on a C LINPACK-100 [l]. Many of our other computational 
benchmarks and applications are written in FORTRAN. FORTRAN was not 

provided with our beta system, so we did not do as extensive testing as we 
have on other multiprocessors. In addition, we have several parallel FORTRAN 
applications that we use for performance analysis, those tests were omitted as 
well. 

We compared thread and fork creation, lock and unlock, barriers, and con- 
current update of shared variable (no locks). Table 3.1 compares single processor 
performance of the 100 MHz Chen Penitum with single processors on the In- 
tel Paragon MY, KSR, BBN, and Sequent. The Intel Paragon uses a 50 MHz 
i860 processor. (It should be noted that even Intel considered the Intel Pen- 
tium unsuitable for scientific computation and chose to use the super-scalar is60 
processor as the basis of its iPSC/860 and Paragon series. The next generation 
Intel multiprocessor will use the Pentium Pro, however). The KSR is a ring- 
based shared-memory multiprocessor using a 20 MHz custom processor. The 
Sequent Symmetry is bus-based shared-memory multiprocessor using 16 MHz 
386 processors. The BBN TC2000 is a cascaded-switch based shared-memory 
multiprocessor using 20 MHz M88000 processors (also see Appendix B). 



Time on one CPU (us) 1 

barrier 
hotspot 

\I I 11 Chen 1 MP 1 KSR 1 BBN I Sequent 

93 110 119 38 24 
.03 0.81 2.5 5.3 6.4 

Table 3.1 : Single processor performance of multiprocessing primitives. 

Since our test tools are aimed at scientific calculations, we could not properly 
evaluate Chen’s high-performance file system. We did run simple 1/0 and file 
benchmarks and found no anomalous behavior, and performance exceeded that of 
our local workstations. We ran TCP and UDP throughput and latency tests over 
Ethernet and found the CHEN-1000 provided near full-bandwidth performance, 
comparable to most high-end workstations. Our IP multicast tests failed because 
multicast was not supported by UnixWare. 

Our other tests evaluated parallel performance of the CHEN-1000. We ported 
a message-passing simulator that utilizes System V shared-memory and fork() 
for coarse-grained parallelism. This simulator ran successfully and gave linear 
speedups on some simple application kernels. Most of our parallel applications 
are based on a finer grain parallelism through FORTRAN parallel DO-loops or 
threads, so we also evaluated the thread management on the CHEN-1000. 

Our most recent performance analysis has been on the Paragon M P  system, 
which has three processors sharing memory on a node, so we compare three- 
processor performance with the CHEN-1000. Table 3.2 compares the performance 
of three processors doing a lock/unlock, barrier, or accessing the same memory 
location. There appear to be no architecture or implementation penalties in the 
thread primitives for one, two, or three processors. 

Time on three CPUs (us) 1 
11 Chen 1 MP I KSR I BBN 1 Sequent I , I 

lock/unlock I /  3 I 104 I 17 I 20 I 38 1 

Table 3.2: Three processor performance. 

Figures 3.1 and 3.2 compare lock and barrier performance of the CHEN-1000 
to other shared and distributed memory multiprocessors. The lock performance 
of the CHEN-1000 compares quite favorably to the older multiprocessor systems. 
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The spin barrier (-barrier-spin()) was used in the Chen barrier evaluations. The 
spin barrier is equivalent to the barrier implementations found on the comparison 
multiprocessors. The CHEN-1000 barrier times are somewhat worse than the 
other shared memory multiprocessors. The Delta, iPSC/860, and Paragon have 
slower barriers, but these are distributed-memory multiprocessors and scale to 
thousands of processors. Bus-based shared-memory multiprocessors are typically 
limited to twenty or thirty processors. These performance results indicate the 
CHEN-1000 scales well through eight processors. 
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Figure 3.1: Average lock/unlock time for a single lock. 

Table 3.3 compares the CHEN-1000 performance on three processors over 
a set of application kernels in C. The same copy of the code was run on each 
multiprocessor, and the codes have not been tuned. The numeric integration 
kernels effectively operate from cache, so near linear speed-up is achieved. The 

Cholesky code is a little more memory intensive, and the slower performance 
results from lock and bus contention. 

Figure 3.3 shows the C double-precision, floating point performance for a 

Cholesky factorization of a 400 x 400 matrix. The 0 processor megaflop rating is 
the speed of the serial code, as opposed to the parallel code run on one processor. 
Again, the CHEN-1000 shows near linear speed-up. 
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Speedup on three CPUs 
Chen MP KSR Sequent 

3.0 Integration (C) 2.9 2.9 2.9 
3.0 Jacobi iteration (C) 2.0 2.7 2.8 

Cholesky (1K x l k )  (C) 2.0 2.1 3.0 2.9 
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Figure 3.2: Average time for a barrier synchronization. 
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Figure 3.3: Megaflops for 400 x 400 double-precision C Cholesky-. 

4. Summary 

Despite being a beta system, the CHEN-1000 system proved to be a reliable mul- 
tiprocessor system with adequate multiprocessor support from UNIXWare. The 
shared-memory performance of the CHEN-1000 is competitive with other older 
shared-memory multiprocessors. The 1/0 perforniance was good, and hardware 
and software performance monitoring should be effective in tuning parallel appli- 
cations. The system is best suited for coarse grain parallelism, and no automatic 
parallelization was provided by the compilers in our beta unit. 
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Appendix 

A. Timeline 

July, 1995. 4-CPU Chen system installed. 

August, 1995. UNIX benchmarks and initial parallel testing. 

September, 1995. Security and network testing. 

October, 1995. Upgrade to 8 CPUs, 512M, and bus monitor. 

November, 1995. Complete parallel benchmarks and 1/0 testing. 

December, 1995. Data base and application testing. 

B. Comparative Architectures. 

The report compares shared memory performance of the CHEN-1000 with sev- 
eral shared-memory multiprocessors. A summary of the other shared-memory 
multiprocessors compared with the CHEN follows. 

BBN TC2000 

The BBN TC2000 at Argonne National Laboratory (ANL) is a 45 processor 
shared-memory parallel processor. Each processor is a Motorola 88000 running 
at 20MHz with 16 MB of memory fronted by a 16KB data cache and a 16KB in- 
struction cache. All of the memories are interconnected by a 2-stage $-way switch. 
The system can be expanded up to 512 processors. The Uniform programming 
environment (under nX 2.0.6) provides the program with both local and explic- 
itly allocated shared memory. The shared memory may be allocated in another 
processor’s memory, and thus a non-uniform memory access (NUMA) model is 
supported. In the absence of contention, a remote reference typically takes less 
than two microseconds, and a single channel of the switch has a bandwidth of 40 
MB/second [lo]. The architecture could be used with other memory management 
policies [9]. Compiles on the BBN were done with -0 -1us. LINPACK 100 x 100 
double-precision on a single processor was 1.0 Mflops using -0LM -autoinline. 



- 9 -  

Intel Delta 

The Intel Delta is a 512-node mesh designed as a prototype for the Intel Paragon 
family. Each node has a 40 MHz i860 with 8 KB cache and 16 MB of memory. 
Communication channels have a peak rate of 22 MB/second. LINPACK 100 x 100 
double-precision on a single processor using -Minline=daxpy -1hoieee was 9.8 
Mflops. Tests were performed using NX 3.3.10. 

Intel iPSC/860 

The Intel iPSC/860 is Intel's third generation hypercube. Each node has a 40 
MHz i860 with 8 KB cache and at least 8 MI3 of memory. Communication chan- 
nels have a peak rate of 2.8 MB/second. LINPACK 100 x 100 double-precision 
on a single processor was 9.8 Mflops using -Minline=daxpy -Knoieee. Tests were 
performed using NX 3.3.2. 

Intel Paragon 

The Intel Paragon is a distributed-memory multiprocessor with shaxed memory 
on each node. A node on the Paragon MP supports a shared-memory architecture 
with three 50 MHz i86OXP processors sharing a 400 MB/second bus and memory. 
Each i86OXP has its own 16 KB data and instruction cache, and each node has 
at least 64 MB of memory. The 50 MHz i86OXP is a super-scalar architecture 
capable of a peak 75 Mflops (double precision). LINPACK 100 x 100 double- 
precision on a single processor was 11 Mflops ([l]). 

Kendall Square 

The Kendall Square uses custom-designed 20 MHz processors that share memory 
on a one gigabyte per second ring. Each processor has a 256KB cache, and the 
global memory is managed as a cache. A single processor generates a maximum 
of 40 MB/second against the ring. LINPACK 100 x 100 double-precision on a 

single processor was 15 Mflops [ 5 ] .  

Sequent Symmetry 

The 26 processor Sequent Symmetry located at ANL is based on 80386/387 pro- 
cessors (16 MHz) with a Weitek 3167 floating point co-processor. Each processor 
has a 64KB cache, and 32 MB of memory is shared by all processors on a 54 
MB/second bus. The maximum configuration is 30 processors. The processors 



- 10 - 

run Dynix 3.1.2, and compiles were done using -0. LINPACK 100 x 100 double- 
precision on a single processor was 0.37 Mflops [l]. 

TMC CM5 

The CM5 is a hypertree multiprocessor using 32 MHz SPARC processors with 
four vector units and 16 MB of memory per node. LINPL4CK 100 x 100 double- 
precision on a single processor using the vector units was 68 Mflops [l]. Commu- 
nication channels have a peak rate of 20 MR/second. 
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