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ABSTRACT 

The use of the high-energy Gaussian approximation to the free gas model of Doppler 
broadening has a long and distinguished history, dating back to early computer days when I) 

and x functions provided the most accurate computations available. In today’s computing 
environment, however, use of the high-energy approximation is no longer necessary, and may 
lead to erroneous results. In this paper a derivation of the free gas model is presented, and 
the high-energy approximation derived from that. Differences between the two models are 
examined both analytically and via computations. Because the differences are visible (albeit 
not necessarily of significance in many cases), the authors recommend against continued use 
of the high-energy Gaussian approximation. 
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1. INTRODUCTION 

Early in October of 1996, Mick Moxon and Heme Derrien began extended visits at Oak 
Ridge National Laboratory, worlung with L. Leal and N. Larson on various aspects of resonance 
parameter analysis. A major purpose of Moxon’s visit was to facilitate comparisons between 
the two cross section analysis codes REFIT w077 ,  MO911 and SAMMY [LA96], both in 
general and with particular emphasis on the 235U analysis. As part of the comparison effort, 
REFIT and SAMMY calculations were made, first of the unbroadened 235U cross sections and 
next of the Doppler-broadened cross sections, using parameters of the recent analysis of Leal, 
Denien, and Larson [LE97]. Preliminary results are as follows: 

For the unbroadened calculations, so long as all input parameters and all physical 
constants are given the exact same values for both codes, theoretical cross sections produced by 
the codes are equivalent to within 1 part in lo6 (with certain exceptions). Detailed code 
comparison results will be described in another report [LA98]. 

During the course of the calculation minor glitches were found and fixed in each of the 
codes. In S A M M Y ,  a too-short cutoff in the integration limits for the Doppler broadening was 
found to produce a slight discontinuity in the Doppler-broadened values at about 3.5 Doppler 
widths either side of a narrow resonance. In REFIT, a line of coding designed to prevent divide 
overflows when successive grid points were too close together led to miscalculation of the 
Doppler-broadened cross section for resonances with widths less than - 15 meV. For both codes 
the location and density of grid points used in the numerical integration schemes have been 
reconsidered and slightly restructured to optimize the calculations. 

It is not the purpose of this paper to discuss either the details of the comparison nor any 
modifications made to the 235U resonance parameter set as a result of this effort; rather, in this 
report we will concentrate on observations related to the Doppler broadening calculation. 

Toward this end the remainder of this report is organized as follows: In Sect. 2 we 
present a derivation of the fiee gas model of Doppler broadening (sometimes referred to as the 
“ideal gas model”), and of the high-energy Gaussian approximation to the free gas model. In 
Sect. 3 the case of very narrow resonances is considered, first theoretically (assuming delta- 
function resonances) and then computationally. The Doppler broadening of various other 
energy-dependent cross sections is discussed in Sect. 4. A summary of results is presented in 
Sect. 5. 

2. DERIVATION OF DOPPLER BROADENING EQUATIONS 

The following is a quote (with notational changes for convenience) from Fritz Froehner’s 
definitive paper “Applied Neutron Resonance Theory” [FR89] ; comments in square brackets are 
added by the authors of this paper. 
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Doppler broadening is caused by thermal motion of the target nuclei. Consider 
a parallel beam of monoenergetic particles with lab velocity v’ colliding with 
target nuclei whose velocities W are distributed in such a way that p ( @ )  d3W 
i s  the fraction with velocities in a small three-dimensional region d W around 
p. If p1 and p2are the densities of beam and target particles, respectively, 
the number of reactions occurring per unit time and unit volume is 

where 0 ( m V / 2 ) is the effective or Doppler-broadened cross section for 
incident particles with speed v [laboratory energy m?/2]. Obviously a l /v cross 
section is not affected by Doppler broadening. Let us now assume that the target 
nuclei have the same velocity distribution as the atoms of an ideal [monatomic] 
gas, i.e. the Maxwell-Boltzmann distribution, 

p ( W ) d 3 W  = - 1 exp( -F) W 2  - d3W - M u 2  = kT, 
lr3R u 3  2 

where Mis the nuclear mass and kTthe gas temperature in energy units ... 

[End of quote fiom Froehner.] 

Quation (1) is the direct result of the definition of the effective cross section for mono- 
energetic particles of mass rn and energy E (laboratory velocity v). The effective cross section 
is given by the number of neutrons per unit volume, multiplied by the number of target nuclei 
per unit volume, times the probability that a reaction will occur per unit time at an energy 
equivalent to the relative velocity I v - W 1, integrated over all values of W. As is shown in Sect. 
4.1 , the conservation of l/v cross sections is a consequence of the dejinition, not a requirement 
“added on” to ensure compatibility with observed phenomena. 

Equation (2) is the equation for the distribution of a free gas in three dimensions. 
Combining Eqs. (1 ) and (2), we find that 

(3) vG(mv2/2) = - 1 J d3W exp( -5) (? -@I  o(mlv’-W12/2) . 
312 3 

+ --. ?T; a l lW 

Changing the integration variable fiom w to $ = v’-  w and choosing spherical 
coordinates simplify the integral to the following: 
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- - 22- j d w w 3 u (  $)exp( - f v 2 + w 2 )  )( L)[ exp( -5) -eq( +?)I 
%3R 3 U 2  2vw 

u o  

[This equation may be more familiar to most users when written as the sum of two 
integrals, - 

: (E=,$ )  = v 2 ~ u  1 ~ . d w w 2 u ( + )  exp( - ( v - w ) 2  u 2  ) 

At sufficiently high energies, the contribution from the second integral may be omitted since the 
value of the exponential is vanishingly small.] 

To simplify Eq. (4) further, we make the following definition: 

Equation (4) then becomes 

For programming convenience, we make a change of variable &om velocity to square 
root of energy. Thus instead of v we use 

V = @ = v P  ; (8) 

we redefine Wto be 
w = w m ,  

and define Uas 
U = @ l A = J m .  

(9) 



In addition, S( W) is set equal to s(w), or 

S ( W )  = o( ( w ) 2 )  for w>o 
= - o ( ( - W ) ~ )  for W < O  . 

These changes give the formulation which is used in SAMMY for the exact monatomic free gas 
model (FGM): 

This method is described in Revision 3 of the SAMMY manual [LA96, page 92q; note 
however the typographical error in Eq. (IVF.4), in which u should be squared]. Implementation 
of a routine based on Eq. (7 or 12) within the newest version of REFIT has decreased the time 
required for the calculation below a few eV; older versions of REFIT use the free gas model only 
at low energies and the high-energy Gaussian approximation at higher energies. [Users of older 
versions of REFIT should be aware of a center-of-mass conversion error affecting the exact fkee 
gas model, for low-mass nuclei. Another error, related to integration near w = 0 in Eq. (4 or 5), 
affected only very-low-energy cross sections. Both errors have been corrected in the newest 
version of the code, which is available from the author.] 

Note that, either in the form of Eq. (4 or 5) or in the form of Eq. (7 or 12), this is the 
correct equation for all monatomic free gas Doppler broadening, no mattex what the energy- 
dependence of the cross section. These equations hold for l lv cross sections, for constant cross 
sections, and for cross sections with resonance structure. 

To transform to the high-energy Gaussian approximation (hereafter referred to as HEGA) 
from the FGM, define E as V 2  and E' as W 2 .  Then Eq. (12) takes the form 

in which the lower l i t  has been changed from -00 to Emin, a number above zero, since the next 
step involves approximations which are valid only for E' >> 0. The quantity 6 in Eq. (1 3) is 
defined as 

2 

A2 = U 2 / 4 E  ; (14) 
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note that this quantity is energy-dependent. Expanding the integrand of Eq. (1 3) in powers of 
(E-E‘), and keeping only first-order terms, give a value of 1 for the ratio E’IE, and E - E - 
(E-E’)/2 = (E-E‘)/2 for the quantity in the exponential. Thus the HEGA becomes 

- oHEGA(E) c: - 1 1 dE’ o(E’)exp(- ( E - E ‘ ) 2 )  . 
fiA Emm A2 

Extending the lower limit to negative infinity (since that portion of the integrand is essentially 
zero) then gives the usual Gaussian formulation of the fiee gas model. 

3. VERY NARROW RESONANCES 

3.1. THEORETICAL DEFWATION FOR DELTA-FUNCTION RESONANCE 

In order to understand whether HEGA might differ fiom FGM even at high energies, 
consider first the case of an isolated narrow resonance. For illustrative purposes the cross 
section is taken to be a delta-function of the form 

With this value for the cross section, the HEGA-broadened cross section is found directly fiom 
Eq. (1 5):  

in which the energy-variables have been translated to square-root-of-energy variables for ease 
of comparison with the FGM, and E, is set equal to yo”. To evaluate the FGM cross section, 
the integration variable Win Eq- (1 1) is first replaced by variable E’ = W2,  so that 

5 



To compare Eq. (1 8) with E& (1 7) at the position of the resonance (E  = E, or equivalently V= 
V,), simply make those substitutions in the two equations. Values of the two expressions are 
exactly the same: 

1 

To compare Eq. (1 8) with Eq. (1 7) at other energies, define F as the exponent (without 
the minus sign) for the free gas model, and H similarly as the exponent for the high energy 
Gaussian approximation. Set x = V - Yo. Then the exponents take the following values: 

and 

4 v2 u2 4 v2 u2 4 v2 u2 

- - (2 v x - x y  - - 4 v2x2 (1 - x / 2  V ) 2  =--(l---) x 2  
x 2  . 

4 v2 u2 4 v2 u2 U 2  

In this form it is clear that positive x implies F > H, negative x implies F < H. It therefore 
follows that the exponential term for the FGM is larger than the exponential term for the HEGA 
when the energy E is less than the resonance energy E,, and smaller if greater. Since the other 
energy-dependent factors in the FGM and HEGA have similar properties, the relationship 
between the two broadened cross sections can be summarized as 

It is also possible to show, by setting the derivatives with respect to the velocity V equal 
to zero, that the position of the broadened peak is characterized by a slight shift to the higher 
energy for the HEGA when compared to the more accurate FGM. Details are presented in the 
appendix. 
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3.2. CALCULATIONS 

To verify the results described above for delta-function resonances, calculations were 
performed with SAMMY using an invented element of mass 10.000 mu,  ground state spin 0, 
with 12 s-wave resonances located at energies (in eV) of 0.25,0.5, 1 .O, 2.0,5.07 10.O720.O75O.0, 
100.0,200.0,500.0, and 1000.0. The radiation width for each resonance was set at 1 .O meV, and 
the neutron width and two fission widths for each resonance were 0.5 meV. This “element” was 
designated “resium” by John Story [ST8 11. 

The same calculations have also been performed with REFIT, as well as with the codes 
NJOY [MA941 and MULTIPOLE [HW87]; results will be reported elsewhere [LA98]. 

Figure 1 shows the FGM and the HEGA for the resonance at 1 eV. Differences between 
the two are clearly visible on the plot. Fig. 2 gives the ratio of FGM to HEGA for the energy 
range from -lo4 to 1.2 keV. As expected, the magnitude of this ratio becomes closer to unity 
as energy increases; nevertheless the differences between the two methods are still quite 
pronounced even for the 20-eV resonance. 

careful exafninafion shows that physical resonances exhibit the same kinds of behavior, 
although for most resonances the differences between HEGA and FGM are smaller than the 
experimental uncertainties. One example is given in Fig. 3a7 which represents a small portion 
of the 235U fission cross section; Fig. 3b shows the resonance (doublet) near 8.8 eV. The 
calculated HEGA and FGM cp-ves for the uppermost portion of this peak have been redrawn 
in Fig. 4 (with a dense grid, to ensure that the picture is visually smooth). 
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Figure 1. Direct comparison of the capture cross section (barns) broadened with the free gas 
model (solid line) and with the high energy Gaussian approximation (dashed line) for the 1 - 

eV resonance of resium. 
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Figure 2. Ratio of the Doppler broadened capture cross section for Resium using the 
free gas model to that obtained using the high energy Gaussian approximation. 
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Figure 3. A small portion of the 235U fission cross section. Part (a) shows experimental data 
(crosses) and preliminary FGM fit (solid line). The curve fiom 8 to 10 eV is shown in more 
detail in Part (b) of the figure. On the scale used for these plots, the HEGA calculation is 

indistinguishable from the FGM. 
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Figure 4. Calculated FGM (solid) and HEGA (dashed) curves for the peak at 8.8 eV. 
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4. OTHER ENERGY-DEPENDENT CROSS SECTIONS 

No discussion of Doppler broadening would be complete without an analysis of the 
effects of Doppler broadening on particular types of cross sections. Here we examine two 
important types of energy-dependencies: First, the l lv  cross section is considered analytically 
via both FGM and HEGA. Second, analytical integration is used to determine FGM- and 
HEGA-broadened constant cross sections. 

4.1 DOPPLER BROADENING OF l lv  CROSS SECTIONS 

Doppler broadening is expected to preserve (i.e., leave unchanged) a llv-cross section. 
To test whether this is the case with FGM and/or HEGA broadening, we note that a llv-cross 
section may be expressed as 

0 0  vo 
O ( W 2 )  = - , 

W 

where the subscript “0” denotes constants. To evaluate the FGM with this type of cross section, 
note that our function S of Eq. (1 0), combined with Eq, (23), gives 

S ( W )  = - ‘0 ‘0 for W r  0 
W 

From Eq. (1 1) the FGM-broadened form of the l lv  cross section i s  therefore 

i.e., in the exact same mathematical form as the original of Eq. (22). In other words, a l lv cross 
section is conserved under Doppler broadening with the free gas model. 

That is not the case for HEGA broadening. With the HEGA of Eq. (14) (with lower limit 
of -m), the Doppler-broadened l/v cross section takes the form 

which is not readily integrable analytically. What is clear is that the result is not llv. 
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4.2. DOPPLER BROADENING OF A CONSTANT CROSS SECTION. 

In contrast to the llv cross section, a constant cross section is not conserved under 
Doppler broadening. That is is true experimentally can be seen by examining very low energy 
capture cross sections, for which the unbroadened cross section is constant (which can be shown 
by taking the low-energy limit of the Reich-Moore equations, e.g.) but the experimental cross 
section rises with decreasing energy. See, for example, the S elastic cross section fiom 0.01 to 
1.0 eV or the Cu elastic cross section below 2.0 eV (on pages 100 and 234, respectively, of 
[VM88]), which clearly rise with decreasing energy. 

To calculate analytically what effect FGM and HEGA broadening have upon a constant 
cross section, we first note that a constant cross section can be expressed as 

The function S needed for our formulation of FGM broadening (see Eq. (10)) is found to be 

S ( W )  = oo for W r O  
= -oo for W<O , 

so that Eq. (1 1) gives, for the FGM-broadened constant cross section, 

Replacing (T- V) / U by x gives 

[i.i 0 -v 

(x2 +2xv+v2) e - x 2  

0 0 1  

-V 1 

- x 2  I - Sdx ( x 2 + 2 x v + v 2 )  e 
-B 

- 1 + 1 1 dx (x2 + 2 x v + v 2 )  e -” 
-B -v 
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OD 0 

(2xv) e -” + 2 [dx (x2+2xv+v2) e -2 
-V 

4 v  Oo 0 200V2 O 

v 2 f i  -y v 2 f i  --y 

+ -  p d x  e - x 2  +------- [dx e -” 

in which we have replaced V/U by v. 

In the limit of small v, the quantity in Eq. (30) becomes 

- 0 ( P )  -+ Oo 1 -+-- 1 2  (v ty3) ]  -+ - 00 , [ f i v  2 v 2 f i  f i v  

so that the leading term is l/v; this is somewhat counterintuitive but is nevertheless observed in 
measured low-energy cross sections. For large values of v, the limiting case is 

Z ( V 2 )  - O o [  O i l X l ]  -* Oo , (32) 

Le., the broadened cross section is a constant, as expected. 

In contrast, HEGA broadening preserves a constant cross section everywhere: 
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that is, the Gaussian kernel is normalized to unity, as expected. This result, which may 
intuitively appear to be correct, is nevertheless unphysical. As discussed above, It is well known 
that measured (and therefore Doppler-broadened) cross sections exhibit llv behavior at very low 
energies. 

5. SUMMARY 

The free gas model of Doppler broadening appears to be a reasonable approximation for 
most solid samples for neutron energy above a few tens of eV, where solid state effects can be 
neglected. One of the problems is the determination of the effective temperature of the sample, 
which should be obtained from Lamb equation (LA39) relating the effective temperature to the 
Debye temperature and to the actual temperature of the sample. The Debye temperature is not 
always well known, and most experimenters have not monitored the sample temperature during 
measurement, particularly for measurements performed with samples at low temperature 
(e.g.,liquid nitrogen temperature). Consequently the effective temperature should be one of the 
variables to be determined in the fit; both SAMMY and REFIT permit this option. 

In this paper we have described comparisons, both theoretical and computational, of 
Doppler broadening using the “exact” free gas model vs. Doppler broadening using the 
customary high-energy Gaussian approximation. These comparisons indicate clearly that the 
approximate formulation does not provide an accurate representation of the exact free gas model, 
even for relatively high energies. While differences between the exact and the approximate 
models are generally small for physical resonances, nevertheless those differences do persist at 
all energies. 

Early codes for resonance analysis and evaluation generally used the Gaussian 
approximation, because the and x functions (results of the convolution of the Gaussian 
fhction and the Breit-Wigner shape of the resonances) were well known and tabulated (saving 
computer time and space). Today, more sophisticated (and more accurate) formalisms are used 
for the calculation of the cross sections; the and x functions cannot be used for the Doppler 
broadening with these formalisms. Hence, there is no longer any computational advantage to 
using the Gaussian approximation. 

Use of the approximate HEGA model (the high-energy Gaussian approximation) is 
therefore discouraged. 
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APPENDIX. POSITION OF PEAK OF 
DOPPLER-BROADENED CROSS SECTION 

The HEGA- and FGM-broadened cross sections for very narrow (delta-fiuzction) 
resonances were discussed in Sect. 3.1 of this report; exact expressions for the two quantities are 
shown in Eqs. (1 6) and (1 7) respectively. In this appendix we derive the expressions for the 
exact energy-value of the peak cross section, where “peak” is assumed to mean “highest value 
of the function.” This location OCCUTS at that energy (or, equivalently, that value of Y )  at which 
the derivative of the function is zero. 

For the HEGA cross section, the derivative of Eq. (1 6) with respect to “velocity” V is 
given by 

(V4 +2v2u2 - V,“) . - - OHEGA - 
2 v3 u2 

2 
LedHp = v~~ represent the position of the peak. Setting the derivative in Eq. (A.1) equal 
to zero gives 

vip +2ViPU2 - v; = 0 , 

which has the solution 

To simplify this equation a bit more, variable Xis defined as 

x =  u2/v; ; 
with this definition Eq. (A.3) takes the form 

YH = EHp/Vi = E,,/E, = JTX? - X  , 

in which YH is defined as the ratio shown. 
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For the FGM cross section, the derivative of Eq. (1 7) with respect to V is given by 

2 
Setting this to zero at the position of the peak ( E  = vFp ) gives 

FP 

u2 + vi, - VF. vo = 0 , 

which, for V, 2 4 U, has the solution 

v Fp = I ( v , + / ~ )  2 . 

Squaring this expression and using the definition ofXfi-om Eq. (A.4) give 

YF = EFp/ V, 2 = EFp/Eo = - 1 (1 + dmx)2  . 
4 

Functions Y,and Y, are plotted as the dashed and solid curves, respectively, in Fig. Al; 
note that the x-axis is directly proportional to temperature T. On this plot, the value Y = 1 
corresponds to the position of the unbroadened peak. For both versions of Doppler broadening, 
the position of the Doppler-broadened peak is lower than the position of the unbroadened peak; 
further, the position of the peak with FGM broadening is lower than that of the HEGA 
broadening. 

Calculations with REFIT involving the 6.7-eV resonance of U238 essentially substantiate 
this temperature-dependence of the peak position. The position of the peak at room temperature 
is approximately 40 meV higher than the position of the peak at 20 times room temperature. 
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Fig. A1 . Relative peak position for the Doppler-broadened delta-function cross 
section as a function of temperature. The solid curve shows the free gas model, 

and the dashed the high-energy Gaussian approximation. 
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