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ABSTRACT 

This report documents the technical bases for the new ASTM standard, E1921-97, “Test Method for the 

Determination of Reference Temperature, To, for Femtic Steels in the Transition Range.” Reference temperature, 

To, is the temperature at which the median static initiation fracture toughness for 1T specimens equals 

100 MPa 6 . Derivations are presented for the three-parameter Weibull statistical model of data scatter used in 

the standard. The basis for the observed existence of a common Master Curve of median fracture toughness for 

1T specimens versus normalized temperature is presented. Methods for dealing with uncertainty in To due to test 

temperatures less than To, and sample size, are explained. Test specifications and recommendations regarding 

stable crack growth, constraint, popins, and side-grooving are discussed. Experimental data supporting the 

procedures of E1921-97 are given for 26 different materials. Potential issues requiring further study for 

application of the standard are discussed. These issues include strain rate and high fluence effects, relation 

between Charpy temperature and To shifts due to embrittlement, low upper-shelf materials, local toughness 

variations of metallurgical origin, limits of the weakest-link hypothesis, use of the precracked Charpy specimen, 

and the use of surrogate materials in the absence of material-specific specimens. 

’ 

iii NU REWCR-5504 



1" 

I .  

. ' I  



CONTENTS 

... ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi 

... EXECUTIVE SUMMARY ............................................................. Xlll  

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix 

1. MASTER CURVE: THEORETICAL BASIS FOR SCATTER AND “SIZE EFFECT,” 
AND BACKGROUND OF TEMPERATURE DEPENDENCE ............................. 1-1 
1.1 Theoretical Basis for Master Curve Scatter and “Size Effect” . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1 

1 .l .  1 Unconditional Probability of Cleavage Initiation ................................ 1-5 
1.1.2 Conditional Cleavage Propagation ........................................... 1 - 10 
1.. 1.3 Lower Shelf Toughness .................................................... 1 - 16 
1.1.4 Conclusions ............................................................. 1-19 

1-2 1 
1.2.1 Background ............................................................. 1-21 
1.2.2 The Master Curve . . . . . . . . . . .  .- ............................................ 1 -24 

1.3 References .................................................................... 1-26 

2. EXPERIMENTAL CONFIRMATION OF THE MASTER CURVE APPROACH . . . . . . . . . . . . . .  2- 1 
2- 1 

2.2 Appendices Attached to the Method ................................................ 2-4 
2-6 

2.4 References .................................................................... 2-8 

1.2 Background of the Master Curve Temperature Dependence ............................. 

.“. 

2.1 Master Curve for Engineering Applications .......................................... 

2.3 Problems Associated with Low Upper-Shelf Materials ................................. 

3. TEST METHOD .................................................................. 3-1 
3.1 Specimen Designs ................................................... , 3-1 
3.2 Specimen Preparation ........................................................... 3-1 

3 -2 3.3 Alternate Measurement Locations ................................................. 
3.4 Test Temperature Estimation ..................................................... 3 -2 
3.5 Replicate Specimen Requirements ................................................. 3-3 

................................................................ 3-4 3.6 K,, Calculation 
3.7 SideGrooveEffects 3-5 
3.8 References 3-8 

. . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
.................................................................... 

4. VALIDITYREQUIREMENTS ...................................................... 4- 1 
4- 1 
4-6 
4-7 

4- 1 1 

4.1 Selection of a Numerical Value, M, for Controlling Constraint 

4.3 Impact of Low Upper-Shelf Materials on Establishment of Master Curve .................. 
4.4 Pop-ins 4-9 

.......................... 
4.2 Rationale for Setting Crack Growth Limits .......................................... 

...................................................................... 
4.5 References ..................................................................... 

V NUREGICR-5504 



5. MASTER CURVE PARAMETER ESTIMATION ....................................... 5- 1 
5.1 Applied Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5- 1 
5.2 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5- 1 
5.3 Small Sample Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 -2 
5.4 Least Squares Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-3 
5.5 Method of Maximum Likelihood (MML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-6 
5.6 References.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-13 

6. PRECISIONANDBIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6- 1 
6.1 Weibull Parameters ................................ ~ ............................ 6- 1 
6.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-5 

7.  CONSIDERATIONS FOR APPLICATIONS OF THE MASTER CURVE APPROACH . . . . . . . . .  7-1 
7.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-9 

APPENDIXA ....................................................................... A- 1 

APPENDIXB ....................................................................... B- 1 

APPENDIXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c- 1 

APPENDIXD ........................................................................ D- 1 

NUREGICR-5504 

~ ~~ 

vi 



FIGURES 

1 . I  An example of a cleavage fracture initiation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2 

1.2 Typical cleavage fracture surfaces for specimens with cracks .......................... 1-3 

1.3 Basis of the general statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3 

1.4 Probability tree for a single potential cleavage initiator in a reference volume element . . . . . .  1 -4 

1.5 Several independent volume elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-7 

1.6 Stress distribution in front of a crack showing definitions of he, 0, x and Ax . . . . . . . . . . . . .  1-8 

1.7 Steepness of stress distribution in front of crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 12 

1.8 Comparison of the different possible conditional propagation probability functions 
[Eqs. (1.18) and (1.20)] using A = 0.5 as the limiting propagation probability . . . . . . . . . . . . .  1-14 

1.9 Comparison of different possible cumulative failure probability expressions, 
Eqs. (1.21a) through (1.21d) . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-16 

1.10 Comparison of different possible cumulative failure probability expressions for 
lower shelf behavior, Eqs. (1.23a) to (1.23d) ....................................... 1-19 

1.1 1 Relation between fracture toughness and yield strength for unirradiated and 
irradiated material . . . . . . . . . . . . . . . .  : ........................................... 1-22 

1.12 Relation between fracture toughness and temperature for unirradiated and 
irradiated material ............................................................ 1-22 

1.13 Temperature dependence of yield strength for ferritic steels ........................... 1-23 

1.14 Relation between fracture toughness and thermal part of yield strength for 
unirradiated and irradiated material .............................................. 1-24 

1.15 . Fracture toughness “Master Curve” for ferritic steels and welds ........................ 1-25 

2.1 Correlation between To temperature and drop-weight NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-3 

2.2 Master curve positioned by To determined from precracked Charpy specimens . . . . . . . . . . . .  

Fracture toughness trends for size effect as predicted by weakest-link theory . . . . . . . . . . . . . .  

Illustration of the difficulties of proving the master curve with low upper-shelf steels . . . . . . .  

2-5 

2.3 2-6 

2.4 2-7 

2.5 Prediction of ductile instability K,, for a 1T C(T) specimen of a low upper-shelf steel. . . . . . .  2-7 

3.1 Data from side-groove study of Moreland .......................................... 3-7 

vii NUREGICR-5504 



3.2 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

6.1 

7.1 

7.2 

R-curves of a low upper-shelf weld metal, comparing straight-side and 
side-grooved specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-7 

Weibull plot of Kj, data obtained from precracked Charpy specimens of 
irradiated WF-70 weld metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4 

Weibull plot of Kj, data obtained from precracked Charpy specimens of 
as-received WF-70 weld metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-5 

Weibull plot of K,, data on A 36 steel ............................................. 

Range of valid data for two test specimen sizes, 1/2T and 4T .......................... 

4-5 

4-7 

Theoretical limitations on K,, data based on K, ductile instability behavior 
of low upper-shelf steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-8 

Effect of side grooving practice on the ductile tearing resistance of a 
low upper-shelf weld metal ..................................................... 4-8 

K,, at pop-in versus Kj, at full cleavage for irradiated compact specimens 
from the ORNL HSSI Fifth Irradiation Series. ...................................... 4-10 

Schematic of pop-in magnitude. Construction lines and are used to 
calculate crack advance ........................................................ 

Reliability of small sample data sets of size n, when expressed in cumulative 

4- 1 1 

probability coordinates ........................................................ 5-2 

Comparison of different estimates of median rank probability (lines) with 
binomial theory estimate (circles) ................................................ 5-5 

Comparison of mean and median bias corrections for maximum likelihood 
estimateofKO ............................................................... 5-9 

Confidence bounds of 5 and 95% for maximum likelihood estimate of KO 
expressed in terms of corrections to the calculated value of To ......................... 5-1 1 

Confidence bounds of 5 and 95% for maximum likelihood estimate of KO 
expressed in terms of corrections to the calculated value of To, for r = 6 . . . . . . . . . . . . . . . . . .  5-1 1 

Bias correction for maximum likelihood estimate of To ............................... 5-13 

Comparison of the distribution of Weibull slopes calculated from small data sets .......... 6- 1 
*, 

Comparison of fracture toughness data from shallow-cracked, biaxial specimen 
tests, a/W = 0.1, of Heat-Treated Plate 14 with master curve for the material, an 
associated estimated lower tolerance bound curve shifted for margin, and the ASME 
lower-boundK,,curve ......................................................... 7- 1 

Comparison of fracture toughness data from specimens of various sizes for an A533B, 
Class 1, steel with the ASME lower-bound KIc curve ................................ 7-2 

NU REGICR-5504 viii 



7.3 

7.4 

7.5 

7.6 

7.7 

A. 1 

A.2 

A.3 

A.4 

A.5 

A.6 

A.7 

A.8 

A.9 

A.10 

A.11 

Plot of RT,, versus To for various steels and weld metals, showing the uncertainty 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  in the relationship between the two parameters 7-3 

Experimentally determined values of To versus loading rate for A5 15 steel, and 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  values estimated by Barsom’s method 7-4 

Experimentally based values of To versus loading rate for A533B steel, and 
fitted line representing values estimated by Wallin’s method .......................... 7-6 

Comparison of fracture toughness data, adjusted to 1T specimen size, for several 
irradiated base and weld metals, with the master curve and its estimated 3 and 
97 percent tolerance bounds, showing that irradiation has no significant effect 
on the shape of the master curve or its tolerance bounds .............................. 7-6 

Comparison of the master curve based on data from precracked Charpy specimens 
of HSST Plate 02, and the associated estimated 5 and 95 percent tolerance 
bounds, with the ASME K,, database adjusted to 1 T specimen size ..................... 7-8 

ORNL HSST Plate 14A, A 533 grade B (heat treated) ................................ A-4 

ORNL HSST Plate 02, A 533 grade B ............................................ A-4 

ORNL HSSI Fifth Irradiation Series, submerged-arc Welds 72W and 73W . . . . . . . . . . . . . . .  A-5 

ORNL HSSI Fifth Irradiation Series, irradiated submerged-arc Welds 72W and 73W . . . . . . .  A-5 

ORNL HSSI Tenth Irradiation Series, Weld WF-70 (No. 1) and irradiated WF-70 (No. 1) . . .  A-6 

ORNL HSSI Tenth Irradiation Series, Weld WF-70 (No. 2) and irradiated WF-70 (No. 2) ... A-6 

ORNL HSST Plate 13A, A 533 grade B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-7 

GKSS Report 93m8 1,20MnMoNi55 and irradiated 20MnMoNi55 ..................... A-7 

Iwadate (ASTM STP 803, Vol. 11), A 508 class 3 .................................... A-8 

Sorem (WRC Bulletin 351), A 36 steel ............................................ A-8 

Morland [NRL-R-l006(R)], A 533 grade B class.1 .................................. A-9 

ix NUREGICR-5504 





TABLES 

1.1 

2.1 

3.1 

3.2 

3.3 

4.1 

4.2 

6.1 

6.2 

B. 1 

B.2 

B.3 

c. 1 

c.2 

c.3 

Relation between different possible cumulative failure probability parameters . . . . . . . . . . . . .  1-15 

Examples of reference temperatures, To, and predictions of To from 
nonfracture mechanics test methods .............................................. 2-2 

Monte Carlo simulation (1 00 trials; population, 50 1 T C(T) A 508 class 1 , three 
specimens; -1 00°C test temperature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-4 

Monte Carlo simulation (100 trials; population, 50 1T C(T) A 508 class 1, three 
specimens; -75 "C test temperature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-4 

Comparison of K,, (MPaJm) for 1T compact specimens with and without side grooves ..... 3-6 

Adjustments to Nevalainen-Dodds M,, values for single-edge-notched bend 
specimens(a/W=0.5) ......................................................... 4-2 

Examples of material yield strength and median n values ............................. 4-3 

Analysis of MPC/JSPS round-robin data by linear regression for best slope, 
maximum likelihood for KO and.To ............................................... 6-3 

Best slopes for data sets with 20 or more duplicate tests .............................. 6-4 

Table of coefficients from Eqs. (B.7) and (B.8) ..................................... B-5 

Tabulation of modifications for test temperatures that approach lower shelf . . . . . . . . . . . . . . .  B-8 

B-9 

c-3 

C-4 

C-4 

Precracked Charpy specimen requirements . . . .  : .................................... 

Ramburg Osgood work-hardening exponents, n ..................................... 

qp solutions for a/W = 0.5, W/B = 2 Ramburg Osgood work-hardening exponents, n ........ 

qp solutions for n = 10, variable a/W .............................................. 

xi N UREGICR-5504 





EXECUTIVE SUMMARY 

This project has been undertaken to provide both the theoretical basis and supporting data development that has 

made possible the development of the American Society for Testing and Materials (ASTM) E 192 1-97, Test 

Method for the Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range. There 

are seven chapters that have been subdivided between the three authors. Hence, the reader will occasionally find 

information duplicated among chapters. In spite of this, the general continuity of the document has been 

maintained. 

Chapter 1, Section 1. 1, develops the background theory using a weakest-link model to explain why ferritic steels 

have rather substantial data scatter when tested in the transition rhge. Statistical evaluations have indicated that 

the three-parameter Weibull model can be theoretically justified as the most correct one for fitting data scatter 

patterns that have been experimentally observed. The theory also supports the experimentally demonstrated 

observation that two of the three Weibull parameters can in fact be justified for use as deterministic parameters of 

the statistical model. 

Chapter 1, Section 1.2, describes the development of the master curve concept as originally proposed, namely, 

keyed to the scale parameter of the three-parameter Weibull model, KO. The rationale is presented that explains 

why the master curve shape tends to be relatively independent of material strength, and, as such, behaves as a 

universal curve for a wide range of steels and covers material-hardening mechanisms. As a result, the universal 

curve concept originally demonstrated experimentally is also defended in theory. 

Chapter 2 documents To reference temperatures determined for 26 steels of varying types and conditions of 

embrittlement. A number of these data sets were also documented with Charpy curves and/or drop-weight 

nil-ductility transition (NDT) temperatures, thus providing an opportunity to check some proposed correlations 

used in the method. One of these uses the Charpy transition curve to predict an optimum test temperature for 

1T size specimens, ostensibly near to temperature To. This comparison worked sufficiently well. NDT 

temperature to To temperature comparisons were made to check a postulate that NDT and To are close to being 

the same. The reality was that, of 15 comparisons, only six showed equal temperatures. Hence, the anticipated 

one-to-one correlation was not demonstrated. Along with this vanishes the possibility that To reference 

temperatures can simply replace reference temperature NDT (RTNDT) for placement of the American Society of 

Mechanical Engineers (ASME) lower-bound K,, curve. Because two of the three Weibull parameters are known 

a priori, standard deviation on data scatter can be directly calculated using gamma functions, the use of which is 

described in Appendix B. Tolerance bounds can be estimated without having to evaluate data scatter on a 

I 
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case-by-case basis. Tolerance bounds attach statistical significance to lower bounds placed on data scatter. 

However, in the use of To to set tolerance bounds, there is residual uncertainty that is carried along due to the fact 

that only six replicate tests are required to establish the To temperature. Margin adjustment can be added to 

lower-bound curves to cover this error potential. The description of tolerance bound curves and margin 

calculations is also covered in Appendix B. 

There can be problems in attempting to verify the existence of the universal master curve when using low 

upper-shelf materials. Material taken from a plate of normalized A 302 grade B steel provided an obvious 

example. The material had only 79-5 upper-shelf energy and the NDT temperature was 75 "C. The upper-shelf 

fracture toughness corresponding to ductile instability was 125 MPaJm, meaning that the temperature spread 

between To at 100 MPaJm and onset of upper-shelf behavior was too small to demonstrate conformance to the 

master curve shape. Data distributions at temperatures just above To were being truncated by ductile K,, 

instabilities, and median Kj, values determined from such data were considered to be in error. 

Chapter 3 explains the rationale used to arrive at certain test practice requirements. Specimen geometries 

recommended are only the types that have dominant bend stresses. Constraint is more easily controlled in this 

type of specimen. The precracking practice applied is more rigorously controlled than it is in other ASTM 

standard methods because warm prestress effects from precracking can easily bias transition-range data. Users of 

the method are urged to select a test temperature where Kjqrn4) = 100 MPadm. This represents an optimum test 

temperature choice for accuracy of To determination and a fracture toughness level where data loss due to 

invalidity problems are very unlikely to develop. If the investigator has no prior knowledge of what this optimum 

test temperature might be, a method is offered that uses the Charpy transition curve for assistance. 

Monte Carlo simulations were used to decide on the minimum number of replicate tests to be required. It was 

decided that six specimens would be the best compromise for acceptable accuracy while at the same time using 

the least number of specimens. It is accepted, however, that there will be residual error in To as a result. For 

critical applications, margin adjustment can be added to To using the expected standard deviation on To 

variability. 

J-integral is calculated at the point of onset of cleavage fracture. Measurement of slow-stable crack growth, A%, 

during a test is not required and, if crack growth has occurred, J is no? corrected for such growth. However, the 

post-test fracture surface is to be examined, and, if stable growth is found to be less than 0.05 bo, the correction to 

J is negligible. 
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Side grooving is an optional decision allowed by the method. If the recommended test temperature is used, side 

grooving will not alter K,, values. However, if the test temperature choice approaches the upper shelf, side 

grooving could become an issue. R-curve effects will develop, and side grooving affects an R-curve controlled 

path of fracture toughness development. 

Chapter 4 deals with the decision process that was applied to define specimen toughness measurement 

capabilities. Control of constraint is critical to accurate Weibull modeling of statistical distributions. The M value . 

used in the following equation is the controlling parameter used to set specimen toughness capacity limits: 

Three-dimensional finite-element (FE) analysis is used to find a minimum specimen size, controlled by the value 

of M, for which the finite body value of J required to attain a specified fracture criterion exceeds the small-scale 

yield value of J by no more than a certain percentage estimated stochastically. This approach has resulted in a 

suggested limit value of M = 50. Alternative considerations supported by experimental data suggested a less 

restrictive value of M = 30. The latter M value was selected to be used in the method for lack of experimental 

verification in support of the FE-derived M value. 

Crack popins are most commonly encountered in transition range tests, and a policy position on their 

significance relevant to K,, data distributions had to be decided. In addition, small jumps in load-displacement 

records have the potential of being caused by events other than a genuine burst of crack extension. The resolution 

made was that pop-in events have most likely happened when the effective crack size increase, calculated from 

the test record evidence, is greater than 0.01 bo. Larger test record discontinuities are regarded to be likely 

pop-ins, and fractographic proof is recommended. The crack initiation mechanism of a pop-in is identical to that 

of full-fracture events, and the initiation K,, is to be considered a part of the data distribution. 

Chapter 5 presents applied statistical theory to show the influence of sample size on the accuracy of data . 

population recognition and to demonstrate the rationale that was applied for selecting the maximum-likelihood 

data analysis method over the more commonly used rank method. 

I 

Confidence limits on rank order probabilities can be calculated using the binomial distribution function. This was 

applied to demonstrate why it is necessary to test at least 30 or more specimens to have even a reasonable 

I 

estimate of the true Weibull slope of a data population. 
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Scale parameter, KO, of the three-parameter Weibull model can be determined either by rank ordering of the data 

followed by least-squares fitting of the Weibull formatted data or by the maximum likelihood estimation method. 

The least-squares method suffers weakness from the use of rank probability estimates, Pd, and the fact that the 

methodology was originally intended to be used on symmetric distributions. In addition, data censoring can only 

be applied to the upper end of the data sampling. 

The maximum-likelihood method to determine KO has the advantage of not using rank probability estimates. Data 

censoring makes use of the survival distribution function, thereby allowing random data censoring. Hence, all test 

results, regardless of censoring rationale, provide usable statistical information. 

Clearly, from noting the shape of the master curve and assuming fixed proportional error in KO at all test 

temperatures will not ensure fixed uncertainty in To determination. Uncertainty depends upon the position along 

the master curve. Plots are presented with 5 and 95% confidence limits on ATo that demonstrate the potential for 

error. Test temperatures more than 50°C below the To temperature show severely degenerated accuracy of To 

determination. It is recommended that the best range to test is To f 50°C for least error in To. 

An expression is introduced showing how data from multiple test temperatures can be analyzed by maximum 

likelihood. Data censoring is incorporated. Since the unknown value of To cannot be isolated, the solution is 

made through an iterative process. 

Chapter 6 presents experimental data in support of the precision and bias statements in the method. With six 

duplicate tests, the median K,, value should be within 20% of the true median of the data population. To 

determinations are expected to be within 20°C of the true To value of the population. Note again, that with 

experimental data, small data samples cannot be expected to accurately represent the Weibull slope of the data 

population. 

i 
I 

Data from a Materials Properties Council/Japanese Society for the Promotion of Science round-robin activity 

were used to support the statistical assertions. Eighteen laboratories participated in this round robin, using A 508 

class 3 1T C(T) specimens, with sampling consisting of five specimens each. Although these tests were not 

controlled by ASTM E 1921-97, the results were usable in support of the method. 

In another study, 11 data sets were found for which 20 or more replicate tests were made. These data were 

evaluated for Weibull slopes; the lowest slope was 3 and the highest was 5.8. All were within a predicted 95% 

confidence band for 20 replicate tests. 
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Chapter 7 is a synopsis of the potential uses for the master curve concept; pointing out the verification work 

needed to make these uses acceptable. 

Two example cases are presented for which the ASME universal K,, lower-bound curve completely misrepresents 

the fracture mechanics transition range data. This is not so much a problem with the universal curve concept as it 

is a demonstration of the inadequacy of RT,, as a reference temperature. The master curve methodology, 

applied to individual materials, can substantially reduce such errors. However, both methods share the postulate 

that transition range fracture toughness follows a universal curve shape. The postulates associated with the 

master curve cover a much broader range of variables, some of which remain to be adequately proved. The 

following questions are raised: 

1. Will tests at high strain rates alter the shape of the master curve? 

2. Will irradiation to fluence levels above 1 x IOzo dcm2 alter the shape of the master curve? 

3. What is the relationship between the Charpy V-notch 41-5 ATT,,, shift from irradiation damage and the ATo 

shift? 

4. Is it safe to evaluate low upper-shelf materials by the master curve method? 

5. Can master curve methods be applied to the evaluation of materials that have through-thickness fracture 

toughness gradients? 

6. What are the limits on the weakest-link size effect relationship? 

7. Is the precracked Charpy specimen of viable fracture mechanics size for To determinations? 

The issue of testing surrogate materials and then using these properties to represent the properties of an 

ostensibly equally prepared material remains to be resolved. Here the refinement of the master curve 

methodology can be utilized in concert with adequately defined qualifying criteria. For generic representation on 

all heats of specific grades of steel plate, the precision advantage of the master curve concept would be wasted 

when metallurgical circumstances are not under sufficient control. 
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TECHNICAL BASIS FOR AN ASTM STANDARD ON DETERMINING 
THE REFERENCE TEMPERATURE, To, FOR FERRITIC STEELS 

IN THE TRANSITION RANGE 

1. MASTER CURVE: THEORETICAL BASIS FOR SCATTER AND “SIZE 

EFFECT,” AND BACKGROUND OF TEMPERATURE DEPENDENCE 

1.1 Theoretical Basis for Master Curve Scatter and “Size Effect” 

The different possible mechanisms of slip-induced cleavage fracture initiation have been well documented in the 

literature. Early work by McMahon and Cohen’ on low carbon steels containing grain boundary iron carbides 

illustrated the importance of carbide cracks as fracture nucleation sites in such materials, while a number of other 

investigators have similarly demonstrated that brittle carbides and/or inclusions, as well as grain sized micro- 

cracks, provide potent fracture nucleation sites in a variety of low carbon steels,’-’ ultralow carbon steels: 

euatectoid steels,’-9 and refractory metal’&’* body centered cubic systems. The experimental results in all of the 

studies listed reveal that fracture initiation, regardless of the site (i.e., carbide, inclusion, grain), appears to 

require some amount of plastic deformatiodstrain to locally nucleate the crack in such a region. While it is clear 

from various experimental investigations that some amount of local strain is necessary for crack nucleation, the 

local tensile fracture stress of the particle must be exceeded in order to start the process. In the case of cleavage 

fracture initiation from a carbide or inclusion, the magnitude of the critical local tensile stress required to provide 

the crack at the initiation site depends on the “strength” of the particle, which is a statistical quantity that depends 

on the size, shape, and characteristics of the particle, as well as any local residual stresses, as has been modeled 

by a variety of  investigator^.^"^-'^ An example of typical cleavage fracture initiation sources is presented 

schematically in Fig. 1.1. These are local stress that produces a dislocation pile-up, cracking of the carbides, and 

advancing microcracks that encounter the first large angle boundary. 
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The critical steps for cleavage fracture are: 

I. initiation of a microcrack, for example, fracturing of a second phase particle or grain boundary, 

II. propagation of this microcrack into the surrounding grains, and 

III. further propagation of the propagating microcrack into other adjacent grains. 
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Fig. 1.1. An example of a cleavage fracture initiation process. 

Depending on loading geometry, temperature, loading rate, and material, different steps are more likely to be 

most critical in the case of a crack. For structural steels at lower shelf temperatures, and ceramics, where the 

stress distribution near the crack tip is very steep, steps 11 and 111 (propagation) are more difficult than initiation 

and they tend to control the fracture toughness. At higher temperatures, where the steepness of the stress 

distribution is lower, propagation becomes easier in relation to initiation, and step I becomes more dominant in 

the fracture initiation process. The temperature region where step I dominates is the transition region. In a 

specimen with a fatigue crack, the number of initiation sites visible on the fracture surface (Fig. 1.2) varies with 

temperature. At lower shelf temperatures, numerous initiation sites are visible, whereas at higher temperatures, 

corresponding to the transition region, only one or two initiation sites are seen. In the case of notched or plain 

specimens, only a few initiation sites are seen even on the lower shelf. This is due to the fact that, for cracks, the 

peak stresses are very high virtually from the beginning of loading, whereas for notched and plain specimens, the 

peak stresses increase gradually during loading. Because no materials are fully uniform on a microscale, cleavage 

fracture initiation is a statistical event, and this fact has implications upon the macroscopic nature of brittle 

fracture. A statistical model is thus needed to describe the probability of cleavage fracture. 

The basis of a general statistical model is presented in Fig. 1.3.” It is assumed that the material in front of the 

crack contains a distribution of possible cleavage fracture initiation sites (Le., cleavage initiators). The 

probability for a single initiator being critical can be expressed as Pr{ I}, and it is a complex function of factors 

such as the initiator size distribution, stress, strain, grain size, temperature, and stress and strain rate. The shape 
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Region 
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Fig. 1.2. Typical cleavage fracture surfaces 
for specimens with cracks. Lower shelf 
conditions produce numerous initiation sites, 
whereas in the transition region, only one or two 
initiation sites are visible. 

and origin of the initiator distribution is not important in the case of a “sharp” crack. The only necessary 

assumption is that no global interaction occurs between initiators. This means that interactions on a local scale, in 

the region of the crack front, are permitted. Thus a cluster of cleavage initiators may be required for macroscopic 

initiation. As long as the cluster is local in nature, it can be interpreted as being a single initiator. All the above 

factors can be implemented into the initiator distribution and they are not significant as long as no attempt is 

made to determine the shape and specific nature of the distribution. 
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Cleavage Initiator 

Distribution 
Fig. 1.3. Basis of the general statistical model. 
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If a particle (or grain boundary) fails, but the broken particle is not capable of initiating cleavage fracture in the 

matrix, the particle-sized microcrack will blunt under additional load and a void eventually forms. Such a void is 

not considered able to initiate cleavage fracture. Thus the cleavage fracture initiator distribution is affected by the 

void formation, leading to a conditional probability for cleavage initiation (Pr{ YO}), the condition being that the 

cleavage initiator must not become a void. The cleavage fracture process also contains another conditional event 

(Le., that of propagation). An initiated cleavage crack must be able to propagate through the matrix in order to 

produce failure. Thus the conditional probability will be that of propagation after initiation (Pr{ PA}). 

The cleavage fracture initiation process can be expressed in the form of the probability tree in Fig. 1.4. 
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STRESS APPLIED 
TO MATERIAL ELEMENT , P r { o } q { V / o } l  , ~ , - P r { 1 . / 0 }  , 

NO INITIATION VOID INITIATION CLEAVAGE INITIATION 

PROPAGATION 
PYV/A} 7 , ‘E’ 

VOID FORMATION 

Fig. 1.4. Probability tree for a single potential cleavage initiator in a 
reference volume element. 

The probabilities of the different events are defined as follows: 

Pr{ I} = probability of cleavage initiation 

Pr{ V} = probability of void initiation 

Pr{ 0 )  = probability of “no event” 

Pr{ YO} = conditional probability of cleavage initiation (no prior void initiation) 

Pr{ V/O} = conditional probability of void initiation (no prior cleavage initiation) 

Pr{P/I} = conditional probability of propagation (in the event of cleavage initiation) 

Pr{ M }  = conditional probability of arrest (in the event of cleavage initiation) 

The following relations are clear from the probability tree: 

Pr{ 0} + Pr{ V/O} + Pr{ VO} = 1 (the sum of probabilities is unity) 
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and 

Pr{A/I } + Pr{P/I} = Pr{I/O} (the sum of propagation and arrest equals the conditional initiation probability). 

1.1.1 Unconditional Probability of Cleavage Initiation 

To simplify the derivations, it is first advisable to assume that no microcracks arrest, and to evaluate the 

cumulative failure probability as that of cleavage initiation, leaving consideration of propagation to a later stage 

when initiation is controlled by a single local initiator being critical, weakest link statistics are applicable for the 

process. 

Weakest link statistics indicate that at least one initiation is required for failure, and the cumulative probability of 

this initiation is equal to Pf = 1 - S,, where S, is the survival probability @e., the probability of no initiation). The 

cumulative failure probability for a volume element, with a uniform stress state, can thus be expressed as 

where N is the number of potential cleavage initiators in the volume element. 

The relation between the unconditional cleavage initiation probability Pr{ I} and the conditional cleavage 

initiation probability Pr{I/O}can be determined directly from Fig. 1.4. Since one of three outcomes must occur, 

Pr{O} + Pr{V/O} + Pr{I/O} = 1 . (1.2a) 

In Eq. (1.2a), the first term is an unconditional probability because no prior condition is specified, and the latter 

two terms are conditional probabilities because a previous condition is specified. It follows that 

1 - Pr{V/O} = Pr{O} + Pr{I/O} . (1.2b) 
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Then the fraction of all the defects that do not form voids but that undergo cleavage initiation, P{I}, is given by 

p Pr{I} . - Pr{I/O} Pr{ YO} - 
Pr{O} + Pr{I/O} 1 - Pr{V/O} 

(1.2c) 

Thus, 

Pr{I/O} = Pr{I} - (1 - Pr{V/O}) , (1.2d) 

which is the unconditional probability of cleavage initiation times the probability of not having void initiation. 

Eq. (1.2d) apparently makes a reliable estimation of the overall cleavage initiation probability more difficult. 

However, it will subsequently be shown that the problem is resolved for a sharp crack in small-scale yielding 

(SSY). 

Normally, the number of initiators in an individual volume element is not known exactly. However, since the 

initiators are assumed to be randomly distributed in the material, the numbers of initiators in a large collection of 

volume elements can be shown to follow a Poisson distribution. Accordingly, the probability P, of having N 

initiators in a volume element is 

- 
N N  . e - N  

PN = 
N! 

7 (1.3) 

where 

volume (R,) by 

is the mean number of initiators in a volume element, related to the mean number of initiators per unit 

= Nv - V. 

The cumulative cleavage initiation probability for a single volume element, in terms of the mean number of 

initiators, by means of substituting Eq. (1.2d) into Eq. (1. l), becomes 

(1.4a) 
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Then, by using Eq (1.3), 

(1.4b) 

Eq. (1.4b) looks complicated, but it can be simplified by making use of the exponential equation. By definition, 

the exponential equation can be expressed as 

Inserting Eq. (1 -5) into Eq. (1.4b) by setting x in Eq. (1.5) equal to the largest expression in brackets in Eq. (1.4b) 

yields the simple form 

(1.6a) 

or 

The previous derivation was for one volume element, but in the case of several (n) independent volume elements 

with varying sizes and stresses (Fig. 1 3 ,  the cumulative cleavage initiation probability is obtained by summing 
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Fig. 1.5. Several independent volume elements. 
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the effects of the potential initiators in all the volume elements, giving 

For a “sharp” crack in SSY, the stresses and strains are described by the HRR field.’8*19*20 One property of the 

HRR field is that the stress distribution retains proportionality (is self-similar) and another that the stresses have 

an angular dependence. The term “small-scale yielding (SSY)” is in this derivation used to describe the loading 

situation where the self-similarity of the stress field remains unaffected by loading. Thus the stress field can be 

divided into small fan-like elements, each with an angle increment A 0  (Fig. 1.6). In this case the cumulative 

cleavage initiation probability is written as 

P, = 1 - exp 
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Fig. 1.6. Stress distribution in front of a 
crack showing definitions of de, 8, x and Ax. 

where the dimension of the volume element in the x-direction, described by Ax, must clearly be larger than the 

initiator size (Ax > 1 . .  . 10 pm). The double summation indicates that the summation is performed over the whole 

cleavage fracture process zone, the radial limit of which is denoted by xp. The cleavage fracture process zone is 

essentially restricted to the region of high tensile stresses and plastic strains. For simplicity, the stress distribution 

is assumed to be uniform over the specimen thickness, B, (crack front length). Accounting for the thickness 

dependence of the stress distribution would only lead to the addition of a third summation over the thickness, in 
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slices, AB. As long as the thickness dependence of the stress distribution is independent of K, (SSY), the overall 

effect of the third summation does not affect the outcome of the derivation. 

Due to the self-similar properties of the sharp crack stress field, it is possible to normalize the distance with the 

stress intensity factor to produce a dimensionless description of the stress distribution 

When Eq. (1.9) is substituted into Eq. (1.8), the probability of cleavage initiation can be expressed in terms of K, 
and U: 

{ -~v .AU-U.s in(AO)-Pru,e(I}  . ( l  - Pru,e{V/O})} 

The value of the double summation in Eq. (1.10) is always negative and independent of K,. Thus the expression 

can be simply written as 

P, = 1 - e x p { - ~  - KP - constant} (1.lla) 

or 

P, = 1 - exp{-t. [ 2i4}, (1.llb) 

where Bo is a freely definable normalizing crack front length, K, is the scale parameter that corresponds to a 

cumulative initiation probability of Pf ='( 1 - e-') = 0.6320. 

The remarkable feature of the cumulative cleavage initiation probability distribution is that it is really 

independent of the local cleavage initiator distribution. This result contains no approximations. The only 

assumption is that the initiators are independent on a global scale. In other words, it is assumed that the volume 

elements act independently for a constant K,. Only if it is assumed that a certain fraction of the crack front must 
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experience critical initiations to cause macroscopic failure will the result differ from that of Eqs. (1.1 la) and 

(1.1 1 b). The result is valid only when the stresses inside the process zone are self-similar in nature, so that they 

can be described by a single parameter (e.g., IC,). The result is also applicable for other than SSY conditions, 

provided it is possible to transform the stress distribution to correspond to the SSY situation (KISSY = f{ K,}). 

Such an SSY correction is usually possible for cracks with a strong local tensile stress component. If the stress 

distributions inside the process zone are not self similar, Eqs. (1.1 la) and (1.1 lb) will not be correct. For such 

cases, Eq. (1.8) must be used, and subsequently some quite far-reaching assumptions regarding the local cleavage 

initiation probability must be made. 

1.1.2 Conditional Cleavage Propagation 

Equations. (1.1 la) and (1.1 1 b) imply that an infinitesimally small K, value leads to a finite failure probability. 

This is not true in reality. For very small K, values, the stress gradient becomes so steep that even if cleavage 

fracture can initiate, it cannot propagate into the surrounding and other adjacent grains,'thus causing a zone of 

arrested microcracks in front of the main crack.*, If propagation following initiation is very difficult, a stable type 

of fracture may evolve. This is an effect often seen with ceramics. The need for propagation leads to a 

conditional crack propagation criterion, causing a limiting kn value below which cleavage fracture is 

impossible. For structural steels in the lower shelf temperature range, the fracture toughness is controlled by the 

difficulty of propagation. 

Hence, on the lower shelf, initiation is not the only requirement for cleavage fracture, but additionally a 

conditional propagation requirement must be fulfilled. 

Figure 1.4 indicates that the probability of failure is governed by the probability of propagation following 

initiation at the same load. Thus the incremental probability of failure by propagation is the joint probability of 

initiation, between K, and K,+d K,, and the probability of propagation following initiation. In order to both take 

advantage of and preserve the exponential form of the cumulative probability equation, it is convenient to express 

the incremental probability of initiation as the fraction of all the surviving specimens in which initiation will 

occur between KI and K, + d K,, The resulting derivative is known as the hazard function, and is defined as 

1 d (Pf) h(K,) = - * - . 
1 - Pf dK, (1.12) 
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For the cumulative cleavage initiation probability, Eq. ( I .  1 lb), the hazard function is simply 

(1.13) 

When the hazard function for initiation is multiplied by the conditional probability of propagation (Pr{ P/I}) , the 

hazard function for failure is obtained as 

. _  4 * Kf 
hf(KI) = Pr{P/I} * (failure) . 

Bo 

Referring to Eq. (1.12), it can be seen that 

dln(1 - P,) 
h(KI) = - 

dK1 
Y 

so that, assuming a value of K,,,," below which propagation cannot occur, 

KI 

K,, 

P, = 1 - exp - h(K,)dK, . s 

(1.14) 

( 1.14a) 

(1.14b) 

Substituting Eq. (1.14) into Eq. (1.14b), the cumulative failure probability including propagation becomes2' 

(1.15) 

which still has the desired exponential form. 
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In order to apply Eq. (1.15), the conditional probability of propagation (Pr{P/I)) must be known in a functional 

form. Presently it is not possible to define a single specific function for Pr{P/I}, but some possible forms can be 

deduced from the stress distribution. If the probability of propagation is controlled by the steepness of the stress 

distribution, it will essentially be a function of the derivative of the HRR field (see Fig. 1.7).22 
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Fig. 1.7. Steepness of stress distribution in 
front of crack. 

The stress distribution can be expressed as 

1 2 -  

*YY - - [:] * f(0) , 

where N is the strain hardening exponent in the equation 

N 
---+[;) E -  0 . 
€ 0  (Jo 

After eliminating x by substitution from Eq. (1.16), the derivative of the stress distribution becomes thus 

(Jg2 do Y Y = -  f . 

(1.16) 

(1.17) 
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It is seen from Eq. (1.17) that the steepness of the stress distribution is a combined function of the stress, angular 

location, and the stress intensity factor. The stress and angular dependence can be selected independently of K,, 

thus leaving the probability of propagation to be a function of K,. If Pr{ PA} is only controlled by the steepness of 

the stress distribution, then it should be possible to formulate trial functions of (K1/K,,,,J that are likely to either 

overestimate or underestimate the true value of Pr(P/I). A high estimate can be obtained by choosing a 

cumulative probability function (cpf) for which the first derivative, which is the probability density function 

(pdf), has its peak at the left extreme of the curve. Using the same exponent as the exponent of K, in Eq. (1.17), 

one such expression for the cpf is 

I 

I 

(1.18a) 

A lower estimate can be obtained by choosing a cpf for which the pdf is the product of two factors, one 

increasing with K,, and the other decreasing with K,, thus producing an intermediate peak in the pdf curve. 

Formulating this function is simplified by making the second factor the first derivative of the argument of the 

first factor. Again, using the exponent of K, from Eq. (1.17), one such expression for the cpf is 

(1.18b) 

Consideration of another hypothesis is also worthwhile. Since Pr{P/I} is a measure of an instantaneous 

propagation rate with loading, it is possible that it is controlled by the changed steepness of the stress 

di~tribution:’~ 

(1.19) 

Eq. (1.19) implies two additional possible forms for Pr{ PA} [Eqs. (1.20a) and (1.20b)l. Using the same logic as 

forEqs. (1.18a) and (l.l8b), 

1-13 NUREWCR-5504 



3 

P/I} = A, 

I I 1 I I I I I I 
- A = 0.5 

and 

Pr4{P/I} = A, 

The possible forms of Pr(P/I) are presented graphically in Fig. 1.8. All the equations are functions growing from 

0 to A, where A is a number smaller than 1. The constant A reflects the finite probability of crack arrest even in a 

uniform stress field, due possibly to misorientation between the microcrack and the possible cleavage crack 

planes in the first microcracked grain, and the need for the microcrack to cross a grain boundary. 

0.5 
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h 
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\ 
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Fig. 1.8. Comparison of the different possible conditional propagation probability 
functions [Eqs. (1.18) and (1.20)] using A = 0.5 as the limiting propagation probability. 

Ki/Kmin 

(1.20a) 

I 

(1.20b) 
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When Eqs. (1.1 8) and (1.20) are inserted into Eq. (1.15), the following possible forms for the total cumulative 

failure probability are obtained: 

P, = 1 - exp . ('1 - Kmin4)4 

(1 -2 1 a) 

( 1 -2 1 b) 

(1.21c) 

(1.21d) 

The equations are compared graphically in Fig. 1.9, where K,,,,n refers to I(rmn4, by means of plotting numerically 

normalized curves for each equation, with all four normalized curves required to pass through the point at which 

K, I K,,,,& = 5 with the same ordinate and the same slope. Experimentally it is virtually impossible (it would 

require more than 1000 tests) to measure differences in the four expressions. They start clearly to deviate from 

each other only at very low cumulative probability values. The expression producing the most conservative (ie., 

the lowest) estimate for the minimum fracture toughness is Pf4. The expression for Pf4 is also the expression 

already in general use as a modification of Eq. (1.1 1 b). 

The individual parameter values used in Fig. 1.9 are presented in Table 1.1. The table essentially confirms the 

trends seen in Fig. 1.9. The expression P,, is essentially identical with Pn, P, is essentially identical with Pf4, and 

P, yields the most conservative estimate of I(rmn. For engineering safety assessment purposes it is clearly 

advisable to use Pf4 to describe the cumulative failure probability. 

Table 1.1. Relation between different possible cumulative 
failure Drobabilitv Darameters 

Pf, AJA, = 0.66 I ( m i n , L 4  = 2.28 
ptl A21A4 = 0.90 kin& = 1.20 

Pf4 A41A4 = 1 Icnud/I(mm4 = 1 

PI3 AJA, = 0.60 I(min3/I(rmn4 = 2.48 
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Fig. 1.9. Comparison of different possible cumulative failure probability expressions, 
Eqs. (1.21a) through (1.21d). The expressions are plotted against a normalized form of P,, 
using KJJCmh4 = 5 and A4 = 1. 

1.1.3 Lower Shelf Toughness 

The above derivations are based on the assumption that the probability of cleavage initiation is less than unity.22 

This is normal for configurations like plain and notched specimens and cracked specimens in cases where 

initiation is sufficiently difficult. For material conditions where initiation is simple, the probability of cleavage 

initiation in the case of a crack may become unity. This can occur on the so called “lower shelf’ of the material. 

Essentially it means that all possible initiation sites are activated and initiation occurs as soon as the crack is 

loaded, making the initiation event independent of the load level (and subsequently independent of specimen 

thickness). Thus, for cracked configurations, the lower shelf toughness may be controlled entirely by the 

probability of propagation. For plain and notched configurations, however, the probability of initiation will still 

be a function of load level even on the lower shelf. Therefore, a simple correlation between notched and cracked 

configurations may not be possible for the lower shelf material conditions. 

As previously stated, in the discussion of Eqs. (1.14), (1.14a), and (1.14b), the conditional probability of 

propagation (Pr{ PA}) is related to the hazard function for failure. However, Pr{ PA} does not as such constitute a 
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hazard function because the hazard function (like the incremental distribution) must have the units of l/KI. Let it 

be assumed that the probability of initiation with no prior event is given by 

Pi = 1 - exp [ -4 . (1.21e) 

Then, by using the definition of the hazard function given by Eq. (1.14a), the hazard function for initiation is 

.given by 

1 

hi(KI) = 2 . 
‘e 

(1.21f) 

Multiplying the hazard function for initiation by the conditional probability of propagation, Pr{ P/I}, the hazard 

function for failure is 

Therefore, substitution of the normalization parameter 1/K, in the place of the constant A, and using the same 

trial functions used in Eqs. (1.18 and 1.20), logical forms for the hazard function of propagation alone become 

(1.22a) 

(1.22b) 
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The corresponding cumulative failure probabilities are 

- KI + - %in1 - 211 
Krninl K l  

(1.22c) 

( 1.22d) 

( 1.23a) 

P,,, = 1 - exp [ - K3 - 

- P,,, - 1 - exp 

(1.23~) 

(1.23d) 1 .  
Eqs. (1.23a) through (1.23d) are compared in graphic form in Fig. 1.10 for an imaginary lower shelf data set with 

a median fracture toughness of approximately 40 (units not specified). The same trend as before for the initiation 

+ propagation case is seen. The expression PflU is essentially identical with PnU, P,, is essentially identical 

with Pf4,, and Pf4, yields the most conservative estimate of kn, which is about 20. The expressions PflU and 
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Fig. 1.10. Comparison of different possible cumulative failure probability expressions 
for lower shelf behavior, Eqs. (1.23a) through (1.23d). 

PnLs appear unrealistic in shape compared to existing lower shelf data. Expression P,, appears, intuitively, from 

the stress distribution point of view to be most likely the correct one, but the expression PfdLs is almost identical 

in shape and slightly more conservative. Additionally, the form of P, (for initiation + propagation) is very 

suitable for statistical estimation because it is identical to a simple three-parameter Weibull distribution with a 

fixed shape (exponent = 4). Thus, Pf4 and Pf4Ls are selected as the basis for the master curve scatter and size 

effect. 

I 

1.1.4 Conclusions 

The master curve scatter in the case of initiation + propagation is described best by Eq. (1.21d), which can be 

reformulated in the form of a three-parameter Weibull expression with the exponent fixed to 4: 
I 

P, = 1 - exp (1.24) 
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K,, equals the load level corresponding to a 63.2 9% cumulative failure probability, Bo is a freely selected 

normalizing thickness, e.g., 25 mm and kn is the lower limiting fracture toughness corresponding to zero 

probability of failure. 

By writing Eq. (1.24) for two different specimen sizes and equating the values of P,, the size effect, implied by 

Eq. (1.24), takes the form 

(1.25) 

The theory implicit in Eq. (1.22) predicts that the size effect described by Eq. (1.25) disappears in the lower shelf 

toughness range, and also that the scatter changes (compare Figs. 1.9 and 1 .lo) somewhat. On the lower shelf, the 

cumulative failure probability is described by Eq. (1.23d), which is of a somewhat more complex form than 

Eq. (1.24). Unfortunately, the derivation is incapable of predicting when the lower shelf prevails, thus making it 

difficult to decide when to use Eq. (1.24) and when to use Eq. (1.23d). Experimentally the problem can be 

addressed by performing tests in both regions. From an engineering assessment point of view, however, a 

conservative estimate is obtained with Eq. (1.24) also on the lower shelf. 

When cleavage fracture is governed by initiation rather than propagation, the resulting equations contain no 

mathematical approximations, although their derivations employ several assumed mathematical representations 

of physical behavior that are deemed to be reasonable in the absence of adequate experimental data. The main 

assumption is that the initiators are independent on a global scale. In other words, it is assumed that the volume 

elements that represent the material ahead of the crack tip are independent for a constant KI. Only if it is assumed 

that a certain fraction of the crack front must experience critical initiations to cause macroscopic failure will the 

result differ from what is presented here. The only other restriction comes from the demand that the volume 

elements in the x-direction must be clearly larger than the initiator size, but this demand is valid only for the 

transition region where it is easily fulfilled. On the lower shelf, initiation is automatic and does not depend on the 

volume element size. 

In the case of crack propagation, the mathematical models contain more uncertainty, but in this case, a 

conservative result has been chosen. 

In the derivation, the cleavage fracture process zone was assumed to be equal to the region of high stresses and 

plastic strain. However, the result is not sensitive to the definition of the process zone as long as it is assumed 
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that the stress and strain distributions inside the process zone scale with IS,, CTOD or J. This aspect becomes 

important when examining the effect of large-scale yielding and ductile tearing. 

1.2 Background of the Master Curve Temperature Dependence 

The foregoing modeling of data scatter and size adjustment do not as such lead to a prediction of the temperature 

dependence of cleavage fracture toughness. This would require a more detailed mechanistic description of the 

initiation and propagation mechanisms, and so far, such a detailed description does not exist. Thus the 

temperature dependence associated with the master curve approach is empirical in nature and should therefore be 

regarded as an approximative d e ~ c r i p t i o n . ~ ~ . ~ ~  

1.2.1 Background 

Two models claiming to predict the temperature dependence of cleavage fracture toughness are the RKR-model 

(Ritchie, Knott & Rice)2s and the Beremin model (known as the local 

assume a constant cleavage fracture stress (oC, a,) and the temperature dependence arises solely from the 

temperature dependence of the yield strength. Both models thus predict an inverse dependence between fracture 

toughness and yield strength: 

Both models essentially 

(1.25) 

For a moderately strain-hardening material (n = 10) with a cumulative probability curve of the fracture stress 

parameter (ac, a,) characterized by a Weibull slope of 22, both models yield c = 4.5. 

The models were originally developed for materials with the ductile-to-brittle transition occurring at low 

temperatures, where the change in yield strength with temperature was considerable. However, for more brittle 

materials, where the ductile-to-brittle transition occurs at or above room temperature, the models are unable to 

predict the temperature dependence cqrrectly. This can well be seen with the following examples. Fig. 1.1 1 

shows fracture toughness results for an A533B C1.l steel (JRQ)28 in both unirradiated and irradiated conditions. 

The unirradiated data are seen to follow approximately an inverse relationship with the yield strength (c = 5 3 ,  

but the irradiated data are seen to have a much steeper slope, something not predicted by the models. The picture 

becomes even more interesting, when the fracture data are plotted against temperature (Fig. 1.12). 
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Figure 1.12 shows that for both material states the temperature dependence of fracture toughness is essentially 

the same. A possible explanation for the behavior shown in Figs. 1.1 1 and 1.12 can be deduced from a further 

analysis of the yield strength. Normally, the yield strength is divided into a thermal and an athermal part. The 

athermal part is connected to the strengthening effect of grain boundaries and precipitates, whereas the thermal 

part is more connected to the dislocation mobility in the matrix. The thermal part of the yield strength appears to 

be quite insensitive to material composition or irradiation, as shown in Fig. 1.13, where data for three materials2* 

are fitted to a decaying exponential expression. The constant inside the exponent is connected to the activation 

energy of dislocation mobility. It appears, that for materials with a ferritic matrix, the dislocation mobility in the 

matrix controls the temperature dependence of yield strength. 

If the fracture toughness data in Fig. 1.1 1 are replotted against only the thermal part of yield strength, a dramatic 

change is seen (Fig. 1.14). Both material states are described by straight lines of identical slope, even though the 

locations of the lines are different. 
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Fig. 1.13. Temperature dependence of yield strength for ferritic steels. Thermal part of 
yield strength is given for three pressure vessel steels in both unirradiated and irradiated 
conditions. 
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Fig. 1.14. Relation between fracture toughness and thermal part of yield strength for 
unirradiated and irradiated material. 

The above result leads to the following postulate: The temperature dependence of cleavage fracture toughness is 

mainly controlled by the thermal part of the material's yield strength, whereas the position on the temperature 

scale is more controlled by the a thermal part of the yield strength. 

The above postulate provides the basic theory for a unified description of the fracture toughness temperature 

dependence for ferritic steels, and the master curve was developed. 

1.2.2 The Master Curve 

To develop the empirical master curve, a large number of data sets were selected. Sinc fracture toughn ss t stin 

of nuclear-grade pressure vessel steels is most common, understandably most of the data sets used corresponded 

to nuclear-grade pressure vessel steels and welds. The data were analyzed with the master curve size adjustment 

and scatter expressions, applying a maximum-likelihood estimate algorithm. For each temperature, where more 

than three test results were available, the fracture toughness corresponding to a 63.2 9i cumulative failure 

probability (b) was determined (adjusted to correspond to 25-mm crack front length). It was decided to describe 

the temperature dependence with an exponential equation, normalized with the temperature at which the median 

- 1  
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(practically the same as the mean) fracture toughness for a 25-mm crack front length is 100 MPadm. This 

corresponds to a K, of 108 MPaJm at To. The equation thus had the following form: 

K,, = a + (108 - a) - exp{c - (T - To)} . (1.26) 

The parameters a and c are fitted so as to yield the best fit for all the different materials. The thus-obtained, 

“original” master curve is presented in Fig. 1.15.** 

The materials consisted of two weld metals (72W & 73W) in both the unirradiated and irradiated conditions, four 

sets of A533B C1.l steel (including the original “million dollar” KIc data set (HSST02) used to develop the 

original ASME KIc reference fracture toughness curve), an Eastern European pressure vessel steel 

(IOMnNi2Mo), and a modified A508 C1.2 steel (PTSE-2) with a low CVN upper shelf energy (60 J) and a low 

yield strength (280 MPa). 
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Fig. 1.15. Fracture toughness “Master Curve” for ferritic steels and welds. Original data 
used to develop the master curve. 
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The obtained expression has subsequently been verified to give an adequate description of the cleavage fracture 

toughness temperature dependence for a large variety of both pressure vessel steels and normal structural steels 

(and weldments) with yield strengths ranging from 280 to 1100 MPa.29-32 It seems (based on experimental 

evidence) valid even for ferritic stainless 

usually found to be caused by loss of constraint and ductile crack growth effects. It is, however, recognized that 

the master curve temperature dependence is empirical in nature and that small deviations from it can be expected 

in isolated cases. As an additional detail, it can be noted that the temperature dependence curves in Fig. 1.12 are 

based on the master curve. In principle, it is possible to develop material specific temperature dependencies, but 

this would require testing on the order of 100 identical specimens. 

Deviations from the master curve temperature dependence are 

Since the postulate behind the master curve temperature dependence is related to thermal behavior, it is not 

expected to be accurate on the lower shelf, where the fracture toughness is unaffected by thermal aspects. Thus 

extrapolation of the master curve toward lower shelf temperatures should be avoided unless experimental data 

related to these temperatures is available. 
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2. EXPERIMENTAL CONFIRMATION OF THE 

MASTER CURVE APPROACH 

The test method for the determination of To, ASTM method E 192 1-97, is desiped to provide a suitable 

compromise between the fewest number of specimens required while at the same time having acceptable 

accuracy of the reference temperature determination. The recommended method has been tested on fracture 

toughness data obtained from a number of sources, and a list of To values accumulated is given in Table 2.1. The 

data sources are partially identified in the table. It is prudent to point out that most of the fracture toughness data 

had been developed without access to a standardized test practice, so there is some measure of uncertainty in 

comparing results between laboratories. The criterion applied for acceptance of data in the present case was 

evidence of appropriate elastic-plastic analyses and sufficient data replication to reasonably conform to the 

requirements of the standard method. Most of the steels evaluated were commercially produced. In a few cases, 

there had been supplemental heat treatments or irradiation conditions applied. 

As an exercise, when Charpy V-notch (CVN) transition curves were reported, the temperatures of 28-J energy 

were used to make estimates of a test temperature that yields a median K,, of 100 MPaJm for 1T compact 

specimens.' The test temperature estimate is thus for To. This estimation scheme is discussed in Section 3. 

Another potential relationship to consider is that between To and the drop-weight, DWNDT, reference temperature 

used in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code.' Figure 2.1 

displays the result of this attempted correlation. The evidence to claim a correlation is weak at best and the 

reason for this, in all probability, resides with the DW,, temperature. Drop weight specimens have a brittle weld 

crack starter bead, and this, coupled with the impact loading effect, creates an uncertain result. Interlaboratory 

welding practices can alter heat-affected zone properties that in turn disrupt the reproducibility of the method. 

Despite the serious deficiencies of the two empirical methods (CVN and DWNDT), both tend to show conservative 

bias in transition temperature compared to the more accurate To temperature. 

I 

I 

2.1 Master Curve for Engineering Applications la 

Although the stated purpose of the standard method has been defined as the determination of temperature To, the 

last few paragraphs in the standard method introduce the master curve concept as an engineering application for 

temperature To. The master curve can be used to more accurately establish the fracture mechanics-based 

transition temperature toughness of  material^.^ Note specifically in E192 1-97, Paragraphs 10.3 (establishment of 

a transition temperature curve; master curve) and 10.4 (uses for master curve). The procedure for setting up the 
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Table 2.1. Examples of reference temperatures, To, and predictions of To from nonfracture mechanics test methods 
F 
0 
?J 

Strength 
Material Reference 

0"s OUTS 

CVN Drop-weight 
To T,,, - 18°C NDT 

Normalized A302B 534 
Modified A302B (27) 476 
SNUPPS weld 528 
A533B Plate 14A 650 
A533B Plate 02 476 
A553B Weld 72W 498 
A533B Weld 73W 490 
A533B welds, irradiated 630 
A508 class 2 weld (beltline) 512 
A508 class 2 weld (nozzle) 545 
A508 class 2 weld, irradiated (beltline) 646 
A508 class 2 weld, irradiated (nozzle) 701 
A533B HSST Plate 13A 444 
A533B Morland 470 
20MnMoNi55 450 
20MnMoNi55 irradiated 586 
CrMoV 660 
A36 250 
A508 class 3 480 
A470 class 6" 767 
A508 class 3 456 
A508 class 2 44 1 
A553B heat treated 538 
SM4 I C 304 
NiCrMo 745 
A508 class 2 heat treated 670 

689 
638 
652 
820 
628 
606 
599 
730 
613 
655 
747 
79 1 
600 
620 
610 

802 
455 
635 
870 
599 

607 
46 I 
812 
800 

- 

- 

ORNL unpublished data 

ORNL HSST 
ORNL heat-treated plate 

STP 1046, Vol. 2 
STP 1046, Vol. 2 

NUREG/CR-6426 

NUREG/CR-4092 

NUREG/CR-59 13 
NUREG/CR-6249 
NUREG/CR-6249 
ORNL/NRC/LTR-95/ I 8 
ORNL/NRC/LTR-95/ I 8 
NUREG/CR-5788 
NRL-Risley I006(R) 
GKSS 93/E/81 
GKSS 93/E/8 I 
GKSS 93/E/8 I 
Sorem et al., WRC Bulletin 35 I 
Iwadate et at., STP 803, Vol. I1 
Iwadate et al., STP 803, Vol. I1 

Macdonald, STP 1 I 14 
Link, STP 1244 
Ando, Fatigue & Fracture Eng. Mat. Str. 
Ando, Fatigue & Fracture Eng. Mat. Str. 

MPC/JSPS-RR, STP I207 

NUREG/CR-4249, TSP-3 

69 
-87 
-62 
-44 
-23 
-59 
-62 

37 
-5 8 
-32 

27 
62 

-70 
-92 

-123 
-68 

60 
-3 8 
-45  
-63 

-106 
-46 
-55 

-123 
-54 
-20 

68.4 
-67 
-67 
-20 
-28 
-62 
-69 

6 
-44 
-44 
47 
40 

-56 
-87 
-89 
-3 8 

-10 
-49 
-63 

- 

- 
- 

-28 
- 
- 

0 

65 
-26 
-59 
40 

-18 
-23 
-34 

46 
-55 
-50 
- 
- 
-23 
-15 
- 
- 
- 
- 
- 
- 

-30 

4 
- 

- 
- 

30 

'No specimen size adjustment. 
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Fig. 2.1. Correlation between To temperature and drop-weight NDT. 

master curve is explicit and as such it can be justified for inclusion in the mandatory steps part of the standard. 

The postulate applied is that one (to temperature normalized) universal transition range curve exists that applies 

to all ferritic and pearlitic type structural steels. 

The concept that there is a single transition range curve shape is not new. The ASME Code has used the concept 

of a universal curve for more than 25 years in the form of the lower-bound K,c curve (Section XI) and 

lower-bound K, (K,) curve (Sections III and XI)?' The master curve represents a significant technological 

improvement to both of the presently used ASME lower-bound curves from several standpoints: (1) the specimen 

size requirements for data validity are modest in comparison to the size requirements established for validity of 

K,, and K ,  (2) data scatter in K,, is accepted as a natural outcome of material variability at the microstructural 

level that can be quantified using weakest-link type statistics, and (3) the data scatter distributions are modeled 

enabling greater accuracy in positioning of the transition range and enabling the setting of tolerance bounds on 

data scatter with appropriately established statistical significance. The reference temperature, To, is established 

by fracture mechanics-based testing of materials, not through inference using indirectly related empirical test 

met hods. 
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The master curve applies to Kj, data obtained from 1T size specimens or alternatively K,, data from specimens of 

other sizes where the values are size corrected to 1T equivalence. The following equation mathematically defines 

the master curve, corresponding to 50% cumulative failure probability, 

KJdrned) = 30 + 70 exp[O.O19(T - To)] MPaJm . 

The test temperature is T ("C), and To ("C), is used as the material-specific reference temperature. Master curves 

for about 16 of the cases listed in Table 2.1 are presented in Appendix A. Each curve is positioned by the 

tabulated To values. The data points that appear along with the master curve are median values, Kjc(md), obtained 

from multiple tests that were made at the various temperatures, all normalized to To. Data points that do not lie on 

the master curve visually indicate the offset of To that would be calculated from that data set. Excessive 

deviations from the master curve trend would be a matter for concern, calling for evaluation modifications as 

deemed necessary. 

2.2 Appendices Attached to the Method 

There are three appendices attached to the standard method that are added as nonmandatory suppiemental 

information. These represent instructional material provided for special applications in research and design 

matters. As an example, Appendix X3.0 of the standard instructs on setting tolerance bounds and making 

adjustments to tolerance bounds. Appendix B of this report demonstrates how the standard deviation on data 

scatter had been derived and on how the coefficients used in the tolerance bound equations had been developed. 1 

i 
Margins are attached with considerable latitude allowed in the form of confidence level selection. Use of margin 

adjustment is advisable in engineering applications since lower tolerance bounds are set using only a few data. 

Margin takes care of the uncertainty in the temperature To when only the minimum recommended six specimens 

are used. The following standard deviation on To has been determined semiempirically:' 1 

(JTO = p / J N  

When the test temperature is nominally within 15°C of temperature To, the coefficient, p, is 18°C. When tests are ! 

made at temperatures more than 15 " below To, then p is adjusted to sustain margin adjustment equivalence as the 

lower bound of the transition range is approached. The alternate values of p are listed in Appendix X3.0 of the 

standard as a function of 
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An example of the use of the master curve to establish a lower-bound curve on data scatter using only a few 

precracked Charpy specimens is shown in Fig. 2.2.6 Seven precracked Charpy specimens of Heavy-Section Steel 

Technology (HSST) Program Plate 02 were tested at -50°C; about 25°C below the To temperature. The Charpy 

data shown had been converted to IT equivalence. The dashed curve shown is the 2% tolerance bound curve on 

the master curve after a margin adjustment of 10°C for the seven specimens tested and for a selected 85% 

confidence level on the To uncertainty estimate. The data for the large compact specimens were HSST Plate 02 

data obtained from Ref. 7. This particular data bank is the one that had been used to establish the ASME 

lower-bound K,, curve. The Plate 02 portion of these data had virtually dictated the shape and position of the 

ASME lower-bound K,, curve. However, the ASME data plotted in Fig. 2.2 were not size-adjusted to 

1T equivalence and it is notable that even with specimens up to 10T size, there are no fracture toughness data 

below the master curve 2% tolerance bound for 1T specimens. Evidently, the implication from this observation is 

that the weakest-link model must have only a moderate size effect on lower tolerance bound curves' (see 

Fig. 2.3). Even though the master curve median fracture toughness trend shows obvious sensitivity to specimen 

size effect, the three lower the tolerance bound curves at 5,3, and 1 percent cumulative probability show very 

little size dependence. Note that this plot is specific to tests made at To temperature. 
1 
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Fig. 2.2. Master curve positioned by To determined from precracked Charpy specimens. 
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Thickness. mm 

Fig. 2.3. Fracture toughness trends for size effect as predicted by weakest-link theory. 

Weakest-Link Size Effect at T = To 
- 

2.3 Problems Associated with Low Upper-Shelf Materials 

The master curve concept has been developed by observing the characteristics of typical commercial steels that 

have reasonably suitable upper-shelf fracture toughness. In addition, the evidence gathered regarding specimen 

side grooving showed no particular effect on K,,, at least through most of the transition range.g However, it is I 
I 

now known that certain materials of low upper-shelf toughness (as indexed by Charpy transition curve), can 

generate deceptive master curve information. Low upper-shelf CVN toughness automatically implies low ductile 

tearing resistance as measured by the KR curve. Hence, the well-known influence of side grooving practice on K, 

curve toughness development will tend to show up in Kjc data even before upper-shelf temperatures are reached. 

K,, distributions developed at temperatures between To and the upper shelf can be top-end truncated by ductile 

instabilities. 

4 

d 
Figure 2.4 shows KJ, data developed on a brittle low upper-shelf plate of A 302 grade B steel. The CVN 41-5 

temperature is 105°C and upper-shelf CVN energy is 79 J. Drop-weight NDT temperature is about 75°C. The KR 
curve developed on this material along with a crack drive curve for a IT compact specimen is shown in Fig. 2.5. 

Tangency between the two curves indicates that the maximum K,, value for the material when tested as a 1T 
specimen is about 125 MPaJm. Hence, it is impossible for this low upper-shelf material to have a typical Weibull 
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Fig. 2.4. Illustration of the difficulties of proving the master curve with low upper-shelf 
steels. 
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data distribution at temperatures that are only moderately above To. As a consequence, median K,, values cannot 

track the master curve fracture toughness at temperatures slightly above To. 
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3. TEST METHOD 

3.1 Specimen Designs 

The three specimen designs recommended are (1) the’ standard compact specimen, including all variations 

described in other American Society for Testing and Materials (ASTM) standards, (2) the three-point bend bar 

with two cross-section options, and (3) the disk-shaped compact specimen. For all compact specimen designs, the 

half-height-to-width ratio, WW, is maintained fixed at 0.6, and the thickness-to-width ratio, B/W, is fixed at 0.5. 

Two alternative thickness-to-width ratios are allowed for bend bars: B/W = 0.5 and B/W = 1.0. The span-to- 

width ratio for all bend bars is fixed at S / W  = 4. 

Despite the fact that several recent ASTM test methods have been modified to allow an expanded range of usable 

crack aspect ratios, a/W, the present standard retains the traditional 0.45 s a/W I 0.55 for specific reasons. In this 

case, setting the aspect ratio at nominally 0.5 satisfies two needs. First, it maximizes the initial remaining 

ligament size to maximize the toughness measuring capacity of the specimen prior to constraint loss. Second, it 

provides a square initial remaining ligament for maximized constraint control. In addition, the basic specimen 

designs all have dominant bending stress fields, which also benefit constraint control. Specimens that have 

dominant tension stress fields such as double-edge-notched tension panels, center-cracked tension panels, and 

surface-cracked tension panels, lack efficiency of constraint control and, as a consequence, such specimens are 

not recommended for use in transition range fracture toughness evaluations. 

3.2 Specimen Preparation 

The procedures for specimen preparation are not different from a machining tolerance standpoint than those used 

in other ASTM fracture mechanics-based standards. However, the precracking practice is far more precisely 

specified in the present method because it is important to prevent warm prestressing in the specimen precracking 

process. This is a special concern because tests, for the most p k ,  are performed at temperatures much lower than 

the precracking temperature. Also taken into account is that kn = 20 MPaJm is an experimentally proven 

lower-bound value of K,c, obtainable in tests made at extremely low temperatures. Finish sharpening of the 

fatigue precrack must be conducted sufficiently below K,,.,,”. 
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3.3 Alternate Measurement Locations 

Because the J-integral is a fracture toughness value inferred from work done on specimens, it is preferable to 

measure load versus load point displacement in tests. However, in some cases, load point displacement 

measurements are not conveniently obtained and displacement measured at other locations can be substituted, 

provided the computational practices are appropriately modified. In the case of three-point loaded bend bars 

where the crack mouth opening displacement is measured, finite-element (FE) solutions can be used to develop 

measurement location-specific qp values. A comparison is made between three independent FE determinations in 

Appendix C. These solutions have indicated that there is very limited sensitivity of qp values to material work 

hardening property, n. However, crack aspect ratio introduces variability into crack mouth qp. On the other hand, 

when load point displacement is used, the qp is essentially constant for both n and crack size variations. An 

alternative to the FE approach is to develop an expression that can convert crack mouth displacement into load 

point displacement.' FE solutions are used to establish plastic hinge locations as a function of material work 

hardening and crack aspect ratio. Direct conversion of mouth displacement to load point displacement eliminates 

the need for development of crack aspect ratio dependent qp values. 

3.4 Test Temperature Estimation 

For situations in which the investigator has no prior fracture mechanics data to work with for test temperature 

selection, the transition curve from standard Charpy V-notch (CVN) specimens can be used to provide some help. 

The test practice suggests that the 28-5 CVN temperature has an approximate correlation to the To temperature 

for 1T size specimens, given by the following equation:2 

T,, = T,,, - 18°C . 

The median Kj, at T,,,, is predicted to be near 1OO.MPadm. There, of course, is significant uncertainty attached to 

the Eq. (3.1) correlation, due principally to CVN data scatter, but even with this, the range of uncertainty is not 

sufficient to result in unsuitable test temperature selection. The constant term on the right side of Eq. (3.1) is 

adjusted in the test method to account for specimen size effects. The objective is to aim for 

100 MPadm, for all specimen sizes. A special offset of 50°C from Tzs, has been specified for precracked Charpy 

specimens that are slow loaded in three-point bend. Here the aim is for K j C ( d )  to be below 100 MPaJm. The 

precracked CVN specimen size will not permit testing to a K j c ( d )  of 100 MPadm, since the result would be an 

excessive percentage of invalid Kj, values. 

equal to 
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A statistical evaluation of the Eq. (3.1) correlation had indicated a standard deviation on,the estimate for To(,T, of 

15 "C.' Given that a one-tail standard normal deviate at 0.15 cumulative probability is only 1.04, one should 

expect about an 85% probability of finding the estimated test temperature to be no more than 15°C below the 

temperature of KJc,med) equal to 100 MPaJm. If the estimated test temperature should happen to be more than 

15 "C low, the likely penalty is that more than six replicate specimens may be required as stipulated in the 

standard. The potential for error in test temperature estimated from Eq. (3.1) can also be reduced by testing more 

than the usual number of CVN specimens sufficient to obtain a good CVN transition temperature curve. Despite 

a probable appearance of good CVN curve accuracy, there can be significant accuracy improvement to T28j 

determination by using perhaps double or triple the usual number of standard CVN specimens in the transition 

range. 

3.5 Replicate Specimen Requirements 

As previously mentioned, an objective in the establishment of specimen replication requirements is to have 

acceptable accuracy in To determination while at the same time using the fewest number of specimens possible. A 

study to establish an appropriate number was conducted by Monte Carlo sampling from large data populations. In 

this study, two large experimentally generated data populations were obtained from a Materials Properties 

Council/Japanese Society for Promotion of Science round-robin a~tivity.~ Two test temperatures gave two data 

populations of about 50 replicate K,, values. The sample sizes (simulated replication number) selected varied 

from 3 to 10, taken in increments of one. Each sample size level was repeated 100 times. Hence, for each sample 

size there would be 100 K,, median values determined, and the grand average values plus the standard deviation 

on these 

1T compacts sampled at the quarter and three-quarter through-thickness locations. About 18 laboratories were 

involved, and the entire round-robin activity had been completed well before any ASTM committee development 

work had been started on test standard E 1921. The two data populations used for the Monte Carlo simulations 

were for test temperatures of - 100 and -75°C. 

data were determined. The round-robin material was A 508 class 3 plate, and the specimens were 

Table 3.1 shows the results generated at the - 100°C test temperature, which also happens to be close to the To 

temperature of the material, namely - 109°C. The standard deviation on K,c(med) determinations was used as the 

basis for deciding sufficient data replication for the test standard. Note that the standard deviation versus sample 

size diminishes rapidly at first, then slowing between sample sizes of 5 to 8. A required sample size of 6 seems to 

be a defensible selection. The data population at -75°C represents a decent magnitude of shift away from the 

optimum test temperature selection. Those results are shown in Table 3.2. The standard deviation on Kjc(d)  has 
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Table 3.1. Monte Carlo simulation 
(100 trials; population, 50 1T C(T) A 508 class 1, three specimens; -100°C test temperature) 

- 

Total population, 
- 100°C 

Standard 
deviation size size of trials (MPaJm) (MPaJm) 

Sample Population Number KJc(mrd) 

3 
4 
5 
6 
7 
8 
9 

10 

50 100 
50 100 
50 100 
50 100 
50 100 
50 100 
50 100 
50 100 

113.8 
113.0 
112.5 
113.8 
112.5 
112.5 
111.9 
113.3 

12.9 
10.2 To = - 109°C 
8.8 
9.0 
8.0 
7.4 
6.7 
6.9 

Kjc(med) = 1 13.0 MPaJm 

Table 3.2. Monte Carlo simulation 
(100 trials; population, 50 1T C(T) A 508 class 1, three specimens; -75°C test temperature) 

Standard 

(MPaJm) 
KJc(mtd) deviation Total population Sample Population Number 

size size of trials (MPadm) 

3 
4 
5 
6 
7 
8 
9 

10 
20 

50 
50 
50 
50 
50 
50 
50 
50 
50 

100 
100 
100 
100 
100 
100 
100 
100 
100 

154.2 
154.4 
154.5 
153.4 
15 1.9 
152.2 
153.7 
153.4 
153.1 

16.5 KJc(rncd) = 153 MPaJm 
15.0 To = - 104°C 
12.5 
11.8 
11.6 
11.1 
9.1 
8.5 
6.1 

increased slightly, as might have been expected due to the higher test temperature, but, nevertheless, the 

recommended sample size of 6 develops a plateau for a consistent compromise level of uncertainty. 

3.6 KJc Calculation 

Specimens tested at an appropriate temperature for the determination of To will have test records that vary from 

linear elastic at instability to others that will contain substantial plastic deformation prior to cleavage instability. 

For consistency of computational practice, all toughness determinations start with computation of J-integral. 

Because many tests are made at cryogenic temperatures where the experience base on instrumented crack growth 

measurement techniques is incomplete, the method seeks to de-emphasize the need for accurate measurement of 

stable crack growth. Consequently, the J-integral calculation is not corrected for slow-stable crack growth. 
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However, crack growth to the point of crack instability is posttest measurable, and if the visual evidence of 

growth indicates more than 5% of the initial remaining ligament dimension, then the Kj, value is declared to be 

invalid and the results are used as censored data in the analysis. A 5% ligament size change will result in about a 

2% error in J that in turn corresponds to about 1% error in K,,. Such an error is insignificant within the 

perspective of typical transition range data scatter. 
1~ 

For convenience in application, the J-integral at the point of cleavage fracture, J,, is converted into its equivalent 

in units of stress intensity factor as follows: 

KJc = @ . (3-2) 

The plane stress elastic modulus, E, is used in Eq. (3.2) specifically to avoid the possible overestimate of Kj,. 

This is because there is no experimental nor analytical basis to show that crack front conditions will always be 

pure plane strain. It is easy to demonstrate that the use of a plane strain modulus would alter the plastic 

component of Kj, such that it could increase Kj, up to 5% in some cases. In this method the selection of elastic 

modulus to be used on experimental work has some importance and the plane strain elastic modulus option is 

explicity not offered?’ 

3.7 Side Groove Effects 

Specimen side grooving after fatigue precracking is an option allowed by the standard. Presumably the principal 

advantage of side grooving is to reduce crack front curvature. Initial information that has been developed on side 

grooving effects indicate that K,, values are not significantly altered. Table 3.3 lists some examples from the 

Heavy-Section Steel Irradiation (HSSI) Program Tenth Irradiation Series! Although these data are few, the 

evidence is reasonably convincing. Morland (NRL, Risley, United Kingdom) has conducted a more extensive 

evaluation, testing about 160 compact specimens of A 533 grade B steel.7 The experiment covered two specimen 

sizes (1/2T and lT), three levels of side grooving (0,20, and 50%), and five test temperatures (-90, -70, -50, 

-30, and - 10°C). Figure 3.1 presents only the data that were of relevance to the present transition range 

standard. All data points shown are either Kjc(d)  or average Kj, when replication was not sufficient for median 

determinations. Additionally, all medidaverage Kj, values have been adjusted to 1T equivalence. Here a pattern 

develops where the potential impact of side grooving is unambiguously displayed. Side grooving has no 

significant effect on Kjc(d) for values less than 200 MPadm. Above 200 MPadm, side grooving begins to make 

some difference. Tabulations of crack growth in Reference 6 indicated that many of the specimens tested at 
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Table 3.3. Comparison of K,, (MPaJm) for 1T compact specimens 
with and without side grooves 

Test Beltline Nozzle 

With Without With Without 
side grooves side grooves side grooves side grooves 

temperature 
("(3 

0 197 140 
274 256 
317 296 

a 
a 

-25 119 120 
133 139 
193 139 
267 143 

151 

220 I45 
229 I68 

300 

87 84 
147 96 

97 
114 
120 
121 

"R curve. 

temperatures of -30 and - 10°C where Kjc(mcd) > 200 MPaJm, had significant slow-stable crack growth prior to 

fracture. Hence, it appears that intrinsic K, curve effects via side grooving had influenced the dKJ/da 

development rate and consequently the Kj, values. In particular, the influence of side grooving can show strong 

impact on low upper-shelf materials. Figure 3.2 gives an example. Low upper-shelf materials develop onset of 

slow-stable growth at low K, values and the dJ/da fracture toughness development rate is highly influenced by the 

side grooving. Hence, it follows that low upper-shelf materials are more likely to present difficulties when testing 

to obtain To temperatures. The A 533 grade B steel used by Morland (Fig. 3.1) had the more typical upper-shelf 

fracture toughness; consequently, the impact of the side grooving was delayed to high toughness values. 

Examples for low toughness steels are presented in Sections 2 and 4. 
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4. VALIDITY REQUIREMENTS 

4.1 Selection of a Numerical Value, M, for Controlling Constraint 

1 Test conditions among replicate specimens must be reasonably identical before the data can be analyzed by a 

Weibull model. For fracture mechanics data, the crack tip constraint must be reasonably controlled over the full 

range of the data. In most fracture mechanics test methods, constraint is controlled by limiting the crack tip 

opening displacement (CTOD) relative to the initial remaining ligament dimension, bo. The CTOD is not always 

measured directly, since it is often more convenient to deal with its analytical equivalent, the J-integral. These 

two fracture toughness parameters are viewed as being interchangeable, according to the following linear 

relationship: 

J = m oys (CTOD) (4.1) 

where uys is material yield strength and the coefficient m in Eq. (4.1) is used to scale the linear relationship. 

Values of m can be calculated by finite-element analysis or otherwise can be determined experimentally. When J 

is substituted for CTOD, then specimen size requirements are set by the following inequality: 

where dimension B is specimen thickness and bo is the initial remaining ligament size. The non-dimensional 

coefficient M is again a factor established either by experiment or by finite-element analysis. This coefficient is 

used to establish specimen size requirements and is applied in several ASTM standard methods.’” Different M 

values are used, depending on the primary objective of the standard, and the physical significance attached to the 

toughness parameter. For example, E 1737-96 and E 1152-95 use M = 20 for J-R curve development, and 

E 1737-96 and E 813-89 use M = 25 for plane strain J,, determination. In the case of cleavage fracture, E 1737-96 

uses M = 200 to qualify individual specimen J, values as J,. 

i 

4-1 NUREWCR-5504 



For the -present ductile-brittle transition range standard, the relationship given by Eq. (4.2) is applied in a 

rearranged form by combining it with Eq. (3.2), giving: 

In this case, specimen size is assumed to be predetermined by the investigator, and the objective is to calculate a 
fracture toughness limitation for the specimen size being used. To amve at an appropriate M value for the 

transition range standard, the results from both numerical analyses and from experimental data were considered. 

In the first case, the three-dimensional finite-element results of Nevalainen and Dodds4 were considered. Both the 

compact, C(T), and three-point bend, SE(B), geometries had been analyzed. Work hardening, n, was modeled 

using the Ramberg-Osgood power law, selecting three n value levels. The practical range for engineering 

materials covered was n = 5, 10, and 20. For the analyses, material strength had been assumed to be constant over 

the range of n values, using the nondimensional ratio of Duo = 500. The denominator, uo, is material proportional 

limit, which is known to have a nonlinear relationship to material yield strength. Values of J are calculated for a 

modified boundary layer model of a crack tip region for three-dimensional specimens. The near crack tip volume 

is subjected to a maximum principal tensile stress that is not to exceed a specified value. When the two values of 

J differ by more than 208, constraint is assumed to have diminished sufficiently to cause elevation of the 

measurable toughness with respect to a full constraint value. In Reference 4 it was detexmined that 

SE(B) specimens require higher values of M than the C(T) specimens. Table 4.1 lists the critical M values, MND, 
1 

declared for SE(B) specimens. This table lists the Nevalainen-Dodds M,, values based on fixed material strength I 

at Woo = 500. These MN, values are adjusted to account for different material yield strengths that better match up 

with the strain-hardening n values. 

Table 4.1. Adjustments to Nevalainen-Dodds M,, values for 
single-edge-notched bend specimens (a/W = 0.5) 

MND %j 
R-0 ( 3 s  Ha0 

(n values) (ksi) uy’uo adjusted 

5 54 1.20 , 667 25 40 
10 64 1 .OS 506 55 60 
20 -13 1 1.01 23 1 115 53 
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Recognizing that n values and material strength properties have significant interactive characteristics, and that 

M,, values tend to scale linearly in proportion to strength, leads to the following adjustment formula: 

(4.4) 

The adjusted M values listed in the last column of Table 4.1 tend to suggest a compromise M value from 3D 

analysis of about 50. 

It is also possible to rationalize an alternative M, equation. If the relationship between material yield strength 

and n values that had been reported by Rosenfield and Hahn’ are used, the outcome is slightly changed. Their 

experiments were made on steels ranging in yield strength from 25 to 400 ksi. Table 4.2 reports median 

correlation values taken from a graph in this paper. 

Table 4.2. Examples of material yield strength 
and median n valuesa 

Yield strength Equation (4.5) n 
(ksi) ( M W  Macj 

5 51 350 29.4 
10 101 700 29.7 
20 197 1289 32. I 

”A. R. Rosenfield and G. T. Hahn, “Numerical 
Description of the Ambient Low-Temperature and 
High Strain Rate Flow and Fracture Behavior of 
Plain Carbon Steel,” pp. 962-80 in Transacrions 
of the ASM vol. 59, 1996. 

Noting in Table 4.1 that the following equality is a reasonable approximation, namely M,d500 E d100, Eq. (4.4) 

can be simplified: 

M a 4  .E-($). E 
3 s  

(4-5) 
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Data scatter shown in Reference 5 on the n value versus the material yield strength correlation is quite broad so 

that details such as assuming a oyJoo ratio contribution to the adjustment is rendered pointless. Hence the M,, to 

M, relationship in Eq. (4.5) appears to be sufficiently precise (see the alternate solutions in Table 4.2). M, of 

30 can also be argued on the basis of interpretive judgment. 

The experimental alternative to numerical analysis uses a visually based postulate that a change in constraint will 

create a separate family of K,, data perceptibly different than the constraint-controlled data distribution. 

Oftentimes, Constraint loss becomes apparent when data depart from the linear relationship of normal Weibull 

plots. Two examples are shown in Figs. 4.1 and 4.2. Both data sets had been developed using precracked Charpy 

specimens that had approximately 4.6-mm (0.18-in.) nominal initial remaining ligament size. Additionally, both 

materials are low upper-shelf steels. The dashed square data points are cases where Kj, exceeded Kjcclific, based on 

the M values of 30. A third example is shown in Fig. 4.3, where the data were developed using 1/2T SE(B) 

specimens that had B x 2B cross section; thus the initial remaining ligament dimensions were more than twice 

that of the precracked Charpy specimens.6 In addition, the A 36 steel tested was not a low upper-shelf material. In 

the Fig. 4.3 case, the point of departure from the Weibull slope of 4 was at M = 35. 

-,. 
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Fig. 4.1. Weibull plot of K,, data obtained from precracked Charpy specimens of 
irradiated WF-70 weld metal. 
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Fig. 43. Weibull plot of K,, data on A 36 steel. (Source: W. A. Sorem, R. H. Dodds, Jr., and 
S. T. Rolfe, “An Analytical Comparison of Short Crack and Deep Crack CTOD Fracture 
Specimens of an A 36 Steel,” WRCBulletin 351, February 1990. 
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From the experimental evidence developed to date, the M value of 30 appears to be sufficient for control of data 

input into Weibull analyses. One can argue for the M value of 50 as being theoretically more accurate from a 

constraint control point of view, but a KJc(,imjt) set by such an argument impacts statistical analyses when data 

censoring is used and consequently the To temperature that is determined. 

4.2 Rationale for Setting Crack Growth Limits 

A second validity requirement on Kj, values imposed is that there shall be no more than 5% of crack growth, 

relative to initial remaining ligament, prior to cleavage instability. There are two reasons for setting this 

limitation, one being that J-integral determinations without crack growth adjustment begin to show significant 

error at about this point, and the second being that the impact of R-curve effects on K,, values, even in low 

upper-shelf materials, is acceptable up to this point. This crack growth limitation allows the side-grooving 

practice to be optional in the present practice. 

Having imposed this second validity requirement, it was of value to determine if the utility of the standard 

method might be crippled by a combined interaction between the two criteria. Four example materials were 

selected for evaluation on the basis of their differences in KR-curve toughness. The materials ranked from best to 

worst KR-curve toughness are A 533 grade B base metal,’ submerged-arc weld in A 533 grade B base plate,* 

2.250-1Mo base and a low upper-shelf weld metal in A 508 class 2 base plate. Figure 4.4 shows by bar 

graph comparison the range of valid K,, values set by the constraint limit (cross-hatched) and by the stable crack 

growth limit (open). For constraint control, the top of the bar is dictated by Kjccli,,,it) and it is assumed to be a 98% 

cumulative probability K,, value. The bottom of the bar’was calculated for the corresponding 2% cumulative 

probability. For the crack growth limit, the K,-curve toughness after 5% of stable crack growth was used for the 

top KJ,value of the bar. All such limit values are specimen size dependent so that each material was evaluated for 

a 1/2T specimen and a 4T specimen. This covers the range of specimen sizes typically used in laboratory 

experiments. 

Except for one material, the bottom line conclusion from Fig. 4.4 is that the two validity requirements on K,, data 

do not have detrimental interfering characteristics; that is, except for all but low upper-shelf steels. Here, R-curve 

development dominates data validity, and, as such, the interference voids any advantage from increasing 

specimen size to improve Kj, capacity. Hence, the master curve toughness trend is not followed at higher test 

temperatures. Low upper-shelf materials present a special challenge in To determination and master curve 

establishment. This issue is the next topic covered. 
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Fig. 4.4. Range of valid data for two test specimen sizes, 1/2T and 4T. Two K,, data 
validity criteria; constraint (cross-hatched) and 5 96 crack growth limitation (open) applied 
to four materials. 

! 

4.3 Impact of Low Upper-Shelf Materials on Establishment of Master Curve 

As mentioned previously, easy slow-stable crack growth at low Kj values can create several problems in master 

curve development. Some low upper-shelf materials display K,curve upper plateau just marginally above the 

preferred 100 MPadm toughness level at which To temperature is most accurately determined. Side grooving 

versus not side grooving also becomes an important consideration. Data distributions can become distorted if part 

of a data sampling fails by ductile instabilities, as opposed to onset of cleavage fracture. Testing at temperatures 

near to upper shelf will also show diminished weakest-link behavior and specimen size effects will tend to 

vanish. A11 of these difficulties had developed to certain degrees in the plot shown in Fig. 4.5. 

The weld metal tested is WF-70, a Babcock and Wilcox designation that identifies the heat of weld wire and flux 

lot used in fabrication." It is known as a low upper-shelf metal. Kj, values were determined in large numbers and 

were spread over a sufficiently wide temperature range extending into the upper-shelf region. Kj-R curves were 

made from side-grooved IT compact specimens at 0, 150, and 288 "C. Figure 4.6 points out the difference in 

fracture toughness level that is likely to develop after 5 8  of slow-stable crack growth in a 1T compact specimen. 
I 
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Fig. 4.5. Theoretical limitations on KJ, data based on KJ ductile instability behavior of 
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Ductile instabilities are possible at that point in side-grooved specimens because the K,-curve slope is 

substantially reduced. On the other hand, specimens of the same material that have not been side grooved would 

probably have no ductile instabilities at or above 300 MPaJm. The filled square data points in Fig. 4.5 are for Kj 

at 5% of crack growth on the R-curve for side-grooved specimens. The curve connecting these points crosses the 

master curve at a toughness level where interpretation difficulties begin. Focusing on the data at O”C, there were 

nine 1T compact specimens, six of which were not side grooved and the data from three of these excessively 

exceeded the K,-R curve limit line. The three highest K,, values shown at 0°C came from non-side-grooved 

2T compact specimens and these Kj, values had been size adjusted upward to 1T equivalence. Hence, most of the 

data generated at 0°C were affected by the previously mentioned special problems, namely, KR curve differences 

and size effect adjustments in a temperature range where size effects tend to vanish. Once again, low upper-shelf 

materials have interjected difficulties into the test practice that will require some future considerations and 

adjustments that have not been addressed at the present time. 

4.4 Pop-ins 

Crack pop-in is a phenomenon that is most often observed in tests made in the lower half of the transition range. 

Pop-in crack initiation occurs due to a cleavage instability, and crack arrest develops when the built-up elastic 

strain energy in a specimen cannot sustain the running cleavage crack propagation. The evidence for this 

assertion can be found in data sets that contain a fair mixture of pop-ins and unarrested cracks among 

unambiguous K,, determinations. The irradiated specimens of the ORNL HSSI Fifth Irradiation Series provide a 

good example.” About 1 10 C(T) specimens had been tested after irradiation to a fluence of 1.5 x 10’’ dcm’. 

Four test temperatures indicated in Fig. 4.7 were used. About 28 specimens had shown crack popin. This figure 

represents only one of the two materials that contributed to this observation. The pop-in data appear to be part of 

the data scatter band, favoring the lower end because of the previously mentioned stored elastic energy situation. 

This evidence suggests that pop-ins cannot be excluded from consideration as a part of data populations. The 

difficulty in incorporating pop-in values is to distinguish a genuine pop-in from test record artifacts that develop 

from other sources. Common artifact sources are slight fixture misalignments or ice buildup at points in the 

loading linkage. Generally, test record discontinuities from such artifact events are small, usually corresponding 

to less than 1 96 equivalent crack advance. Hence, the following compliancekrack increment relationship was ’ 

adopted for evaluations: 
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Fig. 4.7. Kj, at pop-in versus KJ, at full cleavage for irradiated compact specimens from 
the ORNL HSSI Fifth Irradiation Series. 

where C, and Ci represent before and after pop-in compliance values (AulAP), q is the dimensionless coefficient 
I 

used to calculate J-integral from plastic work done on specimens, and bo is the initial remaining ligament of the 

specimen. Apparent pop-ins can be ignored when Aa, < 0.01 bo. Substituting this into Eq. (4.6) gives: 

Ci + 0.01q [:-I]-' . 
c o  

Most anomalous pop-in events will occur in the initial linear elastic part of the load-displacement test record 

where the evaluation of CjC, ratio can be determined by load ratios, as illustrated in Fig. 4.8. When 

load-displacement records develop nonlinear plastic deformation, the likelihood of events being real pop-ins 

increases. At the same time, the establishment of the CJC, ratio also becomes a little more complex than the 

example shown in Fig. 4.8. 

(4.7) 

I 
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5. MASTER CURVE PARAMETER ESTIMATION 

I 
5.1 Applied Statistical Methods 

This section contains the background information on statistical methodologies that have been applied to the 

establishment of the standard. Topics covered are the determination of standard deviation, selection of the 

maximum likelihood method for fitting a scale parameter, KO, and determination of an optimum test temperature 

range. 

5.2 Standard Deviation 

The scatter model associated with the master curve is essentially a three-parameter Weibull distribution with two 

of the parameters fixed. As such, it has certain statistical characteristics represented by gamma functions, r, as 

presented in Eq. (5.1):’ 

- K ~ , ,  = (In 2)” (KO - Kmin) = 0.912 * (KO - ICmin) 

K, - Kmin = (KO - Kmin) - r(1.25) = 0.906 * (KO - K min . ) 

I 

where R, and K,,5 are the mean and median values of fracture toughness, respectively, at the test temperature and 

r is a function that can be obtained in mathematical handbooks. The most important information in Eq. (5.1) is 

that the mean and median toughnesses are essentially the same (= 0.91.[&-K,,,,,]) and that the characteristic 

scatter has a 28 9% standard deviation with respect to both. 
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5.3 Small Sample Statistics 

Usually, fracture toughness data sets correspond, at any single temperature, to less than 30 results. Thus the sets 

represent small samples from a statistical poin't of view. Small samples cannot describe the actual distribution 
I 
I accurately without the aid of additional information. One can state that, if the sample size is less than 30 and no 

additional information is available, no attempts to fit a specific distribution to the data should be made. Even if an 

apparently good description of the data is obtained without the aid of additional information, the fitted 

distribution can still be much in error. For small sample data sets, the only independent estimate with good 

accuracy is the estimate of the mean. This is the main reason why the master curve method, with the aid of 

additional information, fixes all but one parameter, the parameter related to the mean. As an example of the 

reliability of small sample data, Fig. 5.1 shows the reliability in terms of sample size, using failure probability 

coordinates.* For samples of four different sizes, n, all represented by the straight lines in Fig. 5.1, any results 

falling within the 5 and 95% confidence bands is reasonably possible. It is clear from the figure that any attempt 

to estimate the Weibull slope or minimum value from small data sets is precarious. Even with a sample of 100, 

the estimate of the minimum value will have a considerable uncertainty. The only sensible approach is to fix all 

but one parameter. The confidence limit curves in Fig. 5.1 are plotted by using a set of continuous empirical 

functions to approximate the solution to Eq. (5.2), discussed below, for Prank, with i, n, and the confidence level z' 
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Fig. 5.1. Reliability of small sample data sets of size n, when expressed in cumulative 

probability coordinates. 
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specified. The limit curves in Fig. 5.1 represent both one-sided confidence limits on cumulative probability for 

given values of z‘, i, and n, and one-sided confidence limits on toughness for given values of z’, n, and median 

cumulative probability. 

5.4 Least Squares Estimation 

There are several possible methods of estimation that can be applied to determine the scale parameter, &. The 

simplest way would be to just calculate the mean and then transform this to K, with Eq. (5.1). This does not, 

however, allow for any kind of censoring and is therefore not the best approach for analysis of fracture toughness 

data. Another obvious method is the one based on least squares estimation. However, even though this method 

allows for a simple form of upper-end censoring, it contains a weakness; Le., it involves the use of rank 

probability estimates. These are estimates of the cumulative probabilities associated with the rank order numbers 

of each of the data points, the rank order numbers, i, being determined by listing the data in order of ascending 

value. The weakness with the rank probability estimates is that they are not measured values but estimates of 

cumulative probability based on order statistics. The least-squares method assumes randomly distributed errors, 

but the errors in the rank probabilities are not randomly distributed. Each data point corresponds to a certain 

cumulative failure probability with a certain confidence. This can be expressed in mathematical form, using the 

binomial expression, as’ 

I 
n! j-1 . (1 - P )n-j+l  

* ’rank m k  
j=l  (j- l)!  - (n-j+l)! 

where z‘ is the probability that (i.e. the fraction of repeated trials with samples of size n for which) the true 

cumulative probability associated with at least the ith value in n values will be equal to or less than Pd, Usually 

people prefer to use simple approximations of the median rank probability estimate (z’ = 0.5). Three common 

estimates of the median rank probability are’ 

- i - 0.5 
n prank - 

1 - Prank - - 
n + l  
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i - 0.3 
n + 0.4 ’rank = 

All three estimates are of the form 

(5 .5 )  

- i - A  
n + B  ‘rank - - 

where 

B = 1 + 2 A .  

Equations (5.6) and (5.7) can be combined and rearranged to read 

(5.7) 

i - nP,, = - A  + (1 + 2A)Pm,, (5.8) 

from which the constant A can be evaluated graphically. The three approximations given by Eqs. (5.3), (5.4), and 

(5.5) are compared with the outcome of Eq. (5.2) in Fig. 5.2. It can be seen that Eq. (5.5) is clearly the best 

estimate of the median rank probability. 1 
1 

1 
The problem with the least-squares estimation procedure is that it is essentially intended to be used in connection 

with symmetric distributions with random errors. Since the master curve distribution function is nonsymmetrical 

and the error in the rank probability estimate is not random in nature, the least-squares estimation is not ideal for 

estimating K,,. Additionally, several possible fitting criteria exist, depending on how the three-parameter Weibull 

equation is linearized: 1 
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Fig. 5.2. Comparison of different estimates of median rank probability (lines) with 
binomial theory estimate (circles). 

Writing Eq. (5.9) in the form 

' Ki - Kmin 
[In [ &]] = KO - Kmin (5.10) 

implies a linear equation with x = (K, - K,,,,,,), zero intercept, and slope equal to the reciprocal of (K, - kn). 
Minimizing the sum of the squares of the errors with respect to the slope leads to 
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where r is the number of uncensored results. On the other hand, taking logarithms again in Eq. (5.10) leads to 

In In - = 4 In (Ki - Kmin) - 41n (KO - Kmin) , I LIl 
which implies a linear equation with x = In (K, - K,.,,,"), slope = 4, and intercept equal to -4 In (I?, - h,). 
Minimizing the sum of the squares of the errors with respect to the intercept leads to 

r r 1  1 
(Ki - Kmin) - - lnln - 

i = l  4 1 - P, 
KO = Kmin + exp 9 

r 

(5.12) 

(5.13) 

where, again, r is the number of uncensored results. In the above equations, the use of rank probabilities limits 

the censoring to the upper end of the distribution; Le., all censored values must be higher than any of the 

uncensored values. 

In principle, both Eqs. (5.11) and (5.13) are correct. However, they produce different results because the fitted 

distribution is nonsymmetrical. Due to these and other deficiencies in the least-squares estimation procedure with 

respect to the master curve distribution, it has been decided to use the maximum likelihood estimate to determine 

&I or To. 

5.5 Method of Maximum.Likelihood (MML) 

The method of maximum likelihood (MML) does not make use of the cumulative probability distribution 

directly. Instead, it uses the first derivative, namely, the probability density function. This way, the individual 

cumulative probabilities are not needed. The probability density function for the master curve distribution 

function is 
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The MML method examines the likelihood, expressed as a joint probability, that a certain probability density 

function is the product of all the discrete probability densities for the measured values. Thus the likelihood is 

defined as3 

(5.15) 

Equation (5.15) gives the likelihood that a certain master curve distribution describes the data. K,, is solved so as 

to produce a maximum in the likelihood L. This can be performed numerically using Eq. (5.15) directly, or 

analytically, taking the derivative of Eq. (5.15) with respect to &,. The normal MML does not include censoring, 

but censoring is easily implemented by making use of the survival distribution function (SJ 

Any data in the set not corresponding to failure is not a part of the probability density function (pdf), but rather of 

the survival distribution function ( s f ) .  For computational purposes, it is convenient to utilize a single algebraic 

expression for the effective distribution function, written as the product of two factors. The first factor is the pdf, 

raised to the power 6,, where 6 is the Kronicker Delta, to which a value of 1 is assigned for fracture and 0 for 

survival. The second factor is the sf, which equals (1 - P) raised to the power 1 - gi. In every case, one of the 

exponents will be 1 and the other zero, rendering one factor always equal to 1 and giving the product the 

appropriate value for fracture or nonfracture. Algebraically, the product has the appearance of an incremental 

joint, or conditional, probability of failure. Thus,3 

Conditional probability = f c (Kcp  - Sc(Kc)'-4 . 

The master curve survival function is 

(5.16) 

(5.17) 
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and the censored maximum likelihood expression thus becomes 

(5.18) 

Equation (5.18) is solved similarly to Eq. (5.15). An interesting feature of Eq. (5.18) is that it does not restrict the 

censoring to any specific part of the data set, but each datum is treated individually. Thus random censoring is 

mathematically possible; i.e., the censoring rules in the ASTM master curve standard might be relaxed. 

The analytical solution of Eq. (5.18) is simplified by taking the logarithm of L (maximum of L is equivalent to 

maximum of In[L]). 

ln4 + 36i - In(Kc, - Kmin) - 46, In(% - Kmin) - . (5.19) { 2 :I:[] i = l  

By solving for dln(L)/dK, = 0, the randomly censored maximum likelihood estimate of K,, is obtained as 

(5.20) 

Equation (5.20) has one deficiency. For small numbers of valid data the estimate of I?, will tend to be 

consistently a little low, and therefore slightly biased. For example, if there is only one valid test result, the value 

of K, calculated from Eq. (5.20) will be equal to the measured value, not I?,. Thus, because estimating errors in 

K, tend to consistently have the same algebraic sign, with magnitudes depending on sample size, a bias correction 

is required. Two different bias corrections for K, have been proposed, one based on the mean estimate of K,, and 

another based on the median estimate of K,. The basis of both bias corrections is the recognition, from 

mathematical considerations, that repeated estimates of K, from samples of size n drawn from the same true 
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Weibull population will be distributed according to a Gamma probability density function. The expression for a 

bias correction is derived by assuming that the uncorrected estimate obtained by the MML corresponds to a 

certain integral of the pdf (either the mean or the median). Since the true value is a parameter of the pdf, the 

resulting integral produces a ratio between the estimated value and the true value, the reciprocal of which is the 

bias correction, expressed as a multiplying factor. The bias correction factor based on the assumption that the 

MML is the expected (mean) of the theoretical distribution is analytical. The bias correction factor based on the 

assumption that the MML is the median of the theoretical distribution is numerically determined, but it is 

represented to a very close approximation by an analytical expression. Both solutions, as developed, do not 

consider censoring. The proposed bias corrections are compared graphically in Fig. 5.3. It is seen that the two 

bias corrections are effectively identical in numerical magnitude. For the master curve method the simpler and 

slightly more conservative bias correction (based on the median estimate of &) was chosen. 

c 

7 
9 

The bias correction could actually be omitted, since this would lead only to making estimates for small data sets 

slightly more conservative. For consistency, however, the master curve standard includes the bias correction, 

which, when combined with Eq. 5.20, yields the bias corrected rC, estimate 

.E 
E E  

1.06 
<xo 

1.12 

1.10 

1 -08 

1.04 

1.02 

1 .oo 

ORNL 98-42641dgC 

2 4 6 8 70 12 14 16 18 20 

n 
Fig. 5.3. Comparison of mean and median bias corrections for maximum likelihood 

estimate of K,,. 
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n 1/4 

+ %in * 

n 

The accuracy of the K,, estimate will be a function of uncensored data r = 8, 
i = l  

The standard deviation of the bias corrected MML estimate is approximately? 

0.28 . (KO - Kmin) - a- - 
fi KO -&lm 

(5.21) 

(5.22) 

An important feature of the MML estimate to note is that the accuracy of the estimate of K,, is not affected by the 

degree of censoring, i.e. it is not affected by the n/r ratio. Nor is it affected by the nature of censoring (random, 

upper end, lower end, etc.) It is only a function of the number of uncensored data (r). This can easily be verified, 

e.g., by Monte Carlo simulations, using different censoring criteria and degrees of censoring. This property 

makes the MML procedure extremely valuable. In principle, not a single test result (fulfilling the requirements 

related to fatigue precracking, crack shape and test performance) needs to be omitted from the analysis. Any 

invalid data can be given the toughness value corresponding to the validity criterion and be treated as non- 

failures. 

The confidence of the transition temperature To will be affected also by the testing temperature because a fixed 

proportional error in K, will have different meanings for To, depending of the location on the master curve. 

Figures. 5.4 and 5.5 give the resulting 5 and 95% confidence bounds for To when tests are performed at a single 

temperature. Figure 5.4 gives a general (normalized by r) view of the confidence bounds, and Fig. 5.5 gives them 

specifically for r = 6. Both figures show that testing at temperatures lower than TO-soOc is not advisable, due to 

the poor confidence of the To estimate. The confidence bounds in Figs. 5.4 and 5.5 were developed by Monte 

Carlo simulation using the theoretical distribution of estimates of K,,, which is a gamma distribution, and 

applying Eq. (5.21) and the master curve temperature dependence. Each simulation consisted of 10,000 trials 

from which the 5 and 95% confidence limits were derived by rank analysis. 

The confidence bounds in Figs. 5.4 and 5.5 are presented essentially in an inverted form, i.e. as corrections, so as 

to produce a safety factor description for To. For example, when the 5% confidence bound (AT,,,) is added to the 

To estimate, the probability that the true To is still higher than the adjusted estimate (Toss) is 5 9%. Basically, the 
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figures show that the inaccuracy in To is greater on the conservative side; i.e., unduly high To values may be 

estimated when testing at too low temperatures. 

Figures 5.4 and 5.5 are derived for a case where the material obeys the master curve temperature dependence 

exactly. The master curve temperature dependence is only an empirical approximation of the whole ductile to 

brittle transition behavior. Inaccuracies due to the approximate nature of the temperature dependence are usually 

not significant in the temperature region T0-50"c.. . T0+50"c, but close to the lower shelf, the resulting 

additional, error in To may be considerable. 

If the master curve temperature dependence ( K ,  = 31 + 77.exp{O.O19-(T - To)}) is inserted into Eq. (5.19), 

solving for r31n(L)/r3To = 0 gives the randomly censored maximum likelihood estimate of To as4 

(Klc, - 20)4 - exp (0.019 - [Ti - To] } 2 - 2  = 0 , (5.23) 
i = I  

- exp(0.019 * [Ti - To] } 
11 + 77 * exp{O.019 . [Ti - To]} i = l  (11 + 77 exp{0.019[Ti - To] })' 

from which To can be solved by iteration. Eq. (5.20) is actually only a special case of the more general Eq. (5.23). 

If all data correspond to a single test temperature, Eq. (5.23) reduces essentially to Eq. (5.20). 

It should be emphasized that all the estimation procedures require the use of a single "specimen size"; Le., all 

fracture toughness values must have been size-adjusted to a single crack front length and, specifically in the case 

of Eq. (5.23), the adjustment must be to 25-mm the normalization size. This does not mean that data from 

different size specimens could not be used together; it only means that the data must be size adjusted to a single 

size for the estimation. 

Similar to Eq. (5.20), Eq. (5.23) will produce a slightly biased estimate of To for a small number of "valid" data 

(r), but for test temperatures above T0-500C and for r 2 6, the bias, based on the curve in Fig. 5.6, will be of the 

order of 1 "C or less. The bias of To shown in Fig. 5.6 was estimated with the help of Monte Carlo simulation. 

The advantage of the multiple temperature testing according to Eq. (5.23) comes for materials that do not exactly 

follow the master curve temperature dependence. Doing tests in the temperature region of primary interest for the 

application enables the master curve procedure to give an adequately accurate description of the material's 

temperature dependence, even for materials for which the overall temperature dependence does not follow the 
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master curve assumption. For materials that follow the master curve temperature dependence, there should be no 

difference between the results of single or multiple temperature testing. 
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6. PRECISION AND BIAS 
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6.1 Weibull Parameters 

a, 
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Two key technical breakthroughs were needed to give purpose to the development of a test standard. The first 

was the observation that data scatter characteristics of steels in the transition range are amenable to statistical 

modeling.' The second was that median fracture toughness versus test temperature trends for femtic steels tend 

to follow one universal curve shape.' 

- A Server, 1978 - 
A Stmadel. 1986 
0 Pugh, 1985 - 

Three-parameter Weibull modeling of data scatter has been found to tend to a nearly fixed slope of 4, provided 

that one of the three parameters in the model, namely, k,,, is used as a deterministic parameter of the model, set 

at 20 MPadm. Early empirical evidence (shown in Fig. 6.1) was used to demonstrate that true population slopes 

cannot be accurately established using just a few data.* This allows the perspective to argue that widely varied 

Weibull slopes observed in small data sets cannot be regarded as significant experimental evidence. Hence, two 

of the three Weibull parameters that also happen to be impractical to recommend for experimental determination 

in a test standard have been predetermined. The third parameter in the Weibull model is the scale parameter, KO, 
and, fortunately, this parameter can be determined to sufficient accuracy with modest replicate tests. Monte Carlo 

7 
9 
P 

1 

+ Bryan,l985 - - - - 
- Median 

- 
- 
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simulations have established that workable accuracy can be assured with six replicate tests. These developments 

have provided the necessary elements to proceed with the development of a practical standard practice. 

The MPC/JSPS round robin mentioned in Section 4 has provided the test method evaluation data that was needed 

to establish precision and accuracy of the method. Eighteen laboratories representing four countries, namely, 

Japan, Germany, the United Kingdom, and the United States, had participated. The material used was A 508 

class 3. Compact specimens of 1T size were sampled at the 1/4t and 3/4t positions in 255-mm-thick (10-in.) plate. 

The participants could select from three test temperatures: -50, -75, and - 100°C. The number of temperatures 

chosen was optional and five specimens were provided for each test temperature selected, with the goal of testing 

50 specimens at each of the three temperatures. This goal might have been achieved except that one of the 

participants tested all 15 of their specimens at -75 "C. 

Table 6.1 summarizes the results of this round robin after these data were analyzed by the maximum likelihood 

statistical procedure of the present E 1921 test method. The one obvious departure is that the minimum 

requirement of six replicate tests was not followed. However, this can be explained by the fact that the round 

robin had been conducted well before work was started on the proposed ASTM standard. Nevertheless, the value 

of the round-robin data to the standard was hardly diminished as a precision and accuracy evaluation tool. The 

standard deviation on each To determination is calculated by: 

u = 1 8 / 0  = 8°C . 

Using the standard normal deviate for two-tail distribution, G5 = 1.44, indicates that 85% of the To 

determinations are likely to be inside of the temperature range of - 1 18 to -95°C. Twenty-four of the 28 results 

were inside of these limits. 

To make a point about Weibull slope variability, Appendix X1 .O of the proposed standard method was used to 

least-squares fit the five data of each laboratory. in the analysis, Gn is fixed at 20 MPadm. Figure 6.1 was 

consulted to establish the 95% confidence limits on slopes at n = 5. The Monte Carlo simulation used to establish 

the limits indicated a Weibull slope range of 2 to 12. This agrees well with the outcome of the round-robin 

evaluations. Figure 6.1 used data generated before 1983. During this time, few investigators considered data 

scatter problems and the need for more than just a few replicates was not appreciated. An additional evaluation of 

Fig. 6.1 is made with Table 6.2.%' The data in Table 6.2 are from more recent publications where replicates 

number 20 or more, and the objective here was to check these slopes against the 95% confidence limit spread of 
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Table 6.1. Analysis of MPC/JSPS round-robin data by linear 
regression for best slope: maximum likelihood for K, and To 

Laboratory Best 
slope 

I<, 
(MPav'm) 

B 
C 
E 
H 
J 
0 
P 

R 

Total 

Q 

A 
C 
D 
H 
J 
K 
N 
Q 
R 

Total 

A 
C 
E 
F 
G 
H 
L 
M 
Q 
R 

Total 

-50°C test temperature 

-1 15 
-113 
-103 
-111 
-83 
-93 
-87 

-108 
-101 

3.0 
4.1 
2.6 
4.3 

12.6 
1.8 
6.0 
3.5 
3.8 

-1 05 3.75 

-75°C test temperature 

-1 11 
-105 
-103 
-101 
-97 

-109 
-1 04 
-1 14 
-98 

2.8 
3.7 
8.8 
5.8 
5.5 
7.1 
3.9 
5.1 
6.5 

-105 5.8 

-100°C test temperature 

-107 
-1 12 
-1 14 
-108 
-101 
-104 
-1 20 
-95 

-1 18 
-1 04 

5 .O 
3.0 
4.0 
5.4 
5.6 
5.1 

11.3 
3.4 
3.9 
2.8 

-1 09 4.3 

294 
284 
24 1 
277 
177 
205 
187 
262 
233 

250 

184 
168 
161 
156 
148 
177 
163 
192 
150 

166 

118 
127 
132 
120 
109 
114 
143 
101 
139 
114 

123 

"95% confidence limits on slope (Fig. 6.1) are 1 1.8 to 1.8. 
95% confidence limits on K, are listed below. 

Upper Lower T 
("0 

-50 
-75 191 141 

-1 00 139 105 
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Table 6.2. Best slopes for data sets with 20 or more duplicate tests (Kmin set at 20 MPaJm) 

“To” by 
maximum Best fit 

slope 

Test Specimen 

(“C) size Number 
Material source Material temperature 

(“C) 

MPC-JSPS 
round robin“ 

Ando, 1992h 

Fauchef 

O N d  

Iwadate, 199 I 

A508 class 3 -50 
-75 

-100 

SM4 1 C -70 

ALgoma LT60 -120 

A533 grade B -75 
HSSI Plate 13A -75 

A508 class 3 -60 
-20 

A470 -100 
-60 

1T 47 
1T 55 
1T 50 

1.2T 20 

0.4T 23 

IT 25 
1 /2T 20 

1 /2T 30 
1 /2T 28 

1 /2T 27 
26 

3.75 
5.80 
4.30 

3.40 

3.30 

3 .OO 
5.20 

4.55 
3.44 

4.58 
3.82 

-105 
-105 
-109 

-126 

-126 

-77 
-79 

-44 
-41 

-90 
-74 

W. A. Van Der Sluys and M. T. Miglin, “Results of MPCIJSPS Cooperative Testing Program in the 
Brittle-to-Ductile Transition Region,” pp. 308-324 in Fracture Mechanics: Twenty-Fourth Volume, 
ASTM STP 1207, J. D. Landes, D. E. McCabe, and J. A. M. Boulet, Eds., American Society for Testing 
and Materials, 1994. 

%. Ando, K. Mogami, and K. Tuji, “Probabilistic Aspects of Cleavage Crack Initiation Sites and 
Fracture Toughness,” pp. 1 171-1 184 in Fatigue and Fracture of Engineering Materials and Structures, 
Vol. 15, No. 12, 1992. 

‘B. Faucher and W. R. Tyson, “A Statistical Description of the Effect of Strain Rate, Thickness, and 
Temperature on the Brittle Fracture Toughness of an Arctic Grade of Steel” pp. 1077-1082 in 
Proceedings of the 8th International Conference on the Strength of Metals and Alloys, Tampere, 
Finland, August 1988. 

Data, USNRC Report NLJREGKR-5788 (ORIWTM-11959), January 1992. 

Behavior for J,, Measurement in the Transition Region,” pp. 53 1-561 in Elastic-Plastic Fracture: 
Second Symposium, Volume II - Fracture Resistance Curves and Engineering Applications, ASTM 
STP 803, American Society for Testing and Materials, 1983. 

dD. E. McCabe, A Comparison of Weibull and PIC Analysis of Transition Range Fracture Toughness 

7. Iwadate, Y .  Tanaka, S. Ono, and J. Watanabe, “An Analysis of Elastic-Plastic Fracture Toughness 

Fig. 6.1. For 20 replicates, the confidence level spread in Fig. 6.1 covers Weibull slopes from 2.5 to 6. The 

experimental results in Table 6.2 gave slopes from 3.0 to 5.8 confirm the suggested replication slope spread of 

Fig. 6.1. 

The statements in the precision and bias section of the standard method have been essentially verified with 

experimental data. 
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7. CONSIDERATIONS FOR APPLICATION OF THE MASTER 

CURVE APPROACH 

The experimental, statistical, and empirical procedures discussed in this report, collectively called the master- 

curve approach, are considered to be an improvement over present code procedures for estimating static-initiation 

fracture toughness, mainly for two reasons. First, the new procedures are experimentally direct, because the 

specimens being tested are sharp-cracked, statically loaded, fracture mechanics specimens, whereas the existing 

code procedures are indirect, being based on data obtained from blunt-notched, impact-loaded, transition- 

temperature specimens. A somewhat extreme example of the potential improvement in the accuracy of estimates 

of static initiation fracture toughness obtainable by employing To as the characterizing temperature instead of 

RT,, is illustrated in Fig. 7.1. 

For reasons unknown, the value of RT,, for Heat-Treated Plate 14 was unreasonably high,' resulting in a grossly 

conservative lower bound static initiation fracture toughness by the present ASME Code procedure. This error is 

substantially reduced or eliminated by the use of the master curve approach,' based on To, and an associated 

ORNL 965351lrfg 
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Fig 7.1. Comparison of fracture toughness data from shallow-cracked, biaxial specimen 

tests, a/W = 0.1, of Heat-Treated Plate 14 with master curve for the material, an associated 
estimated lower tolerance bound curve shifted for margin, and the ASME lower-bound K,, 
curve. 
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lower tolerance bound curve including an upward temperature shift of 10°C to provide for uncertainty in the 

value of To, as also shown in Fig. 7.1. Another example of an apparently ultra-high value of RTNDT with respect to 

static initiation fracture toughness data3 is illustrated in Fig. 7.2. 

In addition, a plot showing the generally uncertain correlation' between RT,, and To, is shown in Fig. 7.3. 

Figure 7.3 shows that Heat-Treated Plate 14 is the most prominent, but not the only, example of a material with a 

high value of RT,, relative to To, and Fig. 7.1 shows that for such materials estimates of static-initiation fracture 

toughness based on RT,, are likely to be low. Basing the characterizing temperature, To, directly on fracture 

mechanics test data is intended to prevent such occurrences. Secondly, the new procedures recognize the 

inherently random variability of the fracture toughness of ferritic steels in the transition 

a rational, physically based, statistical analysis for quantifying this variability. Doing so provides a basis for 

improved statistical input for probabilistic safety analyses, as well as a basis for estimating fracture toughness 

versus temperature curves that have explicit statistical significance, for use in deterministic safety analyses. 

and incorporate 

The end product of the transition-range standard, ASTM E1921, is a characterizing temperature, To, which is an 

indexing temperature for a curve of median static initiation fracture toughness, K,,, for a 1T specimen, for the 
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Fig. 7.2. Comparison of fracture toughness data from specimens of various sizes for an 
A533B, Class 1, steel with the ASME lower-bound K,, curve. 
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material tested. The toughness-versus-temperature curve has a known empirical equation, and is therefore termed 

a master curve. The temperature To is the temperature at which the master curve indicates a median static 

initiation fracture toughness for a 1T specimen of 100 MPa Jm. The reason for stipulating that the master curve 

characterizes the toughness for a particular size of specimen is the known existence of size effects, consideration 

of which is basic to the analyses prescribed in the standwd. Two types of size effects appear to exist in fracture 

toughness data for ferritic steels. The first are statistical in nature, depending mainly on crack-front length, and 

the second are physical, termed constraint effects, depending mainly on a still incompletely defined interaction 

between toughness, yield stress, strain hardening, crack depth, and remaining-ligament dimensions. The 

toughness given by the master curve is labeled KrC, rather than KIc, partly to draw attention to the fact that the 

toughness given by the master curve is obtained using elastic-plastic fracture mechanics analysis methods. The 

indexing temperature, To, is viewed as a material characteristic, sensitive to thermal treatment and environment 

and as a consequence is believed to yield accurate measures of embrittlement. In the standard, statistical size 

I 
I effects are modeled mathematically by means of the three-parameter Weibull distribution. Constraint effects are 

considered only for the limited purpose of preventing excessive loss of constraint near the upper end of the range 

of toughness values measured. Although the three-parameter Weibull distribution implies, mathematically, that t 

1 
1 the toughness governing the extension of an infinitely long crack at any temperature is K,,,,,, this estimate is not 
I 
1 believed to be physically important. The empirical value of Ln = 20 MPaJm is viewed as a statistical fitting 
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parameter the value of which preserves the accuracy of the Weibull distribution with a slope of 4 for the majority 

of data, despite the fact that the actual physical minimum toughness value increases with temperature, thus 

contracting the lower tail of the real distribution.’ Thus the Weibull size effect is not believed to persist to an 

infinite crack length. Although a consensus does not yet exist on how to estimate the minimum toughness at the 

end of Weibull size effects, a few reasonable estimating procedures have been proposed. However, application of 

these procedures is beyond the scope of the present standard. 

One of the main areas of application of the transition-range standard, E1921, is the estimation of fracture 

toughness values for the safety analysis of nuclear pressure vessels, according to both the ASME Code, and to 

Nuclear Regulatory Commission (NRC) guidelines and regulations. However, at present, the physical bases for 

safety margins in the ASME Code involve more factors than those considered explicitly by the present standard, 

I 

and there are also some differences in detail. The ASME Code uses the fracture toughness for crack arrest as well 

as the fracture toughness for static initiation in the procedures specified for safety evaluations. Standard E1921 

presently addresses only the fracture toughness at static initiation. Therefore, if Standard E1921 is to be used in 

conjunction with the ASME Code, experimentally based and analytically sound extensions of the standard 

relating to dynamic crack initiation and crack arrest will need to be developed. Several sets of experimental data 

have already been analyzed with this objective in mind. As shown in Fig. 7.4, data for A515 steel obtained by 

ORNL98-534Wrfg 
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GGS A515 Steel : 

lo-’ 10’ 1 03 
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Fig. 7.4. Experimentally determined values of To versus loading rate for A515 steel, and 
values estimated by Barsom’s method. 
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Joyce’ with precracked Charpy specimens define a consistent trend of increased shift of To with increased 

loading rate. 

In addition, as shown by the round points added” to Fig. 7.4, the temperature shifts measured by Joyce are close 

to those estimated by a method proposed by Barsom? Barsom’s estimate depends only on the estimated strain 

rate at the forward boundary of the crack-tip plastic zone, and the static yield stress. Wallin, by analyzing existing 

dynamic and static data for several steels, has developed another procedure for estimating the shift of To due to 

loading rate, using the Zener-Holloman rate-temperature equation in which the calibrating constant depends on 

both the static yield stress and the static value of To. Loading rate does not appear to affect the shape of the 

master curve.” Results obtained by Wallin” for HSST Plate 02 are shown in Fig. 7.5. Further research on this 

subject will be needed, but prospects for the development and validation of a reliable method for estimating 

loading rate-induced shifts of To appear to be good. 

There are two issues related to the shape of fracture toughness versus temperature curves to be addressed in 

employing ASTM Standard E1921 in conjunction with the ASME Code. The first pertains to the differences in 

shape between the master curve, or its associated tolerance bound curves, and the ASME lower bound KIc curve. 

The latter curve has a steeper slope in the upper transition range. The second issue relates to the possible effects 

of irradiation, and Charpy upper shelf impact energy, on the shape of the master curve. The latter portion of this 

issue is discussed in Section 4.3 of this report. Present interim proposals for using ASTM Standard E1921 in 

conjunction with the ASME Code deal indirectly with both the issue of curve shape and the issue of strain-rate 

effects by using To only to redefine the temperature indexing of the present ASME lower bound K,c and K, 

curves, with the relationship between the two curves remaining unchanged. This approach does not deal directly 

with either the curve-shape issue or the known decreasing temperature shift between static initiation and dynamic 

initiation fracture toughness curves with increasing yield stress. The question of whether or not irradiation affects 

the shape of the master curve has been addressed by Wallin,” and by Sokolov and McCabe.b Figure 7.6, plotted 

by Sokolov and McCabe, shows that for a large collection of data, irradiation has no significant effect on the 

shape of the master curve or its tolerance bounds. 

Although Standard E1921 was not intended for detecting or measuring local variations of toughness within 

weldments, some preliminary investigations of this nature have been conducted with specimens of reduced 

’W. A. Van Der Sluys, Babcock & Wilcox Research Center, Alliance, Ohio, “Visual Aids for Effect of Strain 
Rate Discussion,” Attachment 11 in Minutes of the PVRC Task Group on the Toughness Master Curve meeting 
held on February 7, 1997, in Reno, Nevada. 

at the Westinghouse Meeting, August 2, 1996,” Presentation at PVRC Task Group on the Master Curve, 
Columbus, Ohio, October 7, 1996. 

bD. E. McCabe, Oak Ridge National Laboratory, Oak Ridge, Tenn., “Experimental Evidence on Issues Raised 
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Fig. 7.5. Experimentally based values of To versus loading rate for A533B steel, and 
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thickness relative to their planar dimensions, producing results that could be significant. Specifically, the value of 

To for specimens obtained from the clad-to-weld heat-affected zone of a circumferential weldment in a vessel of a 

canceled nuclear plant was approximately 20°C above that for the remaining weld metal, with initiation points 

found by metallography to have been located in a narrow transverse region of coarse, columnar grains.‘ The same 

type of admonition also applies to plate material because values of To for materials of inhomogeneous toughness, 

particularly thick quenched-and-tempered plate, are subject to some spatial variability. 

In order to minimize effects of crack growth and attendant constraint loss on measured values of fracture 

toughness, Standard E1921 recommends testing at temperatures at which K,,-(&) is expected to be close to 100 

MPa dm. At these temperatures, ductile tearing prior to cleavage is expected to be minimal. Therefore, the 

toughness calculations in Standard E1921 do not correct for the amount of prior ductile tearing. A specimen- 

validity limit on ductile tearing is also included in the standard. The Weibull size effect relationship incorporated 

in Standard E1921 is assumed to apply above the temperature at which K,c(med) equals 50 MPa dm. However, in 

the upper transition regime, beyond the expected range of test temperatures, ductile tearing may become 

significant in amount, and it may cause an effect of specimen size on measured fracture toughness values and loss 

, of constraint in small specimens.” This could tend to increase the implied toughness for large specimens in the 

upper transition regime, consideration of which might help to explain the differences in slope between the upper 

parts of the master curve and the ASME lower bound K,, curve. Experimental and analytical evidence on this 

subject is sparse, but it is not sufficiently resolved for the subject to be considered in writing the standard, and 

there may not be a strong need to know in applications as well. 

It is frequently the case that only pre-cracked Charpy specimens are available for fracture mechanics testing. 

Thus there is considerable interest in validating the application of Standard E1921 to specimens of that size. The 

methods employed in the standard for selecting the number of specimens to be tested, and the testing 

temperature, for precracked Charpy specimens, considering the opposite variations with test temperature of the 

probable need for censoring and the uncertainty in the estimate of To for a fixed number of specimens, are 

discussed in Section 3.4 and Appendix D of this report. As shown in Fig. 7.7, it has been experimentally 

demonstrated by Sokolov et al.I3 with data from HSST Plate 02 that precracked Charpy specimens are capable of 

producing master-curve data that agree with LEFM data obtained from large specimens that are valid according 

to ASTM E399. 

‘W. E. Pennell, Oak Ridge National Laboratory, Oak Ridge, TN, “Systematic To Variation in a RPV 
Structural Weld.” presentation to ASME Joint SC III/XI Task Group on Master Curve Fracture Toughness, Reno, 
NV, December 8, 1997. 

7-7 NUREWCR-5504 



ORNL 98-5350:1fg 

300 
h 

N 
c 

E 
x 
Q 
R 

UY 

z 
I 
Q 
3 
0 + 
w 
CT 

z 
2 200 

100 
2 
U 
LL 

0 

I I ) ’  I I 

! 
HSST PLATE 02 j 

I 
0 Klc DATABASE adjusted to 1T size 

I 
I - MASTER CURVE by PCVN 
1 ,  

. - 5 and 95% T0LERANC:E BOUNDS 

-1 50 -1 50 1 -50 0 50 
1 TEMPERATURE (‘C) 
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specimens of HSST Plate 02, and the associated estimated 5 and 95 percent tolerance 
bounds, with the ASME K,, database, adjusted to 1T specimen size. 

Additional data obtained by Wallin“’ with precracked Charpy specimens of A533B, class 1 steel (JRQ material), 

both unirradiated and irradiated to a fluence of 1.64 x IO” dcm’, show that the temperature shift of static 

initiation fracture toughness exceeds that of the’dynamic initiation fracture toughness, the latter agreeing with the 

shift of the standard Charpy impact energy curve at the 285 impact-energy level. Consequently, irradiation 

decreases the temperature difference between the curves of static and dynamic initiation fracture toughness 
I 

versus temperature, which for the material tested becomes nil for a fluence of 1.64 x lo’’ n/cm2. Especially 

because of the comparison between the temperAture shifts due to irradiation of the static initiation fracture 

toughness curve and the standard Charpy impayt energy curve, these results need to be considered in the 

development of application procedures for the bster-curve approach. 

I 

‘ Because calculated values of To are based on skall samples of data, there is unavoidably some uncertainty 
I 
I 
I 
I 
I 

associated with using these values as estimates of the true value of To, and with the values of fracture toughness 

given by the master curve. There are two provisions offered in Appendix X3.0 of Standard E1921 for dealing 

with these uncertainties. The first provision is margin shift of the calculated value of To, the confidence level of 

which can be chosen by the user. Sample size h d  the value of K,c(d), are the variables that influence the 

uncertainty in the estimate of To. The second provision is the use of an estimated lower tolerance bound curve, 
I 
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again margin-adjusted by the user, as the reference fracture toughness curve, to further reduce the probability of 

overestimating the fracture toughness. 

In some cases, there may be no samples available from what could be the governing material in a structure, and 

resort must be made to either testing “surrogate” materials believed to be closely similar to the material of 

interest, or the use of generic estimates based on data bases for the same class of material.” Extreme 

uncertainties arise in the latter case, and corresponding additional margins on To need to be considered as 

compensation. This situation is not unique to the master-curve approach. It applies to any method of estimating a 

characterizing temperature. Nevertheless, developing procedures for using data from surrogate specimens, and 

for applying generic data, possibly from other types of specimens such as Charpy impact specimens, by 

correlation requires informed judgment and considerable caution. 

Taking all the above considerations into account, application of the master-curve approach has the potential for 

significantly improving the accuracy of structural integrity evaluations in the transition range. 
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Appendix A 

Eleven data sets are presented that give confirming evidence of the shape of the master curve. 

To temperatures have been determined; these are reported in Chapter 2, Table 2.1. Master curves are plotted with 

test temperature referenced to To on the abscissa. The data points for K,, on the coordinate axis are, for the most 

part, median values determined by Weibull fitting data from at least six replicate tests. If the number of replicate 

tests was less than six, average K,, values were used. 

The dashed horizontal lines cross the master curve at temperature To. This line visually separates tests made 

above temperature To from those made below To. 
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Appendix B 

B.l Standard Deviation on K,, Data 

The standard deviation on a known Weibull distribution is a mathematical function of the Weibull slope, Kjc(mcd), 

and K ~ " .  The following gamma function is used: 

u = B d r ( l  + 2/b) - r'(1 + l/b) , 

where 

For a Weibull slope of four (b = 4), 

KJC ( med ) - k i n  [ 0.9124 ] o = 0.2543 

Weibull slopes commonly observed in data sets with less than 10 replicates may vary between 2 and 12 and the 

coefficient in Eq. (B.3) if applied on an individual determination basis could vary between 0.35 to 0.20. Such 

independent evaluations are not encouraged since population slopes cannot be accurately defined with less than 

50 replications. 
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B.2 Tolerance Bound Determination 

Equation (B.3), plus the master curve, and standard normal deviates from statistical tables compiled for normal 

distributions are employed to develop tolerance bounds on K,, data. 

The lower and upper tolerance bounds (TB) are determined as follows: 

where 

AKb = z*u (z is the standard normal deviate), 

u = 0.28 (K,,,,, - 20) MPaJm, 

K.,,,," = 20MPaJm. 

(1 f 0.282) f 5.62 . - 
- %c(med) 

Given: 

KJc(mcd) = 30 + 70 exp[0.019(T-T0)] 

KT, = (3022.82) + (70 2 19.62) exp [0.19(T -To)] MPadm . 

B.3 Lower-Bound K(ml 

Let D1 = (30- 2.8z), 
D2 = (70 - 19.6~), 

Then KTB = D1 + D2 exp [0.019 (T - To)] . 
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B.4 Upper-Bound K,,,, 

Let D1 = (30 + 2 . 8 ~ ) ~  

D2 = (70+ 19.6z), 

K,, = D1 + D2 exp[O.l9(T-To)] MPafi 

Table B.l. Table of coefficients from Eqs. (B.7) and (B.8) 

Tolerance Standard 

deviate" 
bound normal D1 D2 

1 
2 
3 
4 
5 

10 
90 
95 
96 
97 
98 
99 

2.32 
2.05 
1.88 
1.75 
1.64 
1.18 
1.18 
1.64 
1.75 
1.88 
2.05 
2.32 

23.5 
24.3 
24.7 
25.1 
25.4 
26.7 
33.3 
34.6 
34.9 
35.3 
35.7 
36.5 

24.5 
29.8 
33.2 
35.7 
37.8 
46.9 
93.1 

102.1 
104.3 
106.8 
1 10.2 
115.5 

"One tail of distribution. 

B.5 Margin Adjustment 

For convenience in the following material, let K,,, represent K,c(d). The master curve is rearranged into the 

following working form: 
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Assume an error range on K,,, 2 AK,,,; then 

T o = T - -  1 l n [ ( K m ~ A K m - 3 0 ) - l n 7 0 ]  
0.0 19 

For replicate tests at temperature T, ATo is given by 

AT,=- 1 [ l n ( K m  2 AK, - 30) - ln(K,  - 3O)] 
0.0 19 

- --In[ 1 
(K,&AK, -30) 1 .  

0.019 K, - 30 

Error in K,,, is expressed in units of standard deviation determined from the following: 

0.28(Km - 20) 
o =  n 

Confidence limits are quantified in units of standard deviation using standard normal deviates, z: 

0.282 AKm = zu = - 

Let: 

0.28 z AN=-. n 

(B.lO) 

(B. 1 1) 

(B.12) 
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Then: 

r 1 

A( 1 - 20/K,) 
(1  - 30/K,) 

In 1 2  I 1 ATo = - 
0.0 19 

(B.13) 

Solving Eq. (B.13) for N = 6 and K,= 100 MPaJm and setting z = 1 produces the standard deviation on To; 
namely AT,, = +6.3 O and -7.4"C. 

Hence, for lower bound: 

= -7.4 = p/m UT0 

p = 18°C.  
(B.14) 

B.6 Maintaining Equivalent Accuracy in To Determinations as Lower-Bound 

Temperatures are Approached 

At To temperature, K,,, = 100 MPadm. When T << To, how many specimens would be needed to recover 

equivalent ATo error as otherwise obtained with six specimens at temperature To. Let K,,.,' represent the median 

value at test temperature T. Then establish an equality using Eqs. (B.11) and (B. 13): 

( 1  -20/KA) ( 1  - 20/100) = A6 
(1  -30/100) A N  

( 1  - 30/KA) 

(B.15) 
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Table B.2. Tabulation of modifications for test temperatures 
that approach lower shelf 

Equation (B.16) Margin 
K, range coefficients” 
(MPadm) 

N 
range 

Replicates 
required 

(N) p in Equation (B. 15) 

6 6 1 00 18 
7 6.5 to 7.5 83 to 66 18.8 
8 7.5 to 8.5 66 to 58 20.1 
9 8.5 to 9.5 58 to 53 21.4 

10 9.5 to 10.5 53 to 49 22.7 

”Based on the lowest K, of the range listed. 

B.7 Charpy Specimen Requirements 

Because of their small size, Charpy specimens must be tested at temperatures well below temperature To. As the 

lower shelf of fracture toughness is approached, more test specimens are needed to maintain equivalent accuracy. 

Problems will develop with unknown numbers of test results being declared invalid, causing difficulties in 

planning test programs. To assist with such problems, a table is given in paragraph 8.5 of the method. 

Unpublished results from a Monte Carlo simulation by Ruggeri and Dodds were used to develop part of the 

tabulated information. The study included predictions of fractional numbers of invalid K,, data that could result 

at certain K,,, toughness levels. The following parameters apply: 

1 .  Precracked Charpy specimens. 

2. a/W=0.5. 

3. u, /E = 500 (uo = proportional limit stress). 

4. n = I O  (Ramberg-Osgood hardening exponent). 

5. M = 30 (validity criterion). 

Each Monte Carlo simulation had 10,000 samplings: for sample size (r = 6). That is, sampling was continued 

until six valid K,, data were obtained. 
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Table B.3. Precracked Charpy specimen requirements 
~~ ~~ 

Average' 
additional Recommended K, (Inb 

(To - T) 

Test 
K, (MPaJm)" temperature equivalent by extra N (MPadm) offset data 

(N - r> (To - T)Lsv 
~ ~~ 

73.8 39.9 62.8 0 d 
82.2 30.1 69.5 0 d 
91 .O 21.5 76.5 0.4 1 
99.7 14.2 83.4 1.4 3 

108.3 7.9 90.2 3 .O 3 
116.7 2.4 96.9 5.6 d 

"K,, obtained from precracked Charpy V-notch specimens before size adjustment. 
bCalculated from K ,  = 30 + 70 exp C0.019 (T - To)]. 
'Average fractional number of invalid K,, [N = 6 + (N - r)]. 
dNot applicable. 

B-9 NUREWCR-5504 





APPENDIX C 





Appendix C 

Three finite-element-based plastic eta value solutions for the crack mouth position on three-point loaded SE(B) 

specimens will be presented: ( 1) DoddsDJevalainen, (2) Kirk/Dodds, and (3) Electric Power Research Institute 

(EPRI) Elastic Plastic Handbook (EPRI NP-193 l ) ,  

C. 1 DoddslNevalainen 

Tabulated values from three-dimensional analysis, SE(B), L = 4W, W/B = 2, alw = 0.5. 

Table C.l. Ramburg Osgood work- 
hardening exponents, n 

n t l D  

5 2.64 
10 2.59 
20 2.57 

~~ 

C.2 Kirk/Dodds (NUREGKR-5969) 

q, = 3.785 - 3.10(a/W) + 2.018(a/W)’ 

Two-dimensional finite element. Good for n = 4 to 50 and 0.15 I a/W I 0.70. 

C.3 EPRI Elastic Plastic Handbook (EPRI NP-1931) 

“Engineering Approach for Elastic-Plastic Fracture Analysis,” by Kumar, German, Shih. SE(B), W/B = 2, 

L = 2 W  

L ( N + l )  - 2 ( N  + 1) 
% = - - - - - -  a h2 0.728 (dw) h2 0.728 

Two-dimensional finite element, N = l/n. 
1 
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C.4 Example Comparisons 

Table C.2. qp solutions for a/W = 0.5, WTS = 2 
Ramburg Osgood work-hardening exponents, n 

Source 
Variable n 

5 10 20 

DoddsNevalainen 

Kirk/Dodds 

EPRI Handbook 

2.64 

2.74 

2.63 

2.59 

2.74 

2.59 

2.57 

2.74 

2.59 

4 
I 

Table C.3. qp solutions for n = 10, variable a/W 

0.5 0.625 0.75 

Kirk/Dodds 

EPRI Handbook 

2.74 
~~ 

2.63 2.59 

2.59 2.38 2.27 
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APPENDIX D. INTEGRATION OF RESULTS: ESTIMATION OF THE 

MASTER-CURVE PARAMETERS KO AND To BY THE METHOD OF 

MAXIMUM LIKELIHOOD 

J. G. Merkle 

D.l Introduction 

One of the most important aspects of the draft ASTM standard on the fracture toughness of ferritic steels in the 

transition range is the mathematical basis for calculating the characterizing temperature, To. Subject to the 

assumed accuracy of a semiempirical formula for estimating the cumulative probabilities associated with ordered 

individual data points, it is possible to use the method of least squares to determine the scale-parameter and 

median toughness values, K,, and K,c(med), from a linearized cumulative probability plot of data all taken at the 

same temperature, and to then use the value of K,c(med), to determine To. However, an important practical situation 

likely to arise in the acquisition and interpretation of small-specimen fracture toughness data in the transition 

temperature range is that of data taken at several different temperatures. Because of the nonlinearity of the master 

curve as a function of temperature, the method of least squares is not easily applied in this case. Fortunately, an 

alternative procedure, known as the Method of Maximum Likelihood (MML), is applicable both when data are 

taken at a single temperature and when they are taken at multiple temperatures. This method does not require the 

assumption of an auxiliary formula for estimating cumulative probabilities, but instead uses the equation of the 

postulated probability density curve, applied to a discrete variable with arbitrarily small intervals, to construct an 

expression for the joint probability of occurrence of exactly the combination of values actually measured. This 

expression is known as the Likelihood Function. The logarithm of the Likelihood Function is a sum of 

logarithms, and setting its partial derivative, with respect to the parameter of interest, equal to zero produces an 

equation for the parameter being sought. Equations for the maximum likelihood estimators (MLEs), for both 

single and multi-temperature data, have been published by Wallin.’ However, no derivation was published by 

Wallin for the case of multi-temperature data and, mainly for this reason, the MML procedure for multi- 

temperature data is presently not included in the draft standard. However, following unpublished notes received 

from Wallin,” the MML equation for To for multi-temperature data has been rederived at ORNL, thus clearing the 

way, in terms of theory, for this case to be added to the draft standard. Because this addition would be a major 

“K. Wallin, “Derivation of Maximum Likelihood (MML) Algorithm for WallinlMaster Curve,” unpublished 
notes received from K. Wallin on March 27, 1995. 
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change to the draft standard, which is now close to its initial acceptance as a standard, it is planned to propose the 

addition of the multi-temperature MML procedure after the initial acceptance of the present draft standard. 

D.2 Concept of the Likelihood Function 

If values of x are drawn at random from an infinitely large true population, it is well known that a definite 

cumulative probability, P(x), is associated with each value of x, giving the fraction of all values of x which are 

equal to or less than a particular value. It is also well known that there is no such thing as the probability of 

obtaining exactly a given value of x. However, this problem can be circumvented by returning to the concept of a 

frequency histogram, to which the curve of the probability density function, f(x), which equals dP(x)/dx, is fit. 

The histogram defines the fraction of all numbers expected to fall within given arbitrarily small ranges of the 

stated variable, or within given joint sets of ranges of multiple variables. Thus the probability of a value of x 

falling within the range between x and x + dx is f(x) dx. The above reasoning can be extended one step farther to 

consider the probability of a set of physically independent events occumng together. Such a joint probability is 

the product of the individual probabilities of each of the events occumng separately. Thus the joint probability of 

obtaining a particular set of N values of x, each within its individual interval dx, is 

P, = [f(x,)dx] [f(x,)dx] ........... [f(x,)dxI * (D.1) 

The joint-probability function defined by Eq. (D.l) is called the Likelihood Function, L. Thus, 

LnP,. (D.2) 

N 
Frequently, the expression for L is written in compact notation, by using the symbol n , which means, “the 

product of all factors of the form ....... ”. Thus, 
i=l  

N 
L = r]: f ( X i )  4 

i=l  
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D.3 DETERMINATION OF KO FOR TESTS PERFORMED ALL AT THE SAME 

TEMPERATURE 

The three-parameter Weibull cumulative probability function is 

P = l - e  -($ , 

where 

x = Ki '- Kmin , 

a = KO - Kmin , 

and, for the case of toughness data in the transition range, 

p = 4 .  

The probability density function is given by 

pxP-' -($ 
e ,  dP - f(x) = - - - 

dx aP 

so that, from Eq. (D.3), the Likelihood-Function is 
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Since the first factor in parenthesis in Eq. (D.9) is not a function of a, setting 

gives 

Eq. (D. 1 1) can be rewritten as 

N 

i = l  

- .  
which, by rearrangement and the use of Eqs. (D.5) through (D.7), leads to 

(D. 10) 

(D.11) 

(D.12) 

(D.13) 

Equation (D.13) is the equation for &presently appearing in the draft standard, except for the relatively small 

bias correction subtracted from the denominator of the term in brackets in the draft standard, by replacing N with 

(N - 0.3068). 

D.4 DETERMINATION OF TOFOR TESTS PERFORMED AT MULTIPLE 

TEMPERATURES 

For tests performed at multiple temperatures, K, and therefore a become functions of temperature, making it 

necessary to define the unknown quantity for this case as To, By the chain rule, and using Eq. (D.6), 
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The cumulative probability corresponding to K,, is 1/2, using Eqs. (D.4) through (D.7) gives 

‘me, - Kmin 
KO = + K m i n  * (In 2)‘ 

Therefore, by using the equation of the master curve, which is 

0.019( T-To) Kme, = 30 + 70 e 9 

t Eq. (D. IS) becomes 

I 

where. for 

c(T-T,) KO = a + be 9 

Kmin = 20 MPa 6, 

a, b, and c are given by 

I 

I 
a = -  ’’ + 20 = 31MPa 6, 

(In2)” 

b = - -  70 - 77MPa fi , 
(In 2)” 

D-7 

(D. 14) 

(D. 15) 

(D. 16) 

(D. 17) 

(D. 19) 

(D.20) 
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and 

c = 0.019 "C - l  . (D.2 I ) 

For multi-temperature testing, the frequency distribution of the true population of toughness data is three- 

dimensional, with every cross section of the distribution perpendicular to the temperature axis having the shape 

of the three-parameter Weibull probability density function. Since the volume of every slice through the 

distribution of thickness dT is the same, the fraction of data contained in every slice of thickness dT is dT/TRANGE, 

where TRANGE is the range of temperatures over which data are taken. Therefore, 

(D.22) 

in which the first term in parenthesis is not a function of To. Therefore, applying Eq. (D.14), in which, from 

Es. (D. 17), 

gives 

By rearrangement and by using Eqs. (DS), (D.6), (D.7), and (D.17), Eq. (D.24) becomes 

= o ,  

(D.23) 

(D.24) 

(D.25) 

which agrees with ref. 1 for cases not involving censoring. Eq. (D.25) must be solved iteratively to determine To, I 
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