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NOMENCLATURE

a location parameter of Weibull distribution
b scale parameter of Weibull distribution
c shape parameter of Weibull distribution

(d,b,c) maximum-likelihood estimators

(«,&*, o) moment estimators for a 3-parameter Weibull distribution
(a*,b2*) moment estimators for a 2-parameterWeibull distribution
(a2* *,6**) almost unbiased moment estimators for a 2-parameter Weibull distribution

*Jb\ sample moment coefficient of skewness
KIa plane-strain crack-arrest fracture toughness
KIc plane-strain static-initiation fracture toughness
Kj applied Mode I stress-intensity factor

m\ 1st crude moment of the sample = sample mean, x
m2 2nd central moment of the sample about the sample mean
n, N sample size
p probability level
RTNDT nil-ductility-transition temperature
T test temperature

T (T -RTNDT) = mean normalized temperature of dataset
A7 (T- RTNDT) = normalized temperature

t(m) moment function
w Weibull density
xo.5 median KIa or KIc at 50% cumulative probability of failure
xp KIa or KIc at pth x100% cumulative probability offailure
x sample mean

Jp\ moment coefficient of skewness
J32 moment coefficient ofkurtosis
r Euler's gamma function

\ =r(i + i/c)

x, =r(i +2/c)
fi[ 1st central moment of the population = population mean
/u2 2nd central moment ofthe population =population variance
jj.z 3rd central moment ofthe population
/ja 4th central moment ofthe population
7t* lns Pade sequences

7t*, 7rs polynomials in N of degrees s-1 ands , respectively

<t ,cr standard deviation and variance of the population
C, Riemann zeta function
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ABSTRACT: This report presents the technical basis for new statistical representations of
extended fracture toughness KIc and KIa databases. This effort was performed by the Heavy
Section Steel Technology (HSST) program at ORNL in the context of a probabilistic
methodology appropriate for use in an effort by the Nuclear Regulatory Commission (NRC)
to update its regulatory guidance for pressurized-thermal-shock (PTS) transients. The
representations for KIc and KIa were developed through rigorous statistical procedures applied
to extended fracture toughness databases for reactor pressure vessel (RPV) steels. A 2-
parameter Weibull distribution, with the parameters calculated by the Method of Moments
point-estimation technique, forms the basis for the new statistical models. Results of these
analyses are reported in both graphical and equation form.

1. INTRODUCTION

The Heavy-Section Steel Technology (HSST) Program at ORNL has produced new

statistical representations for the two properties, the plane-strain static initiation toughness

KIc and the plane-strain crack-arrest toughness KIa, used to characterize the fracture

toughness of reactor pressure vessel (RPV) steels. This effort was performed in the context of

a probabilistic methodology appropriate for use in an overall effort by the Nuclear

Regulatory Commission (NRC) to update its regulatory guidance for pressurized-thermal-

shock (PTS) transients. These new representations for KIc and KIa were developed through

the application of rigorous statistical procedures applied to an extended fracture toughness

database for RPV steels.



Developments of the extended database and the new statistical representations for KIc and KJa

have been accomplished through the following steps:

1. A survey was conducted to identify available K[c data from pressure vessel steels that

could augment the amended database of EPRINP-719-SR [1] published by Nanstad et al.

[2]. The EPRI report [1] includes the data used for construction of the original Klc

fracture toughness curve given in Appendix A, Section XI, of the ASME Boiler and

Pressure Vessel Code [3]. The candidate KIc data were evaluated using specific

requirements that included the following: (a) satisfaction of validity requirements given

in ASTM Standard E 399 [4], (b) availability in tabular form and (c) availability of the
reference nil-ductility transition temperature (RTNDT) determined according to ASME
Code requirements [5].

2. A similar survey was carried out to compile an extended Kla database that would include

those datagiven in the EPRI report [1]. Because the ASTM Standard E 1221 [6] for KIa is
relatively new, many of the existing data were generated prior to adoption of the
standard. Thus, it was agreed that candidate Kla data would be evaluated in a more

general context, including engineering judgment of acknowledged experts and general
acceptance by the nuclear technology community.

3. Analytical tools (computer codes, etc.) were assembled to implement statistical

approaches for interpreting the Klc and K,a data. Expert professional statisticians were

brought into the study to ensure that suitable methods were being applied to the data.

4. Statistical analyses of the KIc and Kla data were performed to establish trend and

confidence curves. Results of these analyses were reported in both graphical and equation
form.

This report presents the technical basis for new statistical representations of the extended K,c

and Kh databases. The results of Steps 1 and 2 of the study are given in Section 2 with a

description of the extended KJc and KIa databases. In Section 3, the analytical approach to
developing the statistical representation of the KIc and KIa databases is discussed, followed in

Section 4 by a summary of its application to KIc and KIa where the resulting statistical models

are presented in both graphical and analytical form. Conclusions are summarized in Section



5. A complete tabulation of the extended KIc and KIa databases is given in Appendix A, and

the results of a preliminary regression analysis of the original EPRI KIc database are

described in Appendix B.

A companion HSST report [7] describes an implementation of the Klc and KIa statistical

models into the FAVOR probabilistic fracture mechanics program [8]. The FAVOR

implementation of the new models provides a statistically-derived alternative to current PTS

assessment methodology. (The latter methodology utilizes a fracture toughness model that

defines the "mean minus 2a" curve as the ASME KIc curve [8]). In ref. [7], results obtained

from applying the new FAVOR implementation to PTS assessments of selected RPVs are

compared to those generated using the current methodology.



2. EXTENDED KIcAND KIa DATABASES

2.1 KIc Database

In 1978, the ASME Section XI Task Group on Flaw Evaluation published an EPRI Special

Report [1], which includes the experimental fracture toughness data used in the construction

of the ASME KJc and KIa curves. In 1993, Nanstad et al. [2] at ORNL carried out a study to

review the technical bases applied in the establishment of the ASME Klc curve. That study

compared the data reported in refs. [1, 9 - 11] to the graphical plots in the EPRI report and in

AppendixA of SectionXI of the ASME code [3]. Errors were found in the EPRI NP-719-SR

tabular data that were corrected, and an amended database was generated and reported in

ref. [2].

The EPRI database (consisting of 171 KIc data points) includes data from 11 materials using

compact tension C(T) and wedge-open-loading (WOL) test specimens ranging in size from

IT to 11T as summarized in Table 1. Figure 1 (as adapted from ref. [12]) gives a visual

indication of the range of C(T) specimen sizes employed in constructing the database, and

Fig. 2 shows how the specimen sizes are distributed across the normalized temperature range

of-385°F = (T- RTNDT) = 50°F. All 171 KIc data points are plotted in Fig. 3a as a function of

test temperature. A frequency histogram and cumulative frequency plot of the data points

distributed across the test temperature range are shown in Figs. 3b and 3c, respectively. The

same data in Fig. 3 is replotted in Fig. 4 with the test temperature being normalized by the

reference nil-ductility transition temperature, RTNDT. The ASME KIc curve (from

Figure A-4200-1 of ref. [3]) is plotted in Fig. 4a as a solid line; the dashed line in Fig. 4a is

an extension of the ASME KIc curve using the equation given in ref. [3]. In Fig. 4b, the

highest frequency (i.e., the largest number of replicate tests) occurs at (T - RTNDT) = -170°F.

Note in Fig. 4c, that approximately 70 percent of the EPRI database occurs at normalized

temperatures of (T-RTNDT) < -100°F. In Figure A-4200-1 [3], the plotted ASME KIc curve

extends from -100°F = (T-RTNDT) = +100°F; therefore, only 30 percent of the 171 point

EPRI database falls within the range of normalized temperatures covered by the lower bound

curve in the ASME Code.

At ORNL, a survey was conducted to identify available KIc data generated more recently

from pressure vessel steels that could augment the amended EPRI database published by

Nanstad et al. [2]. Fracture toughness data subsequently included in the extended database



had to satisfy the specific validity requirements of ASTM E399 [4]. That survey produced

83 K,c fracture toughness values (obtained from refs. [13-17]) that are plotted in Fig. 5 as a

function of normalized temperature (T-RTNDT); Table 1 provides additional details

concerning the extended dataset, and the chemistry and heat treatment of the principal

materials in the dataset are given in Table 2.

The extended KIc database, compiled from the amended EPRI data and from the ORNL

survey, provided a total of 254 fracture toughness data points for input to the statistical model

development described in Section 3 and applied in Section 4. A plot of the extended KJc

database versus T-RTNDT is given in Fig. 6; the complete tabulation of the database is

included in Appendix A.

2.2 Kia Database

The ORNL survey of available KIa data produced an additional 62 fracture toughness values

[18-20] that were used to augment the 50 KIa data points [21, 22] obtained from EPRI

NP-719-SR [1]. Sources and summary details of the additional data are identified in Table 3.

A plot of the original EPRI dataset is given in Fig. 7; the additional KIa data are plotted in

Fig. 8; and the combined dataset is presented in Fig. 9. The extended database consisting of

112 fracture toughness values provided the input to the statistical model development for KIa

described in Section 4. A complete tabulation of the KIa database is included in Appendix A.



3. DEVELOPMENT OF THE STATISTICAL MODEL

3.1 Background

The Weibull distribution, introduced just over a half-century ago [23-24], has a long history

in the fields of fatigue and fracture mechanics. The original applications involved the

breaking strength of materials (e.g., cotton fibers) and the yield strength of steels g5-26].

Considering its pedigree in fracture mechanics, it is perhaps logical that the Weibull

distribution should be the primary choice as the basis for the statistical model in the present

study. Among candidate models that could also be considered are the 3-parameter gamma

distribution, the lognormal distribution, and others.

3.2 The Weibull Density

In the case of the Weibull distribution, there are three parameters to estimate, and these refer

to the location, a, of the random variate, the scale, b, of the random variate, and most

importantly, the shape parameter, c. The density (see Fig. 10) is given by

w(x\a,b,c) =— yc ' exp(-yc), (y =(x-a)/b, x> a, b,c>0) (1)

The Weibull density is derived from its distribution function

Pr(Jr<x)=l-exp(-/) (2)

When the shape parameter, c, is small, the density is reverse ./-shaped with a high probability

for c in the vicinity of c = 0+. When c= 1, the density becomes the exponential with

moderate /-shape (skewness = 2 and kurtosis = 9), and as c increases the conventional bell-

shape is reached.



3.3 Moments and Moment Ratios

The moments and moment ratio provide further insight into the Weibull model. The mean

and variance are

Mean: /u[(x\a,b,c) = a + b T(l + l/c)

Variance: ^2(x\a,b,c)^b2{r(l +2/c)-T2(l +l/c)}

where Tis Euler's gamma function. Skewness, *Jp\ , as amoment ratio,

a^yfft =/u3(x\a,b,c)/[ii2(x\a,b,c)f'2 ,

represents a measure of asymmetry. The kurtosis, |32, as a moment ratio is

P7=VA(x\<*b,c)l[n2{x\a,b,c)f .

In general, the moments of a Weibull distribution can be expressed by

tis(x\a,b,c) =bsr[tUc-r(l+l/c)]sexp(-t) dt (j=l,2,--)
Jo

For example, the third moment is

/u3(x|«,6,c) =i3[r(i +3/c)-3r(i+2/c)r(i+i/c)+2r3(i+i/c)] .

It is interesting to note that for the standard case (a = 0, b - 1):

• The mean, fi[, lies between 0 and 1 andis asymptotic to 1.0 as c —» 8 .

• The standard deviation, a, decreases from unity, and a2(x\a, b, c) ~ n2 /(6c2) as c —> 8 .



• The skewness, *Jp\ , decreases as c increases, is zero for c= 3.602 and asymptotic to

-1.13asc-»8.

• The kurtosis, P2, decreases from 9 at c= 1 to 2.71 approximately at c = 3.2 and then

increases to an asymptotic 5.4 as c —> 8 .

Table 4 and Fig. 11 present the mean, standard deviation, skewness, and kurtosis of Weibull

densities for the standard case (a =0, b = 1).

3.4 Point Estimation Procedures

3.4.1 Maximum Likelihood Method

The 3-parameter Weibull case has been studied by Bowman and Shenton [27]. In ref. [27], it

was found that the moments of the maximum likelihood estimators a, b, c for location,

scale, and shape, respectively, only exist for specific values of c. For example., the existence

of the mean requires that c > 1; the existence of the variance requires c > 2; the existence of

the skewness requires c>3; and the existence of the kurtosis requires c>4. These

requirements apply to all three maximum likelihood estimators. Thus if 2<c < 3, as is the

case for some of the data in the extended Kk database, then only the means and variances

exist. In addition, there is the problem of sample (xj, x2, ..., xN) size N. If inferences are to be

made concerning percentage points for a, b, c in the populations concerned, then N should be

250 or even 500 to achieve sharp enough intervals for each parameter. This aspect of the

maximum likelihood method directed attention to other methods of point estimation.

3.4.2 The Method of Moments

Denoting the moment estimators for the 3-parameter case by a3*, b3*, and c3*, we have

_4.104683-1.148513^+0.441326 bx -0.053025(7^)'
c' = ^n (}

where Jb^ is the sample skewness and, in terms ofthe Riemann zeta function,



X= 2£(3)/[£(2)Y'z = 1.139547.

The expression in Eq. (3) was found by regression analysis using the fact that for the Weibull

variable

The error involved in Eq. (3) is less than approximately 4% for c>l.l. For the scale

parameter

b* =y]m2/[r(l +2/c3*)-r2(l +\/c3*)]

where tn2 =^l(xj -x) IN is the second central moment of the sample about x, where

x =^ ._ Xj IN is the mean ofthe sample. Finally, for the location parameter,

a* = m[-b* r(l + l/c3*) .

The subscripts on the estimators are used to indicate that the 3-parameter case is indicated.

Approximate distributions of these estimators may be derived from simulations studies.

Examples are given in Table 5. For the simulation study in Table 5, the simulation cycle was

50,000, in batches of 10,000. Power series in terms of N'! may be set up for the moments of
a3* and b3*; however, the main point to note is that for the 3-parameter case samples as small

as 20 will be linked to excessive values of the skewness and kurtosis as discussed in [28].



3.5 The Problem of the Location Parameter, a

If the shape parameter, c, is given, then one may consider the 2-parameter case, namely

w(x\a,b)= -y*~l exp(-/),
b

where y=(x-a)lb. From Sect. 3.4.2, we have the moment estimator for the scale

parameter as

62* =N/w2/[r(l +2/c)-r2(l +l/c)] ,

and for the location parameter

a* =m[-b* r(l + l/c) .

The moment estimators for the 2-parameter case are much simpler than for the 3-parameter

model. For the latter, c3* is linked to both the scale and shape estimators. These linkages

account for the increased complexity in the 3-parameter case.

Moments of b2* and a2* may be simulated by generating Weibull random variables (see

Table 6). The skewness is quite small (N> 15), and acceptable percentage points may be

derived by the procedures given in Bowman and Shenton [29-30]. For the simulations in

Table 6, a cycle of 50,000 was used. For example, in the case of sample size N = 50, a

resulting 250,000 random numbers from a Weibull distribution were used. Moments of these

were also computed to ensure that the samples were taken from the given Weibull

distribution. The NAG library [31] subroutine for random numbers from a Weibull

distribution was used in the simulation.

A check on the above procedure is needed. Moments of sample moments or sample moment

functions can be developed using Pade approximants based on infinite series. Thus a moment

function t(m), such as ^m2 , Jb[, 62, etc., may be expanded as

10



t(m) =t0 +tx/N+t2/N2--- (tf-»«>),

where (ts),s =0,1,---, are not functions of N. Pade sequences { nf lns }, where ns * and
ns are polynomials in TV of degrees s-\ and s , respectively, can be derived [32-34]. An

example of a moment series is given in Table 7; the series possibly diverges and loss of

accuracy may occur for terms ri\ s> 12. A comparison of assessments by simulation and

Pade for a2* and b2* are given in Table 8; some percentage points are also included. The

agreement between the Pade and simulations assessment is most satisfactory, exceeding N =

50.

Note that a2* is positively biased and b2* is negatively biased. Note also that moments have

been set up under the assumption that a = 0, b = 1, i.e., the standard case. These moments

may be converted to a = a0, b = b0 as follows:

for the mean

rf(a* Iao> h) = ao + Wa*|0,1)
rf(b*\ao,bo)=byi(b*\0,l)

and for the variance

jU2(a*\a0,b0) =b02<u2(a*\0,l)

{i2(b*\a0,b0) =b02/u2(b*\ 0,1)

11



4. APPLICATION OF THE STATISTICAL MODEL

4.1 The KIc Model

In the current study, the problem was to apply a Weibull model to the extended KIc database

in which the test temperature has been normalized by the reference-nil-ductility-transition

temperature, RTNDT. A previous study [35] investigated the EPRI KIc database in the context

of the Master Curve [36-38] where the test temperature is normalized by the reference

temperature, T0, and size corrections are applied to the toughness data to allow the

comparison of data from a range of specimen sizes. A Weibull distribution is assumed in

ref. [38] in which the shape parameter is fixed at 4 and the location parameter is fixed at the

experimentally-determined value of 18.2 ksi-Vin. (20 MPa-Vm). The shape parameter of 4 is
derived [36] from a theoretical treatment of cleavage initiation in which "weakest-link"

mechanisms are assumed to dominate the scatter in the data at a given test temperature. This

assumption allows a relationship to be developed between the probability of failure by

cleavage and the stress and strain fields ahead of the crack front as characterized by the

applied stress-intensity factor Kh When two parameters are fixed, the Weibull model

becomes a 1-parameter Weibull distribution in which the density is described by

w(x\b) =-y3exp(-/) (y =(x-1 &.2)/b,x>18.2;6 >0)
b

where in [38] b = (K0-Kmin) and K^ = 18.2ksi-Vin. (20 MPa-Vm). With the 1-parameter
Weibull distribution, the scale parameter, b or specifically ^0, is estimated in [38] with a

maximum likelihood point estimator.

Due to the heterogeneity of the KIc database with its range of materials and specimen sizes

(in some cases within the same grouping of replicate tests when normalized by RTNDT), it was

not clear that the theoretical treatment developed in previous studies necessarily accounted

for all of the dominant modes that produced the observed scatter in the data. The decision

was therefore taken to develop a strictly statistical model to characterize the trends and

scatter in the extended KIc database.

12



The recent study by Bowman and Shenton [27] showed that for the asymptotic moment

profile ofmaximum likelihood estimators to exist, the shape parameter c must be greater than

4. Furthermore, sample sizes at a single normalized temperature must be greater than

approximately 250. It is, therefore, not feasible to attempt to develop a full 3-parameter

Weibull model with the small sample sizes in either the KIc or KIa databases. In the following,

maximum likelihood estimators are designated a, b,and c for the parameters a, b, and c,

respectively.

In a preliminary study of the original 171 point EPRI dataset, the data were divided into six

sets as follows: set 1 with 31 data points, set 2 with 41 points, set 3 with 47 points, set 4 with

17 points, set 5 with 16 points, and set 6 with 19 points. Different partitions were

investigated, but these 6 divisions gave more uniform results than others. Between a value of

20 and the minimum value of each set, three trial values of a were selected. Maximum

likelihood estimators b and c were computed given a trial value of a. Distributional

properties of b and c are much better than those of the 3-parameter case. The asymptotic

variance of c is

Var(c) « c2(0.6079/ N+ 3.8398/JV2) (c -» °°)

and that for b is

Var(b)~ —
c

'1.1087 0.3624-1.9881/c + 1.8429/c2^
+ ;

N N2
v

(c—>°°)

where N is the sample size. The values of b were different for each set, but the c values were

between 2 to 3.

The focus of the analysis then turned to estimating the location parameter, a , as a function of

the normalized temperature. The maximum likelihood estimators are not valid since the value

of c must be greater than 4 for the asymptotic moment profile of maximum likelihood

estimators to exist. There are no such restrictions on the moment estimators for c > 0.

13



Define Xi = T(l +1 / c) and X\ = T(l + 2 / c), with a2* and b2* the estimators, then

62* =^m2l(X2 - X^) , a2* =m[ -b2* Xl .

To determine which setof parameters a, b, and c gives the best fit, a "%2 goodness of fit" test
was applied. Sturges [39] proposed the formula 1 + log n to estimate the number of groups

within each dataset, where n is the sample size.

The extended KIc dataset of 254 data points was divided into 16 sets (see Table 9) and the

following procedure was applied:

• For the 16 sets, a2* and b2* were calculated for 25 values of c in the interval 1.3(0.1)3.7 .

The resulting moment estimators were tested to insure that 18.2 < a2* <Datamin, where

Datamin is the smallest data value in the set. Eight to twenty values of a2* (given c) were

accepted according to the results of the test for each of the 16 sets.

• For each set, the data were partitioned into 4 groups to test the hypothesis that the data

came from a Weibull density with estimates a2*, b2*, and given c. Turning to the question

of goodness of fit of the 2-parameter Weibull distribution (c known), the %2 values for

one degree of freedom are 3.8415 at the 95% level, 6.6349 at 99%, 7.8794 at 99.5%, and

10.8276 at 99.9%.

• In Table 10, the resulting %2 values are given for the 16 sets at selected values of c(T)

where T is the average (T -RTNDT) for the set. All of the sets produced acceptable %2

values, except for set 13 which was excluded from the final analysis.

• For the many combinations of the triplet (a2*, b2*, c) from which to choose, the selected

c value was chosen to obtain an a2* nearest to the preliminary study of the lower

boundary.

The notation cmin(Ac)c designates a sequence ofovalues from cT!in tocmax in increments ofAc .

14



• As noted in the preceding section, a2* is positively biased and b2* is negatively biased for

small samples. An almost unbiased estimator b2**(T) can be derived from

b2*(T)IE(b2*lb). An almost unbiased estimator a2**(T) follows by using b2**(T).

Table 10 includes values of E(b2*/b), derived from Pade sequences relating to the series

development of E(b2*). For example, where c = 2.1, N= 12, from Table 8b, the E(b2*lb)

is 0.935.

The data given in Table 10 (excluding set 13) formed the basis for the construction of the

final model. Curve fitting the approximate unbiased estimators a2**(T) and b2**(T) and c(T)

produced the following model definition for Kk:

a**(AT) =10.8957 +23.4192 exp(0.0023 (A7)) [ksi->/im]

b**(AT) =14.7582 +42.6312 exp(0.0124(A7/)) [ksi-VirT] (4)
c(AT) =2.03025 + 0.4983 exp(0.0135(Ar))

where AT = (T-RTNDT) is in °F. The new statistical model for the extended KIc is, therefore,

W(x|o**(AT) ,&**(AT) )=*?Z* yc(ATHexp(-/(Ar)), (y =(x-a**(AT) )/b**(AT) ).
b**(AT)

where x = KIc in ksi-Vin.

To calculate the percentiles (e.g., x0.s, xo.95, etc.), from Eq. (2) one obtains

x05(AT)= {-\n(0.5)}Vc(AT)b**(AT) +a**(AT),
x095(AT) ={-ln(0.05)}l/c(AT)b**(AT) + a**(AT), (5)

xp(AT) ={-]n(l-p)fc(AT)b2**(AT) +a**(AT). (0<p<l)

Figure 12 shows a plot of the lower boundary curve, a2**, and the 1%, 50%o, 95%>, 99%>, and

99.5%o curves. Above the 99.5 percentile, there are 3 points where the expected number is 2.

Above the 99%. curve, there are 5 points where the expected number is 3. Above the 95%.

15



curve, there are 14 points where the expected number is 13. For the 50%. curve, there are

119 points against the expected value of 127. Considering the small sample for the sets

involved, the fit of 254 data points to the Weibull model is considered satisfactory.

4.2 The KIa Model

The procedures summarized in Section4.1 were then applied to Kla. The extended Kia dataset

of 112 data points was initially divided into 13 sets for a preliminary analysis. To obtain an

acceptable degree of smoothness in the resulting point estimates for a2* and b2*, the data

were subsequently repartitioned into 4 sets (see Table 11), and the procedure applied to KIc
was then repeated:

• For the 4 sets, a2* and b2* were calculated for 25 values of c in the interval 1.3(0.1)3.7.

The resulting moment estimators were tested to insure that 18.2 < a2* <Datamin, where

Datamin is the smallestdata value in the set. Approximately twenty values of a2* (given c)

were accepted according to the results of the test for each of the 4 sets.

•

•

•

For each set, the data were partitioned into 4 groups to test the hypothesis that the data

came from a Weibull density with estimates a2*,b2*, and given c. The required %2 values

for one degree of freedom are 3.8415 at the 95% confidence level, 6.6349 at 99%, 7.8794

at 99.5%, and 10.8276 at 99.9%.

• In Table 12, the resulting %2 values are given for the 4 sets at a fixed value of c. All of the

sets produced acceptable %2 values.

For the many combinations of the triplet (a2*, b2*, c) from which to choose, the selected

c value was chosen to obtain an a2* nearest to the minimum value of each set. It was

determined that a fixed value of c = 2.5 provided the best result for positioning a2*

correctly.

As noted in the preceding section, a2* is positively biased and b2* is negatively biased for

small samples. The generalized equation given in AppendixC was applied to estimate

values for E(b2*lb) which in turn were used to calculate the almost unbiased estimator

b2**(T). The almost unbiased estimator a2**(T) follows by using b2**(T).
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The data given in Table 12 formed the basis for the construction of the final model. Curve

fitting (see Fig. 13) the approximate unbiased estimators a2**(T) and b2**(T) produced the

following model definition for KIa:

a**(AT) =24.584 +15.352 exp(0.012639(A7/)) [ksi-VirT]

b**(AT) =36.201 +0.060307 (AT) [ksi-Viin~] (6)
c =2.5

where AT- (T-RTNDT) is in °F. The new statistical model for the extended KIa is, therefore,

w(x\a**(&T) ,b**(&T) )=bJ(l y-5exp(-/5), (y =(x-a**(AT) )/b**(AT) ).

wherex = KIa in ksi-Vin.

To calculate the percentiles forxo.5, xo.95, etc., Eqs. (5) can again be used

jc05(Ar)={-ln(0.5)}1/256**(AJ) +a**(AT),

x095(AT) = {-\n(0.05)f2-5b**(AT) +a**(AT),

xp(AT) ={-\n(l-p)}U2-5b**(AT) +a**(AT). (0<p<l)

Figure 14 shows a plot of the lower boundary curve, a2**, and the 1%>, 50%, 95%>, 99%>, and

99.5%o curves. Above the 99.5% curve, there is 1 point where the expected number for iV=

112 is 1. Above the 99% curve, there is 1 point where the expected number is 2. Above the

95% curve, there are 7 points where the expected number is 6. For the 50% curve, there are

57 points above and 55 below. Considering the small sample for the sets involved, the fit of

112 data points to the Weibull model is considered satisfactory.

17



5. CONCLUSIONS

This report has presented the technical basis for new statistical representations of the

extended K]c and KIa databases. This effort was performed in the context of a probabilistic

methodology appropriate for use in an overall effort by the Nuclear Regulatory Commission

(NRC) to update its regulatory guidance for pressurized-thermal-shock (PTS) transients.

These new representations for KIc and KIa were developed through the application of rigorous

statistical procedures applied to extended fracture toughness databases for RPV steels.

In summary, the new statistical models have the following analytical forms:

KIe Density, w(x\ a2**(AT),b2**(AT))

w(x\a**(AT) ,b**(AT) ) =
c(AT)

b**(AT)
,c(A7")/^'expC-/1*"), (y = (x-a**(AT) )/b**(AT) )

where the parameters of the distribution are calculated from Eq. (4)

a**(AT) =10.8957 +23.4192 exp(0.0023 (AT)) [ksi-^iiT]

b**(AT) =14.7582 +42.6312 exp(0.0124(AJ)) [ksi-VirZ]
c(AT) =2.03025 + 0.4983 exp(0.0135(A7/))

with x = KIc in ksi-Vin., A7/= (T-RTNDT) is in °F.

Kia Density, w(x\ a2**(AT),b2**(AT))

w(x\a**(AT) ,b**(AT) ) =
2.5

b**(AT)
y-5exp(-/-5), (y = (x-a**(AT) )/b**(AT) )

where the parameters of the distribution are calculated from Eq. (6)

a** (AT) =24.584 +15.352 exp(0.012639(A7)) [ksi-ViZ]

b**(AT) = 36.201 +0.060307 (AT) [ksi-VIr7]
c =2.5

withx =K,a inksi-Vin., AT= (T-RTNDT) is in °F.



Example Problem Applying the New Statistical Model for KIc

As an example of how to apply the new statistical model for KIc, let the test temperature be

T= -5 °F for a material with RTNDT = 5 °F; therefore, AT = T-RTNDT = -10 °F. We then

calculate the parameters of the model by Eq. (4)

a**(AT) =10.8957 +23.4192 exp(0.0023 (AT)) [ksi-VnT]

b**(AT) =14.7582 +42.6312 exp(0.0124(A7/)) [ksi-VhT]
c(AT) =2.03025 + 0.4983 exp(0.0135(A7/))

a2**(-10) =10.8957 +23.4192 exp(0.0023 (-10)) =33.78241 [ksi-^nT]
Z>**(-10) =14.7582 +42.6312 exp(0.0124(-10)) =52.41774 [ksi-Vim]
c(-10) =2.03025 + 0.4983 exp(0.0135(-10)) =2.46562

The median value of K]c representing a 50%> cumulative probability of failure is then x0_5.

From Eq. (5) with/? = 0.5

x (AT) = {-\n(l-p)y/c(AT)b**(AT) +a**(AT). (0 </><!)

x05(-10) ={-ln(l-0.5)}1/24656252.41774 +33.78241 =78.96 [ksi-VinT]

For a 1% cumulative probability of failure, the corresponding value of Kk is x0.oi calculated

fromEq. (5) with/? = 0.01

x001(-10) ={-ln(l-0.01)}1/24656252.41774 +33.78241 =41.90 [ksi-^iT]

Additional properties of the distribution may also be calculated, for example the mean and

standard deviation at this normalized temperature are

Mean:

Klc(mean)(-I0) = a**(-10) +b**(-l0) r(l +l/c(-10)) =

Standard Deviation:

80.28 [ksi-Vin".]

cr(-10) =b2**(-lO)yl{T(l +2/c(-10))-T2(l +l/c(-10))} = 20.14 [ksi-Vim]

Note that for an asymmetric distribution, the median and the mean are not the same.
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Table 1. Summary ofKIc Extended Database

Temp. (T-RTNDT) No. of

Specimen Size Range Range Data

Material Source Type Range (°F) (°F) Points

EPRI Database EPRI NP-719-SR

1 HSSTOlsubarc Shabbits (1969) C(T) 1T-6T -200 to -50 -200 to -50 8

weldment

. 2 A533B CI. 1

subarc weld

Shabbits (1969) C(T) 1T-8T -200 to 0 -200 to 0 8

3 HSST 01 Mager (1970) C(T) IT -150 -170 17

4 HSST 03 Mager (1970) C(T) IT -150 -170 9

5 A533B CI. 1 Mager (1969) WOL 1T-2T -320 to -

150

-385 to-215 13

6 HSST 02 Mager (1969) WOL & C(T) 1T-2T -200 to 0 -200 to 0 41

6 HSST 02 Shabbits (1969) C(T) 1T-11T -250 to 50 -250 to 50 28

7 A533B CI. 1

weldment

Mager (1969) WOL 1T-2T -320 to -

200

-275 to-155 10

8 A533 B CI. 1

weldment/HAZ

Mager (1969) WOL 1T-2T -320 to -

200

-320 to -200 6

9 A508 C1.2

European Forging
Mager (1969) WOL 1T-2T -320 to -

100

-370 to-150 12

10 A508 Class 2 unpublished C(T) 2T-6T -150 to 0 -201 to-51 9

11 A508 Class 2 unpublihsed C(T) 2T-8T -125 to-75 -190 to-30

Total

10

171

Additional Additional Data

Data

12 HSSI Weld 72W NUREG/CR-5913. C(T) lT^tT -238 to 5 -229 to 14 12

13 HSSI Weld 73W NUREG/CR-5913 C(T) lT^T -238 to-58 -209 to -29 10

14 HSST Plate 13A NUREG/CR-5788 C(T) 1T-4T -238 to-

103

-238 to-4

-229 to -94 43

15 A508 CI. 3 ASTM STP 803 Bx2B C(T) 1T4T -225 to 9 6

16 Midland Nozzle

Course Weld

NUREG/CR-6249 C(T) IT -148 to-58 -200 to-110 6

17 Midland Beltline NUREG/CR-6249 C(T) IT -148 -171 2

18 Plate 02 4* Irr.
Series (68-71W)

NUREG/CR-4880 C(T) IT -148 to -

139

-148 to-139

Total

4

83

Grand Total 254

REFERENCES FOR TABLES 1 AND 2

EPRI Special Report, 1978, Flaw Evaluation Procedures: ASME Section XI, EPRI NP-719-SR, Electric Power
Research Institute, Palo Alto, CA.

W. O. Shabbits, W. H. Pryle, and E. T. Wessel, Heavy Section Fracture Toughness Properties ofA533, Grade B,
Class-1 Steel Plate and Submerged Arc Weldments, HSST Technical Report 6, WCAP-7414, December
1969.

T. R. Mager, F. O. Thomas, and W. S. Hazelton, Evaluation by Linear Elastic Fracture Mechanics ofRadiation
Damage to Pressure VesselSteels, HSST Technical Report 5, WCAP-7328, Revised, October 1969.

T. R. Mager,Fracture Toughness Characterization Study ofA533, Grade B, Class-1Steel, HSST Technical Report
10, WCAP-7578, October 1970.

R. K. Nanstad, F. M. Haggag, and D. E. McCabe, Irradiation Effects on Fracture Toughness of Two High-Copper
Submerged-Arc Welds, HSSI Series 5, USNRC Report NUREG/CR-5913 (ORNL/TM-12156/V1 and V2)
Vol. 1 and 2, Oak Ridge National Laboratory, Oak Ridge, TN, October 1992.

D. E. McCabe., ,4 Comparison of Weibull andfi]c Analysis ofTransition Range Fracture Toughness Data, USNRC
Report NUREG/CR-5788 (ORNL/TM-11959), Oak Ridge National Laboratory, Oak Ridge, TN, January
1992.

T. lawadate, Y. Tanaka, S. Ono, and J. Watanabe, "An Analysis of Elastic-Plastic Fracture Toughness Behavior for
JIc Measurements in the Transition Region," Elastic-PlasticFracture: Second Symposium, Vol. II-Fracture
ResistanceCurves andEngineeringApplications, ASTM STP 803, (1983) II531-II561.

24



D. E. McCabe, R. K. Nanstad, S. K. Iskander, R. L. Swain, Unirradiated Material Properties of Midland Weld
WF-70, USNRC Report NUREG/CR-6249 (ORNL/TM-12777), Oak Ridge National Laboratory, Oak
Ridge, TN, October 1994.

J. J. McGowan,R. K. Nanstad, and K. R. Thorns, Characterization ofIrradiated Current-Practice Welds and
A533 Grade B Class 1 Platefor NuclearPressure Vessel Service,USNRC Report NUREG/CR-4880 (ORNL-

6484/V1 and V2), Oak Ridge National Laboratory, Oak Ridge, TN, July 1988.

Table 2. Chemistry and Heat Treatment of Principal Materials

Specificatio
n

Source

Chemistry - wt (%) Heat

Material ID C P Mn Ni Mo Si Cr Cu S Al Treatment

HSST 01 A533B CI. 1 Mager
(1970)

.22 .012 1.48 .68 .52 .25
- -

.018 -
Note 1

HSST 02 A533B CI. 1 Mager
(1969)

.22 .012 1.48 .68 .52 .25 • •
.018 *

Note 2

HSST 03 A533B CI. 1 Mager
(1970)

.20 .011 1.26 .56 .45 .25 .10 .13 .018 .034 Note 3

HSST 02 A533B CI. 1 Shabbits

(1969)
.22 .012 1.48 .68 .52 .25

- -
.018 •

Note 4

HSST 01 A533B CI. 1 Shabbits .12 .014 1.35 .65 .52 .23 - - .012 - Note 5

subarc weld (1969)
B&W subarc A533B CI. 1 Shabbits .10 .009 1.77 .64 .42 .36 - - .015 - Note 6

weldment (1969)
PW/PH A533B CI. 1 Mager .09 .019 1.25 1.08 .52 .23 .05 .22 .13 .037 Note 7

weldment (1969)
MD07 A508 CI. 2 Mager .18 .009 1.16 .72 .51 .24 .28 - .10 - Note 8

European Ring forging (1969)
-

A533B

CI. 1

Mager
(1969)

.19 .012 1.37 .52 .45 .25 .13 .15 .016 .048 Note 9

72W A533B weld 5788 .09 .006 1.66 .60 .58 .04 .27 .23 .006 -

73W A533B weld 5788 .10 .005 1.56 .60 .58 .04 .25 .21 .005 -

Note

1.

s:

Normalizing: 1675 °F 4 hr, air cooled
Austentizing: 1600 °F 4hr

Quenching: Water quench
Tempering: 1225 °F 4 hr, furnace cooled
Stress Relief: 1150 °F 40 hr, furnace cooled

2. Normalizing: 1675 °F 4 hr, air cooled
Austentizing: 1600 °F 4hr

Quenching: Water quench
Tempering: 1225 °F 4 hr, furnace cooled

Stress Relief: 1150 °F 40 hr, furnace cooled

3. Normalizing: 1675 °F 12 hr, air cooled

Austentizing: 1575 °F 12 hr

Quenching: Water quench
Tempering: 1175 °F 12 hr, furnace cooled

Stress Relief: 1125 °F 40 hr, furnace cooled

4. Normalizing: 1675±25°F 4hr

Austentizing: 1520 °F- 1620 °F 4hr

Quenching: Water quench.
Tempering: 1200 °F- 1245 °F 4 hr, air cooled

Stress Relief: 1150±25°F 40 hr, furnace cooled to 600 °F

5. Post Weld: 1150±25°F 12 hr

Intermediate 1100±25°F 15 min
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6. Post Weld 1100 °F-1150 °F 12 hr

Intermediate 1100 °F -1150 °F 15 min

7. 620 °C 27 hr, air cooled
8. 925 °C 5hr

Quenching: Water quench
650 °C 3 hr, furnace cooled
620 °C 24 hr, air cooled

9. 910 °C 8hr

Quenching: Water quench
680 °C 10 hr, furnace cooled
850 °C 8hr

Quenching: Water quench
690 °C 8 hr, air cooled
620 °C 24 hr, air cooled

Table 3. Summary ofKIa Extended Database

Test Temp. (T-RTNDT) No. of

Specimen Size Range Range Data Points
Material Source Type Range (°F) (°F)

EPRI Database EPRI NP-719-SR
1 HSST 02 Ripling (1971) C(T) 1T-3T -150 to 121 -150 to 121 50

Additional Additional Data

Data

2 HSSI Weld 72W NUREG/CR-5584 C(T) crack arrest -78 to 41 '-68 to 51 32

3 HSSI Weld 73W NUREG/CR-5584 C(T) crack arrest -78 to 59 -48 to 89 26
4 MW15J NUREG/CR-6621 C(T) crack arrest -4 to 50 -36 to 18 4

Total = 112

REFERENCES FOR TABLE 3

EPRI Special Report, 1978, Flaw Evaluation Procedures: ASME Section XI, EPRI NP-719-SR, Electric Power
Research Institute, Palo Alto, CA.

E. J. Ripling and P. B. Crosley, "Strain Rate and Crack Arrest Studies," HSST Sh Annual Information Meeting,
Paper No. 9, 1971.

S. K. Iskander, W. R. Corwin, R. K. Nanstad, Results of Crack-Arrest Tests on Two Irradiated High-Copper Welds,
USNRC Report NUREG/CR-5584 (ORNL/TM-11575), Oak Ridge National Laboratory, Oak Ridge, TN,
December 1990.

S. K. Iskander, C. A. Baldwin, D. W. Heatherly, D. E. McCabe, I. Remec, and R. L. Swain, Detailed Results of
Testing Unirradiated and Irradiated Crack-Arrest Toughness Specimens from the Low Upper-Shelf
Energy, High Copper Weld, WF-70, NUREG/CR-6621 (ORNL/TM-13764) under preparation.

S. K. Iskander, R. K. Nanstad, D. E. McCabe, and R. L. Swain, "Effects of Irradiation on Crack-Arrest Toughness of
a Low Upper-Shelf Energy, High-Copper Weld," Effects of Radiation on Materials: Iff International
Symposium, ASTMSTP 1366, M. L. Hamilton, A. S. Kumar, S. T. Rosinski, and M. L. Grossbeck, eds.,
American Society for Testing and Materials, to be published in 1999.

26



t
o

--
0

b
b

o
b

\
j
i
k

)
b

b
o

a
i
i
s
)
b

b
o

c
\
A

k
)
b

b
o

<
3

N
J
i

t
o

o
b

o
o

N
J
^

r
o

o
b

o
b

N
^

-
k

)

i
_
>

w
t
_
>

w
^
_
>

t
_
>

w
^
_
>
w
O
O
O
O
O
O
O
O
O
O
o
o
o
o
o
o
o
o
o
o
o

0
*

0
^

0
^

0
*

0
^

0
^

0
*

0
^

o
^

o
*

o
*

o
*

o
^

o
*

>
o

^
o

^
o

^
^

o
b

o
c

o
w

w
w

u
m

w
s
i
m

w
m

m
i—

i—
»—

o
o

"
-
*

-
-
,
v

^
v

0
4

^
0

<
-
f
i
0

4
^

-
J
O

^
K

)
K

)
K

)
0

-
J
4

^
>

0
4

^

o
o

o
o

o
o

o
o

o

o
o
o
o
o
o
o
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
o
p

i
o

t
o

i
o

k
)
i
o

i
o

i
o

i
o

k
)
k

)
w

w
u

u
u

j
j
i

4^
L

n
L

/i
b

\
--

J

-~
J
>

—
<

y
>

o
4

^
*

0
<

-
')

O
O

N
l
>

J
O

-
J
<

-
r
t
4

^
4

^
w

O
n

~
J

^
O

4
^
-

4
^-

t-
H

0
0

>
—

'
O

W
O

-
v
O

O
O

t
O

O
s
U

i
O

^
V

O
U

J
r
O

-
J
O

N
t
O

O
K

)
4

^
C

T
\

*
0

K
)

O
n

-
J
^
A

v
I
W

^
U

w
W

n
O

v
)

I
I

I
I

•
I

•
•
•
•
1

I
I
I
I
I

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O

O
O

O
O

O
O

O
O

O
^

"
-
-

o
n

c
r

•s f
t

1
3

•^
s

v^
-^

^
/

•t
;

**
^

^
>

^
•*-

>
-*

^
^

-
f

^*
>*

^
-^

**
-/

uv
O

0
00

00
OO

00
00

00
00

oo
*

o
*

0
%

^
i^

»
U

W
W

W
I
O

M
M

M
m

t—
>—

•—
0

0
0

0
*

0
*

0
*

0
*

0
0

0
0

0
0

0
0

0
0

0
*

0
^
-
4

^
I
-

ft
W

H
.
(
o

v
j
a
1

^
b

J
o

o
o

o
\
U

M
O

o
o

\
U

M
O

o
u

i
u

o
o

o
»

u
i
w

v
o

O
M

-
o

l
q

W
O

J
i
~

J
O

i
-
'
b

J
M

M
O

v
l
^
i
O

^
O

O
H

.
^
x
j
o

m
(
O

U
i
O

\
M

W
O

\
^
v
]
l

"J t
-
t
-

p* D f
t o
n

f
t

H
-

O

'—
4*

.
4

^
4

^
4

*
U

)
C

T
s

U
\

U
)

i—
•

O
J
W

U
U

W
M

N
W

h
-
k
-

o
o

\
D

v
l
W

U
M

0
O

U
l
W

«
a

i
W

«
U

l

o
•—

>
--

<
-n

i—
•

—
]

M
O

)
^
U

i
C

>
-
«

J
*

0
(
O

U
l

^
M

O
-
U

O
o

a
o

W
r
-T

O

u
w

u
w

u
u

u
M

W
W

I
O

I
o

t
o

W
W

M
W

M
W

I
O

N
I
o

w
i
o

u
u

u
^

J
i
a

.
>

_
h

-
h

-
h

-
o

o
o

*
O

*
O

*
O

0
0

0
0

0
0

-
J
-
J
-
J
-
-
J
-
J
-
-
J
-
J
-
-
J
-
J
0

0
*

O
O

r
O

^
O

0
0

K
>

X
»

H B S3 a V 1 a o (t
i S
'

5" s B" D rt
>

S
i

3 a B o 3 5*
' 5 ff

il D



Table 5. Simulation Study of 3-Parameter Weibull Density (a = 0, b = 1)

c N Mean a VB, 3,
1.5 20 a,* -0.1778 0.2933 -3.0524 56.9235

bS 1.2008 0.3801 1.8130 23.2091

c3* 2.0087 0.8358 7.3181 288.2254

50 a,* -0.0808 0.1674 -0.4247 3.6671

b3* 1.0928 0.2311 0.3559 3.3975

c3 1.7139 0.4113 0.8262 4.5043

2.0 50 a3* -0.0628 0.1884 -0.7211 4.6178

b,* 1.0653 0.2265 0.6018 4.1276

c3* 2.2294 0.5753 1.1289 6.1499

3.0 50 < -0.0600 0.2774 -2.7998 50.5081

bf 1.0583 0.2954 2.4757 40.3715

C3* 3.3110 1.1351 3.8903 88.6025

4.0 50 a,* -0.0996 1.1047 -94.6727 13422

bS 1.0971 1.1088 93.6296 13234

c3* 4.5401 5.8649 60.7017 12151
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Table 6. Moments of Moment Estimators a2*, b2* Given c by Simulation (a = 0, b = 1)

c N u,' a

*

P2 u,'

b:
a

*

Vp, P2
1.1 15 0.0748 0.1941 -0.5312 4.5585 0.9220 0.2885 0.8453 4.3463

30 0.0403 0.1456 -0.5520 4.3182 0.9578 0.2142 0.6473 3.8629

50 0.0247 0.1175 -0.5439 4.0882 0.9745 0.1706 0.5449 3.6760

1.5 15 0.0544 0.1683 -0.1981 3.5019 0.9394 0.2248 0.5264 3.4893

30 0.0285 0.1214 -0.1964 3.3790 0.9682 0.1628 0.3800 3.2782

50 0.0172 0.0956 -0.1954 3.2947 0.9812 0.1279 0.3137 3.2221

2.0 15 0.0468 0.1608 -0.3695 3.1557 0.9470 0.1896 0.3147 3.1570

30 0.0242 0.1140 -0.4315 3.1263 0.9726 0.1353 0.2156 3.0787

50 0.0145 0.0889 -0.4358 3.0928 0.9839 0.1054 0.1755 3.0710

2.5 15 0.0445 0.1615 0.0087 3.0314 0.9496 0.1755 0.1949 3.0408

30 0.0229 0.1139 0.0025 3.0458 0.9742 0.1242 0.1267 3.0184

50 0.0137 0.0884 0.0047 3.0355 0.9848 0.0964 0.0991 3.0223

3 15 0.0441 0.1648 0.0077 2.9666 0.9504 0.1707 0.1323 2.9891

30 0.0226 0.1161 0.0091 3.0047 0.9747 0.1204 0.0801 2.9939

50 0.0135 0.0900 0.0153 3.0092 0.9850 0.0933 0.0573 3.0022

3.5 15 0.0444 0.1688 -0.0131 2.9294 0.9505 0.1702 0.1080 2.9604

30 0.0228 0.1190 -0.0008 2.9797 0.9747 0.1200 0.0609 2.9796

50 0.0136 0.0922 0.0099 2.9940 0.9850 0.0929 0.0387 2.9919

4.0 15 0.0450 0.1730 -0.0423 2.9103 0.9502 0.1718 0.1075 2.9447

30 0.0231 0.1220 -0.0181 2.9644 0.9746 0.1212 0.0589 2.9700

50 0.0138 0.0945 -0.0027 2.9852 0.9849 0.0939 0.0350 2.9861

4.5 15 0.0458 0.1770 -0.0746 2.9046 0.9497 0.1743 0.1206 2.9394

30 0.0235 0.1250 -0.0385 2.9563 0.9743 0.1231 0.0671 2.9644

50 0.0140 0.0969 -0.0185 2.9808 0.9848 0.0954 0.0404 2.9835

5.0 15 0.0465 0.1807 -0.1072 2.9091 0.9492 0.1772 0.1411 2.9430

30 0.0239 0.1278 -0.0601 2.9538 0.9740 0.1253 0.0810 2.9631

50 0.0143 0.0991 -0.0355 2.9797 0.9846 0.0972 0.0510 2.9835
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Table 7a. Asymptotic Series for Moments ofa2* when c = 2.1, a = 0, b = I

Ns Hi' U? Ui U4

1 0.67891756E+00 0.39190262E+00 0.00000000E+00 O.OOOOOOOOE+00

2 0.12065197E+00 -0.129363 88E+00 -0.62858268E-01 0.46076300E+00

3 0.22596801E+00 0.39926399E+00 0.65259996E+00 0.87633222E-01

4 -0.94143717E-01 -0.57533240E+00 -0.12345449E+01 -0.45578535E+00

5 0.96779137E+00 0.23255354E+01 0.39983611E+01 0.34831723E+01

6 -0.10428443E+02 -0.24242021E+02 -0.38215069E+02 -0.40062234E+02

7 0.66616458E+02 0.16238149E+03 0.26774912E+03 0.28350636E+03

8 -0.82602889E+03 -0.18977491E+04 -0.30275244E+04 -0.34750509E+04

9 0.10768022E+05 0.24561289E+05 0.39176514E+05 0.46256651E+05

10 -0.15348588E+06 -0.34850034E+06 -0.55694455E+06 -0.67302490E+06

11 0.26402856E+07 0.59300523E+07 0.94425785E+07 0.11655858E+08

12 -0.49216457E+08 -0.11011743E+09 -0.17548365E+09 -0.21976221E+09

13 0.10176100E+10 0.22674047E+10 0.36138770E+10 0.45838897E+10

14 -0.23129054E+11 -0.51357576E+11 -0.81872046E+11 -0.10495521E+12

15 0.56876611E+12 0.12598299E+13 0.20096260E+13 0.25992204E+13

16 -0.15107494E+14 -0.33404345E+14 -0.53326454E+14 -0.69525005E+14

17 0.42259638E+15 0.93595653E+15 0.14998528E+16 0.19721783E+16

18 -0.14408778E+17 -0.31119021E+17 -0.48868476E+17 -0.63863669E+17

19 0.32275602E+18 0.77677964E+18 0.13275018E+19 0.18288223E+19

20 -0.25705929E+20 -0.49572875E+20 -0.72137529E+20 -0.89681505E+20

Table 7b. Asymptotic Series for Moments of b2*when c = 2.1, a = 0, b = 1

at* H,' M>2 M-3 U4

i -0.76653772E+00 0.53307543E+00 0.00000000E+00 0.00000000E+00

2 -0.13622315E+00 -0.31513378E+00 0.42414305E+00 0.85250825E+00

3 -0.25513113E+00 0.30142190E+00 -0.54175408E+00 -0.54631884E+00

4 0.106293 77E+00 -0.62227956E+00 0.10815229E+01 0.42079527E-01

5 -0.10926932E+01 0.22788332E+01 -0.34612660E+01 0.14272741E+01

6 0.11774324E+02 -0.25259961E+02 0.35523787E+02 -0.28133440E+02

7 -0.75213885E+02 0.16823523E+03 -0.25469337E+03 0.21130414E+03

8 0.93263503E+03 -0.19779396E+04 0.28792702E+04 -0.27350607E+04

9 -0.12157728E+05 0.25731005E+05 -0.37781724E+05 0.38011792E+05

10 0.17329456E+06 -0.36501582E+06 0.53803912E+06 -0.56144208E+06

11 -0.29810372E+07 0.62249534E+07 -0.91590334E+07 0.989723 54E+07

12 0.55568265E+08 -0.11566618E+09 0.17061368E+09 -0.18861713E+09

13 -0.11489413E+10 0.23823551E+10 -0.35170950E+10 0.39629734E+10

14 0.26114053E+11 -0.53976022E+11 0.79750846E+11 -0.91286141E+11

15 -0.64216946E+12 0.13241005E+13 -0.19583356E+13 0.22703091E+13

16 0.17057576E+14 -0.35090021E+14 0.51940681E+14 -0.60867305E+14

17 -0.47713457E+15 0.98075810E+15 -0.14523905E+16 0.17166386E+16

18 0.16266128E+17 -0.33212689E+17 0.49214936E+17 -0.58878863E+17

19 -0.36411951E+18 0.75367963E+18 -0.11234241E+19 0.13282242E+19

20 0.29018090E+20 -0.59146123E+20 0.86434712E+20 -0.10733751E+21
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N

10

11

12

13

14

15

20

30

40

50

Table 8a. Pade Approximation of Moments and Percentage Points of a2*
when c = 2.1, b = 1.0, a = 0

Jhl
Pade 0.069 0.196

MC 0.070 0.196

Pade 0.063 0.187

MC 0.063 0.186

Pade 0.058 0.179

MC 0.058 0.179

Pade 0.053 0.172

MC 0.054 0.172

Pade 0.049 0.166

MC 0.050 0.166

Pade 0.046 0.160

MC 0.046 0.161

Pade 0.034 0.139

MC 0.035 0.139

Pade 0.023 0.114

MC 0.024 0.114

Pade 0.017 0.099

MC 0.018 0.099

Pade 0.014 0.088

MC 0.014 0.089

Vg1 g2 5% 25% 50% 75% 95%
-0.011 3.185 -0.25 -0.06 0.07 0.20 0.39

-0.000 3.205

-0.016 3.174 -0.24 -0.06 0.06 0.19 0.37

-0.030 3.139

-0.019 3.164 -0.24 -0.06 0.06 0.18 0.35

-0.017 3.144

-0.022 3.155 -0.23 -0.06 0.05 0.17 0.33

-0.019 3.138

-0.024 3.146 -0.22 -0.06 0.05 0.16 0.32

-0.023 3.106

-0.026 3.139 -0.22 -0.06 0.05 0.15 0.31

-0.022 3.122

-0.031 3.110 -0.20 -0.06 0.03 0.13 0.26

-0.028 3.099

-0.032 3.077 -0.17 -0.05 0.02 0.10 0.21

-0.029 3.104

-0.031 3.059 -0.15 -0.05 0.02 0.08 0.18

-0.041 3.057

-0.029 3.048 -0.13 -0.05 0.01 0.07 0.16

-0.029 3.076
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Table 8b. Pade Approximation of Moments and Percentage Points of b2*
when c = 2.1, b = 1.0, a = 0

N u/ rj Vp, p2 5% 25% 50% 75% 95%
10 Pade 0.922 0.225 0.335 3.141 0.58 0.76 0.91 1.07 1.31

11 Pade 0.929 0.215 0.320 3.130 0.60 0.78 0.92 1.07 1.30

MC 0.929 0.215 0.330 3.113

12 Pade 0.935 0.206 0.307 3.121 0.62 0.79 0.92 1.07 1.29

MC 0.934 0.206 0.302 3.085

13 Pade 0.940 0.198 0.295 3.112 0.63 0.80 0.93 1.07 1.28

MC 0.939 0.199 0.296 3.118

14 Pade 0.944 0.191 0.285 3.105 0.65 0.81 0.94 1.07 1.27

MC 0.944 0.192 0.285 3.091

15 Pade 0.948 0.185 0.275 3.099 0.66 0.82 0.94 1.07 1.27

MC 0.948 0.186 0.285 3.124

20 Pade 0.961 0.161 0.240 3.076 0.71 0.85 0.95 1.07 1.24

MC 0.960 0.161 0.236 3.068

30 Pade 0.974 0.132 0.197 3.052 0.76 0.88 0.97 1.06 1.20

MC 0.973 0.132 0.193 3.061

40 Pade 0.981 0.115 0.171 3.039 0.80 0.90 0.98 1.06 1.17

MC 0.980 0.115 0.194 3.070

50 Pade 0.985 0.103 0.153 3.032 0.82 0.91 0.98 1.05 1.16
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Table 9. The Extended KIc Database Binned into 16 Groups

Bin

10

11

(T-RTNDT)

-385

-370

-320

-315

-300

-275

-265

-250

-228.6

-225

Static Initiation Toughness Data, KIc
(ksi-Vin.)

31.6,32.5

39.6,27.5,47.5
25.9,23.7,30.3

40.9,37.1,44.0,40.8,31.2
43.2,47.9,41.6,51.3

29.7,27.2
30.6,29.0,35.6,42.8
37.3,35.2,40.4,30.5,44.2,55.0,43.3,37.3

35.09,35.45,37.82,25.36,26.18,29.27,29.45,30.18,31.00,32.82
33.82,36.00,36.36,32.09,33.73,34.27,34.91,35.09,36.00,37.45

37.45,39.55,39.73,40.36,42.36,43.73,46.45,49.55,49.64,30.09
33.00,36.55,37.00,39.36,39.91,40.91,41.45,42.18,46.45,48.64
53.18

37.29,39.89,44.22

-215 46.9,66.9
208.8 34.64,37.82,38.18,39.45
-205 37.6,37.8,43.6,55.6
-201 52.2,45.5

-200

-190

-180

-176

-175

-171

-170

-155

-153

-150

-148

-140.4

-140

-139

-125

-110

-102.6

-100

46.6,35.1,45.2,30.5,37.5,41.0,31.2,30.8,44.0,34.6,
39.9,38.5,44.4,34.6,39.9,34.8,71.2,57.2,45.63,44.63,
42.81,33.45,32.36

47.2,40.9,42.5,42.5
40.1,52.8,66.2
46.0,64.3,50.0,45.6,68.0
55.8,43.5,56.2

36.45,34.91

43.9,39.4,31.3,47.3,50.4,41.2,54.0,50.9,35.5,33.2,37.2,37.1,37.1
34.7,35.0,32.6,29.4,44.0,31.4,39.3,31.3,33.0,38.1,31.1,44.9,39.4

70.7

43.36

56.1,29.7,31.5,41.2,30.5,42.1,37.7,40.7,44.1,37.4,41.8,56.0
38.09

42.55

52.0,64.6,56.6

33.45,39.27,40.09
61.1,39.1,48.3,43.4,38.1

49.81

45.09,58.73,67.64

96.0,55.2,51.4,59.0,56.2,50.2,42.2,48.5,48.5,54.8,54.4,48.3
48.3,41.9,49.7
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Bin (T-RTNDT) Static Initiation Toughness Data, Klc
(°F) (ksi-Vin.)

12 -93.6 32.64,55.82,53.73,62.09,70.82
-90 64.7,62.4

-82.8 58.18,60.64,65.55
-76 45.0

-75 90.3,93.1,50.3,46.6
-63.0 63.30

13 -51 107.0

-50 72.6,71.6,65.1,65.0,67.5,65.0,56.7,64.6,64.7
-48.6 63.27,73.82,90.91

14 -30 81.0

-28.8 66.09,75.55,76.45

-25 105.9,61.0,58.7,45.9
-12.6 93.45

15 0 113.1,66.4,93.7,83.4,73.9,66.9,87.2,87.5

16 9.0 69.37

14.4 74.64

25 98.9,74.5,90.5,110.3
50 148.6,137.3,139.0
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Table 11. The Extended KIa Database Binned into Four Groups

Bin (T-RTNDT) Crack Arrest Toughness, KIa

(°F) (ksi-vin.)

1 -150 28.0

-70 43.0,48.0,43.0
-67.8 60.1

-66 48.2, 69.2
-64.2 51.9

-47.8 62.8

-46 52.8

-44.2 65.5

-42.6 61.0,64.6
-39 66.4, 67.3 69.2, 83.7

-36.2 63.7

2 -19 47.3, 66.4, 68.3, 77.4
-18.2 79.0

-17.2 64.6

-15.6 83.7

-12 54.6, 55.5, 77.4, 82.8, 89.2, 94.6, 97.4
-0.2 97.1

0.0 68.0, 58.0, 48.0, 57.0, 62.0, 58.0, 60.0, 65.0, 60.0, 58.0,
53.0,58.0,70.0,57.0,57.0,61.0

3 4.4 77.4

6.2 68.3

8 61.0,72.8,91.0
9.8 70.1,81.0
13.2 88.3

15 85.5, 85.5, 86.5, 93.7
16.8 82.8

17.8 119.7

22 68.0

33.2 100.1

35 59.0,84.0,62.0, 106.5, 111.9, 112.8
38.4 93.7

40.2 113.8

40.4 101.0

42 84.6, 97.4, 103.7
43.8 98.3

4 49.2 113.8

50 92.0, 73.0, 75.0
51 104.7

53 91.9

71 97.4, 101.9, 102.8, 108.3
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Bin (T-RTNDT) Crack Arrest Toughness, Kla

(°F) (ksi-vin.)

75 94.0, 107.0, 77.0, 81.0, 91.0, 101.0
80 109.0

83 87.0,94.0, 107.0, 111.0
89 120.1

96 111.0

102 117.0

105 118.0, 103.0, 107.0, 130.0
107 87.0

110 88.0, 88.0
112 112.0

115 111.0

121 116.0

Table 12. Four KIa Datasets Fitted to Weibull Density

Bin N T(°F) m,' Vw2 c2*(1) a2**(T) b2*(T) b2**(T) c(7) x5 E(b*2/b)

1 18 -52.32 60.02 10.51 35.46 34.33 27.68 28.95 2.5 2.63 0.956

2 31 -6.81 67.27 13.92 34.74 33.94 36.67 37.56 2.5 4.87 0.976

3 29 24.69 88.29 16.45 49.86 48.85 43.32 44.45 2.5 0.96 0.974

4 34 83.27 100.82 13.66 68.89 68.18 35.99 36.78 2.5 1.69 0.978
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Fig. 1. Two compact fracture toughness specimens, C(T), with W= 5.1 cm for the
smaller specimen and W= 61 cm for the larger (adapted from Fig. 8.28 in Ref.

[11])-

Compact Specimen Size C(T)-nT

-320 -250 -190 -155 -90 -30

(T-RT ) (°p) 09/14/99.K17 ptw
V NDT' V '

Fig. 2. Size distribution of C(T) specimens in the EPRI K!c database [1].
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Fig. 3. Distribution of EPRI data base with test temperature: (a) KIc data, (b) frequency
histogram and (c) cumulative frequency distribution.
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Fig. 4 Distribution of EPRI KIc database with normalized temperature (T- RTNDT): (a)
Kic data, (b) frequency histogram, and (c) cumulative frequency distribution.
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Fig. 5. Additional KIc data.
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Fig. 9 Distribution ofextended KIa database with normalized temperature (T-RTNDT):
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Fig. 10. Weibull densities for the standard case (a = 0, b = 1).
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(a) (b)

(c) (d)

Fig. 11. (a) Mean, (b) standard deviation, (c) skewness, and (d) kurtosis of Weibull
random variates.
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Appendix A - Listings ofKIc and KIa Extended Databases

Table Al - Static Initiation Toughness KIc Extended Database

Table A2 - Crack Arrest Toughness KIa Extended Database
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Material Reference Source Specimen Type Orientation Temp RTNDT T - RTNDT Kic
ID No. (°F)

-225

(°F)
-45

(°F)
-180

(ksivin)

IT-WOL 1 52.8

2T-WOL 2 -225 -45 -180 66.2

2T-WOL 2 -200 -45 -155 70.7

A533B Class 1 Mager (1969) IX-WOL -320 0 -320 30.3

weld-HAZ IX-WOL -250 0 -250 35.2

IX-WOL -250 0 -250 40.4

IT-WOL -250 0 -250 30.5

IT-WOL -250 0 -250 44.2

2T-WOL 2 -200 0 -200 71.2

A508 Class 2 Mager (1969) IX-WOL -320 50 -370 39.6

European IX-WOL -320 50 -370 27.5

Forging IT-WOL -320 50 -370 47.5

"ring forging" IX-WOL -250 50 -300 43.2

IX-WOL -250 50 -300 47.9

IX-WOL -250 50 -300 41.6

IT-WOL -250 50 -300 51.3

1T-WOL -200 50 -250 55.0

2T-WOL 2 -200 50 -250 43.3

2T-WOL 2 -150 50 -200 57.2

2T-WOL 2 -125 50 -175 56.2

2T-WOL 2 -100 50 -150 56.0

HSST 02 Shabbits 6T-CT 6 RW 25 0 25 98.9

(1969) 6T-CT 6 RW 25 0 25 74.5

6T-CT 6 RW 25 0 • 25 90.5

6T-CT 6 RW 0 0 0 73.9

6T-CT 6 RW 0 0 0 66.9

11T-CT 11 RW 50 0 50 148.6

10T-CT 10 RW 50 0 50 137.3

10T-CT 10 RW 50 0 50 139.0

4T-CT 4 RW 0 0 0 87.2

4T-CT 4 RW -25 0 -25 61.0

4T-CT 4 RW -25 0 -25 58.7

4T-CT 4 RW -25 0 -25 45.9

10T-CT 10 RW 0 0 0 87.5

10T-CT 10 RW 25 0 25 110.3

1T-CT RW -250 0 -250 37.3

1T-CT RW -200 0 -200 44.4

1T-CT RW -200 0 -200 34.6

1T-CT RW -200 0 -200 39.9

1T-CT RW -200 0 -200 34.8

1T-CT RW -150 0 -150 44.1

1T-CT RW -150 0 -150 37.4

1T-CT RW -150 0 -150 41.8

1T-CT RW -100 0 -100 48.3

1T-CT RW -100 0 -100 48.3

1T-CT RW -100 0 -100 41.9

2T-CT 2 RW -100 0 -100 49.7

2T-CT 2 RW -50 0 -50 64.6

2T-CT 2 RW -50 0 -50 64.7

A508 Class 2 unpublished 2T-CT 2 -150 51 -201 52.2

outside of 2T-CT 2 -150 51 -201 45.5

EPRINP-719-SR 2T-CT 2 -125 51 -176 46.0

2T-CT 2 -125 51 -176 64.3

2T-CT 2 -125 51 -176 50.0

54
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Material Reference Source Specimen Type Orientation Temp RTndt T - RTNDT KIc
ID No. (°F) (°F) (°F) (ksivin)

1T-CT L-T -238 -9.4 -228.6 34.91

1T-CT L-T -238 -9.4 -228.6 35.09

1T-CT L-T -238 -9.4 -228.6 36.00

1T-CT L-T -238 -9.4 -228.6 37.45

1T-CT L-T -238 -9.4 -228.6 37.45

1T-CT L-T -238 -9.4 -228.6 39.55

1T-CT L-T -238 -9.4 -228.6 39.73

1T-CT L-T -238 -9.4 -228.6 40.36

1T-CT L-T -238 -9.4 -228.6 42.36

1T-CT L-T -238 -9.4 -228.6 43.73

1T-CT L-T -238 -9.4 -228.6 46.45

1T-CT L-T -238 -9.4 -228.6 49.55

1T-CT L-T -238 -9.4 -228.6 49.64

2T-CT 2 L-T -238 -9.4 -228.6 30.09

2T-CT 2 L-T -238 -9.4 -228.6 33.00

2T-CT 2 L-T -238 -9.4 -228.6 36.55

2T-CT 2 L-T -238 -9.4 -228.6 37.00

2T-CT 2 L-T -238 -9.4 -228.6 39.36

2T-CT 2 L-T -238 -9.4 -228.6 39.91

2T-CT 2 L-T -238 -9.4 -228.6 40.91

2T-CT 2 L-T -238 -9.4 -228.6 41.45

2T-CT 2 L-T -238 -9.4 -228.6 42.18

2T-CT 2 L-T -238 -9.4 -228.6 46.45

2T-CT 2 L-T -238 -9.4 -228.6 48.64

2T-CT 2 L-T -238 -9.4 -228.6 53.18

A508 Class 3 Iwadate, et al. Bx2B 1 NA -238 -13 -225 37.29

ASTM STP Bx2B 1 NA -238 -13 -225 39.89

803 Bx2B 1 NA -238 -13 -225 44.22

Bx2B 4 NA -166 -13 -153 43.36

Bx2B 4 NA -76 -13 -63 63.30

Bx2B 3 NA -4 -13 9 69.37

Midland Nozzle NUREG/CR- C(T) -58 52 -110 49.81

Course Weld 6249 C(D -148 52 -200 45.63
C(T) -148 52 -200 44.63

C(T) -148 52 -200 42.81

C(T) -148 52 -200 33.45

CCQ -148 52 -200 32.36

Midland Beltline NUREG/CR- C<T) -148 23 -171 36.45

6249 QT) -148 23 -171 34.91

Plate 02 4th Irr. NUREG/CR- C(T) T-L -148 0 -148 38.09

Series 4880, 1988 C(T) T-L -139 0 -139 33.45

Plate 02 C(T) T-L -139 0 -139 39.27

(68-71W) C(T) T-L -139 0 -139 40.09
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Table A2. Crack Arrest Toughness K!a Extended Database

Material Reference Specimen Size Orientation Temp RTndt T-RTNDT Kla
Source ID No. (°F) (°F) (°F) (ksivin)

HSST-02 EPRI NF C(T) 1.4 L-T -150 0 -150 28.0

HSST-02 719-SR cm 1 L-T -70 0 -70 43.0

HSST-02 Ripling (1971) C(T) 2 L-T -70 0 -70 48.0

HSST-02 C(T) 2 L-T -70 0 -70 43.0

HSST-02 C(T) L-T 0 0 0 68.0

HSST-02 cm L-T 0 0 0 58.0

HSST-02 cm L-T 0 0 0 48.0

HSST-02 cm L-T 0 0 0 57.0
HSST-02 cm L-T 0 0 0 62.0

HSST-02 cm 1.3 L-T 0 0 0 58.0

HSST-02 cm 1.3 L-T 0 0 0 60.0

HSST-02 cm 1.3 L-T 0 0 0 65.0

HSST-02 cm 1.6 L-T 0 0 0 60.0

HSST-02 cm 1.6 L-T 0 0 0 58.0

HSST-02 cm 2 L-T 0 0 0 53.0

HSST-02 cm 2 L-T 0 0 0 58.0

HSST-02 cm 2 L-T 0 0 0 70.0
HSST-02 cm 2 L-T 0 0 0 57.0

HSST-02 cm 3 L-T 0 0 0 57.0

HSST-02 cm 3 L-T 0 0 0 61.0
HSST-02 cm 2 L-T 22 0 22 68.0
HSST-02 cm 1.4 L-T 35 0 35 59.0

HSST-02 cm 1.6 L-T 35 0 35 84.0

HSST-02 cm 2 L-T 35 0 35 62.0
HSST-02 cm 1.4 L-T 50 0 50 92.0

HSST-02 cm 2 L-T 50 0 50 73.0

HSST-02 cm 3 L-T 50 0 50 75.0

HSST-02 cm 1 L-T 75 0 75 94.0

HSST-02 cm 1.6 L-T 75 0 75 107.0
HSST-02 cm 2 L-T 75 0 75 77.0
HSST-02 cm 2 L-T 75 0 75 81.0
HSST-02 cm 2 L-T 75 0 75 91.0

HSST-02 cm 2 L-T 75 0 75 101.0
HSST-02 cm 2 L-T 80 0 80 109.0
HSST-02 cm 2 L-T 83 0 83 87.0
HSST-02 cm 3 L-T 83 0 83 94.0

HSST-02 cm 3 L-T 83 0 83 107.0

HSST-02 cm 3 L-T 83 0 83 111.0

HSST-02 cm 2 L-T 96 0 96 111.0

HSST-02 cm 2 L-T 102 0 102 117.0

HSST-02 cm 1.8 L-T 105 0 105 118.0
HSST-02 cm 2 L-T 105 0 105 103.0

HSST-02 cm 2 L-T 105 0 105 107.0

HSST-02 cm 3 L-T 105 0 105 130.0

HSST-02 cm 2 L-T 107 0 107 87.0

HSST-02 cm 2 L-T 110 0 110 88.0
HSST-02 cm 2 L-T 110 0 110 88.0
HSST-02 cm 1.1 L-T 112 0 112 112.0

HSST-02 cm 2 L-T 115 0 115 111.0

HSST-02 cm 1.1 L-T 121 0 121 116.0

72W NUREG/CR-5584 C(T) Crack -77.8 -10 -68 60.1
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Material Reference Specimen Size Orientation Temp RTndt T-RTNDT Kla
Source ID No. <T? (°F) (°F)

71

(ksivin)

73W cm 41 -30 102.8

73 W cm 41 -30 71 108.3

73 W cm 59 -30 89 120.1

MW15JC NUREG/CR-6621 cm Crack -4 32.2 -36.2 63.7
MW15JBr cm runs 14 32.2 -18.2 79.0
MW15J&/ cm in welding 32 32.2 -0.2 97.1

MW15JF cm direction 50 32.2 17.8 119.7
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Appendix B - Results of Preliminary Regression Analysis

The first phase of this study involved a least-squares regression analysis to investigate

potential parametric representations of the K!c and Kia databases. The software package

TableCurvelD [Bl] was employed to analyze the EPRI Kk database. TableCurvelD is a

regression analysis tool with 3,491 built-in linear and 176 nonlinear functions that can be

quickly solved and ranked for goodness of fit for a given dataset. These model forms include,

among others, polynomial, exponential, rational, Chebyshev polynomials, and Fourier series.

TableCurve2D also allows user-defined linear and nonlinear functions to be input as

candidate model forms for curve fitting. Linearity here refers to the linearity of the

coefficients (parameters) of the function being fitted. The resulting curve fits can be ranked

by a selection of different statistics to determine an optimal fit. For this study, the F-statistic

measure of merit was applied to rank the curve fits.

The data were initially grouped by material type and then curve fits were performed. Some of

these groups had too few data points for a meaningful curve fit; however, three material

groups did warrant further investigation. HSST 02 data reported by Shabbits [B2] and Mager

et al. [B3] had the most data points and also the broadest normalized temperature

distribution. Two other materials, A533 B Class 1 weldment [B3] and A 533 B Class 1

weldment/HAZ [B3], were also analyzed, although their normalized temperature ranges did

not extend very far into the transition region. A 3-parameter nonlinear exponential function

of the form

KIc=a +bexp[c {T - RTNDT)] (B. 1)

was used. Equation (B.l) is linear in its parameters a and b and nonlinear in the parameter c.

As presented in Fig. Bl, the curve fit of the HSST 02 material group looked very similar to

the overall curve fit of the data. This result suggested that the data can be represented by a

family of curves. The curve fits of the last two groups also looked similar in the lower-shelf

region but turned up abruptly at lower temperatures due to a lack of data in the transition

region.

The entire data set was then analyzed, and the fits were ranked using the F-statistic. The top

88 out of a total of 242 curve fits discovered by TableCurve2D are listed in Table Bl where

the first column is the ranking, the second column is the F-statistic, and the third column is

the model form used in the curve fit. The F-statistic measure of merit is defined by
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where n is the number of data points, k is the number of coefficients fitted, yt are the data

values, y is the sample mean, and y is the predicted value.

The four top-ranked curve-fit candidates are shown in Figs. B2-B5 along with their 99

percent prediction curves and histogram residual plots. These four fits have the following

model forms:

Model 1:

Model 2:

Model 3:

Model 4:

ln{KIc) =a +b{T-RTNDT)

{Kj2 =a +b{T-RTNDT)

K,=
_a+c(T-RTNDT)

,c l +b{T-RTNDT)

KIc=a +bexp[c(T - RTNDT)]

(B.3)

(B.4)

(B.5)

(B.6)

Models 3 and 4 are both nonlinear forms. Although all of these four functions fit the data

with a high F-statistic, some exhibit undesirable behavior outside of the limits of the data.

Models 1 and 2 do not have a lower asymptote with decreasing normalized temperature.

Models 3 and 4 do have a lower asymptote; however, Model 3 does not follow a consistent

trend as the normalized temperature increases beyond the upper bound of the data. Model 4

exhibits the best behavior at both ends of the range of the data set, but the lower 99 percent

prediction curve falls below the estimated Kmin of 18.2 ksivin (20 MPavm). The fit to

Model 4 has the following parameters: a = 36.68 ksivin, b= 51.49 ksivin, and c =

0.01153°F. These coefficients are almost identical to the independently-derived curve fit (for

the same model form) in Ref. [B4].
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When derived as a maximum likelihood estimator, the least-squares technique assumes that

the errors are independent and distributed normally about the predicted regression curve. The

assumption of a constant standard deviation inherent in the standard least squares method can

be relaxed through the use of a weighted regression analysis; however, these weights must be

estimated and input by the user. A nonweighted regression analysis was used in this study.

The degree of normality of the error modes in the data relative to the predicted curve fit can

be inferred by inspection of the residuals, defined as the difference between the actual data

and the predicted value. The histograms presented in Figs. B2b to B5b indicate some degree

of skewness in the residuals that imply the possible presence of nonrandom error modes in

the dataset. This result is consistent with the findings of other researchers [B5] and has

motivated the investigation of a different model form that is not dependent upon an

underlying symmetric normal distribution to describe the deviations from the predicted

curves.

References for Appendix B

Bl. TableCurve2D, User's Manual, Version 4 for Windows 95, NT & 3.1,SPSS Inc.,
Chicago, IL, 1997.

B2. W. O. Shabbits, W. H. Pryle, and E. T. Wessel, Heavy Section Fracture Toughness Properties of
A533, Grade B, Class-1 Steel Plate and Submerged Arc Weldments, HSST Technical Report 6,
WCAP-7414, December 1969.

B3. T. R. Mager, F. O. Thomas, and W. S. Hazelton, Evaluation by Linear Elastic Fracture
Mechanics of Radiation Damage to Pressure Vessel Steels, HSST Technical Report 5, WCAP-
7328, Revised, October 1969.

B4. R. K. Nanstad, J. A. Keeney, and D. E. McCabe, "Preliminary Review of the Bases for the Klc
Curve in the ASME Code," ORNL/NRC/LTR-93/15, Oak Ridge National Laboratory, 1993.

B5. J. G. Merkle, K. Wallin, and D. E. McCabe, "Technical Basis for an ASTM Standard on
Determining the Reference Temperature, T0, for Ferritic Steels in the Transition Range,"
NUREG/CR-5504 (ORNL/TM-13631) Oak Ridge National Laboratory, November 1998.

63



Table B1. Top-Ranked Model Forms Calculated by
TableCurve2D

Ran

k

F-Statistic Model Form

1 212.08316474 Iny = a + bx
2 202.73543020 yA(0.5) = a + bx
3 202.10095146 y = (a + cx)/(l + bx) [NL]
4 194.44231080 y = a + b exp(cx) [NL]
5 176.25900038 yA(-l) = a+ bx
6 171.28645651 y = a+ bx
7 170.24942226 yA(0.5) = a+ bx+ CxA2
8 164.27947091 y = a+ bx+ cxA2
9 159.13106263 lny = a+ bx+ cxA2
10 149.87823234 lny = a+ bx+ c exp(x)
11 146.13142246 y - a+ bx+ c exp(x)
12 143.76110728 lny = a+ bx+ cxA3
13 141.07999819 y = a+ bx+ cxA3
14 137.29791795 y = a+ bx+ cxA2 + d exp(x)
15 137.22995434 Fourier Series Polynomial 1x2
16 134.99360842 y= (a + cx)/(l + bx+ dxA2) [NL]
17 130.98649922 y = a+ bx+ cxA3 + d exp(x)
18 124.92269692 Chebyshev = >Std Polynomial Order 3
19 124.92269692 Chebyshev Polynomial Order 3
20 124.92269692 y = a+ bx+ cxA2 + dxA3
21 123.06568751 yA(0.5) = a+ bx+ cxA2 + dxA3
22 115.33293665 yA2 = a+ bx+ cxA2
23 109.76890768 lny = a+ bx+ cxA2 + dxA3
24 104.70649060 y = a+ bx+ cxA2 + dxA3 + e exp(x)
25 101.55552931 yA2 = a+ bx+ cxA2 + dxA3
26 99.886096880 y = (a + ex + exA2)/(l + bx+ dxA2)

[NL]
27 98.539924648 yA(-l) = a+ bx+ c exp(x)
28 98.407676705 y = a+ bxA2 + cxA3 + d exp(x)
29 95.436616294 High Precision Polynomial Order 4
30 95.436616294 Chebyshev Polynomial Order 4
31 95.436616294 Chebyshev = >Std Polynomial Order 4
32 95.436616294 y = a+ bx+ cxA2 + dxA3 + exA4
33 95.256825667 yA(-l) = a+ bx+ cxA2
34 94.403752943 yA(-l) = a+ bx+ cxA3
35 93.064358636 yA(0.5) = a+ bx+ cxA2 + dxA3 + exA4
36 90.888406094 Fourier Series Polynomial 2x2
37 84.126204190 y = a+ bxA2 + c exp(x)
38 82.500766448 lny = a+ bx+ cxA2 + dxA3 + exA4
39 81.574302114 yA2 = a+ bx+ cxA2 + dxA3 + exA4
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Table Bl. Top-Ranked Model Forms Calculated by
TableCurve2D

Ran

k

F-Statistic Model Form

40 78.019197528 High Precision Polynomial Order 5
41 78.019197528 Chebyshev = >Std Polynomial Order 5
42 78.019197528 Chebyshev Polynomial Order 5
44 76.248415354 y = a + b exp(x)
45 76.220106695 yA(0.5) = a + bx + cxA2 + dxA3 + exA4

+ fxA5

47 73.648681893 lny = a + bxA2 + c exp(x)
49 67.900165448 Chebyshev Polynomial Order 6
50 67.900165448 High Precision Polynomial Order 6
51 67.900165448 Chebyshev = >Std Polynomial Order 6
52 67.749311766 y = a + bxA2+ cxA3
53 67.736722397 lny = a + bx + cxA2 + dxA3 + exA4 +

fxA5

54 66.589185788 Fourier Series Polynomial 3x2
55 63.418238130 y = a + bxA3 + c exp(x)
56 63.126196234 yA(-l) = a + bx + cxA2 + dxA3
57 60.358790633 yA(0.5) = a + b exp(x)
58 60.255288266 Chebyshev = >Std Polynomial Order 7
59 60.255288266 Chebyshev Polynomial Order 7
60 60.255288266 High Precision Polynomial Order 7
61 60.222001357 y - a + bxA2 + cxA4
64 57.747180396 y = a + bxA2
65 57.285235500 yA(0.5) = a + bxA2
66 55.585467658 lny = (a + cx)/(l + bx)
67 54.862287108 yA(0.5) = (a + cx)/(l+bx)
68 52.511231768 Fourier Series Polynomial 4x2
69 52.399927006 Chebyshev = >Std Polynomial Order 8
70 52.399927006 Chebyshev Polynomial Order 8
71 52.399927006 High Precision Polynomial Order 8
72 50.377723858 lny = a + bxA2 + cxA3
74 47.134766769 yA(-l) = a + bx + cxA2 + dxA3 + exA4
75 46.357029818 Chebyshev Polynomial Order 9
76 46.357029818 High Precision Polynomial Order 9
77 46.357029818 Chebyshev = >Std Polynomial Order 9
78 44.972169153 yA2 = a + bexp(x)
79 42.493046529 lny = a + bxA3 + cexp(x)
81 41.595572118 yA(-l) = a + bxA2 + cexp(x)
82 41.553003885 Fourier Series Polynomial 5x2
83 41.522828495 Chebyshev Polynomial Order 10
84 41.522828495 High Precision Polynomial Order 10
85 41.522828495 Chebyshev = >Std Polynomial Order

10
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Table Bl. Top-Ranked Model Forms Calculated by
TableCurve2D

Ran

k

F-Statistic Model Form

87 40.422344924 Chebyshev Rational Order 4/4
88 40.422344924 Chebyshev = >Std Rational Order 4/4
89 39.521249612 yA(-l) = a + bx + cxA2 + dxA3 + exA4 +

fxA5

90 38.415760094 High Precision Polynomial Order 11
91 38.415760094 Chebyshev = >Std Polynomial Order

11

Chebyshev Polynomial Order 1192 38.415760094

93 35.062442660 Chebyshev = >Std Polynomial Order
12

Chebyshev Polynomial Order 1294 35.062442660

95 35.062442660 High Precision Polynomial Order 12
96 34.629893962 Fourier Series Polynomial 6x2
97 33.566708227 Chebyshev = >Std Polynomial Order

13

Chebyshev Polynomial Order 1398 33.566708227

99 33.566708227 High Precision Polynomial Order 13

66



200

K|c(ksi-in1/2)

150

100

50 -

jir -t^*i

-400 -320 -240 -160 -80

(T-RT

S ^HSST02
> ° ^-All data

• HSST 01 Subarc Weld (Shabbits;

• A533B Subarc Weld (Shabbits)

0 HSST 01 (Mager)

• HSST 03 (Mager)

A A533B CI. 1 (Mager)

0 HSST 02 (Mager/Shabbits)

A A533B C11 Weld (Mager)

• A533B CI 2 weld-HAZ (Mager)

V A508 Europe Forg. (Mager)

+ A508 CI2. (unpublished)

w A508 CI2. (unpublished)

- HSST02 Curve Fit

- A533B weld Curve Fit

- A533B weld/HAZ Curve Fit

0 80 160 240

\ (p) 09/19/99.K1 ptw
NDT

Fig. Bl. TableCurve2D curve fits using a 3-parameter exponential function for 4 material
groups compared to a general curve fit of all of the data.

67



(a)

(b)

250

200

150

.MM

.•H 100

50

In (K ) = 4.531225 + 0.003532*(T-RT

• • HSST 01 Subarc Weld (Shabbits

• A533B Subarc Weld (Shabbits)

• o HSST 01 (Mager) '

' D HSST 03 (Mager) •

- A A533B Ci. 1 (Mager) -

' 0 HSST 02 (Mager) •

' A A533B C11 WeM (Mager) •

• A533B CI 2 weW-HAZ (Mager) •

• 7 A508 Europe Forg. (Mager)

- + A508 CI2. (unpublished) 0 -

'
a A5D8 C12. (unpublished) .s o •

. Upper Prediction Limit 99% ,s

.

— - Lower Prediction Limit 99% ^.-< . • v-
_

' —•-"'"" " ' ^r^T*

" 7
7

\7 S ihj/sr fir * " ••
-

Ajj^—-£—pft v Do ^.--
•

• ^~ •

-400 -300 -200 -100 100

60

50

^ 40
c

o

O 30

20

10

(T-RT ) (°F) 09/14/99.K1 ptw
v NDT' v '

—r~l—i—i—r—j—i—i—i—i—|—n—n—r—i—m—r-|—i i i i |—i i i i | l—r

ln(Kc) =A+B*(T-RTNDT)

-40 -30 -20 -10 0 10 20 30 40

Residuals 09/14/99 Ki3Ptw

Fig. B2. Results of regression analysis for the Rank 1 functional form (a) curve with KIc
data and (b) frequency histogram of residuals.

68



(a)

(b)

(KJ1' =9.263671 +0.012751 *(T-RT NDJ)
250

0 HSST 01 Subarc Weld (Shabbits

• AS33B Subarc Weld (Shabbits)
O HSST 01 (Mager) '

Q HSST 03 (Mager) '

A A533B CI. 1 (Mager)
0 HSST 02 (Mager)

A A533B C11 Weld (Mager)
V A533B CI 2 wekf-HAZ(Mager)

V A50S Europe Forg. (Mager)
- •+ A50B C12. (unpublished) 0 -

Q A508 CI2.(unpublished) ft

Upper Prediction Limit 99%

----- Lower Prediction Limit 99%

...--+• • • °
-

•

"i ii^i-^i?rf* i-»^"'"
•

•

--^ .

200

150

CO

>! 100

50

60

50

^ 40
C

o

O 30

20

10

-400 -300 -200 -100 100

(T-RT ) (°F) 09/14/99.K2 ptw

' I—I—1—1—

!K,C

i—i—

= A +

1 | 1 1 1

B*(T"RTNDt)

• -

-

-

"*

• :

•

•

1
l,i,

-40 -20 0 20

Residuals
40 60

09/14/99.K14 ptw

Fig. B3. Results of regression analysis for the Rank 2 functional form (a) curve with Kjc
data and (b) frequency histogram of residuals.

69



(a)

(b)

c

o

O

K|c =(84.412953 +0.1689053*(T-RT NDT)) /
(1 +0.008925822*(T-RT NDT))

250

• HSST 01 Subarc Weld (Shabbits

• A533B Subarc Weld (Shabbits)

o HSST 01 (Mager) '

D HSST 03 (Mager)

2UU A AS33B CI. 1 (Mager) -

0 HSST 02 (Mager) •

A A533B C11 Weld (Mager) •

1 AS33B CI 2 weld-HAZ (Mager) •

V AS08 Europe Forg (Mager)

/.150 + A508 CI2. (unpublished) -

a A508 CI2. (unpublished)

//• - Upper Prediction Limit 99% .

— -- Lower Prediction Limit 99%

-
1U0

50

•t

V

9S O'

-

'v -f-^r^re

-400 -300 -200 -100 100

(T-RT \ (°F) 09/14/99 K3 ptw

K|c=(A +C-(T-RTNDT))/(1+B'(T-RTNDT))

-30 -20 -10 10 20 30 40 50

Residuals 09/14/99 KisPtw

Fig. B4. Results of regression analysis for the Rank 3 functional form (a) curve with KJc
data and (b) frequency histogram of residuals.

70



(a)

(b)

250

200

150

.2- 100

50

K = 36.68 + 51.49* EXP( 0.01153*(T-RT ))
lc NDT

•

—i—i—i—i—i—i—i—i—i—i—t—r-

HSST 01 Subarc Weld (Shabbits

• A533B Subarc Weld (Shabbits)

o HSST 01 (Mager)

• HSST 03 (Mager)

- A A533B CI. 1 (Mager) -

0 HSST 02 (Mager)

A AS33B C11 Weld (Mager)

• A533B CI 2 weld-HAZ (Mager) •

7 A508 Europe Forg. (Mager) / •

- + A508 CI2 (unpublished) :'o -

a A508 CI2. (unpublished) / • •

-Curve 2 .

- Upper Prediction Limit 99% .

— • Lower Prediction Limit 99% +v'"/ •

" • •*"•' v%. "

. *—*" B/*
. _...--r^- rB"
- 7

T7 ft? il 4#ii9l
JBL-f

~

A7 T^TTT
• . - ,

^...--— •"

i i i i I i i i ,

-400 -300 -200 -100 0 100

09/14/99.K4 ptw

50

40

C
_J 30
O

O

20

10

-40

_c_d
-20

(^ndt* <°F>

-i—i—i—i—i—i—i—i—|-

K|c =A+ B*exp(C*(T-RTNDT))

20

Residuals

Tl m
40 60

09/14/99.K11 ptw

Fig. B5. Results of regression analysis for Rank 4 curve fit: 3-term exponential functional
form (a) curve with Kic data and (b) frequency histogram of residuals.

71



Appendix C - Derivation of Almost Unbiased Estimator b2 and a2

In general,

Var[y]m2 j- 1 p,2 - [E*Jm2 j
V nJ

Hence, if the mean and variance of the population exist, then

\m2 . i. 1
£J-L<J1—<1 (n = 2,3,-)

H2 \ n

This is true for the Weibull density case. By moment,

V CJ
b\Y

V CJ
=4™~2

and, since JJi^ =b^T(\ +^)-T2(l+^), we have

b'

b ~J7h
<1 (n = 2,3,--)

and

E(b")<b

Now for a* , we have

rf(x) =a+bl]l +-) m{(x) =a*+b*I]l +-
Hence

n
a* = m\-b*T\ 1+ -

and

a * -a = m, - b* Y] 1 + -
•\ -//;+£ rji+-
J

M;-M[+(b-b*) m+-i

and in expectation
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E(a*-a) =E(b-b*)lil +-
and

a-E a*-(b-b*)T 1+ -
V cj

since b > E(b*).

An almost unbiased estimator, b2**, can be calculated from

An approximation for E(b2 )lb is

where

b** =u2

E(b*)

b*u2

(E(b*)lb)

l+^+4r
N N2

-> a < E(a*)

4 =-0.827043 +
c c

4=0.436183-3-990936 +5-6T°
c c

Eq. (C.2) is valid for c > 1.1,N > 10 and with errors less than 0.1%, except for c = 1.1, N =

10, which has an error of 0.175%. Eq. (C.2) was derived by using 35 values of

c (1.1(0.1)4.5)* and 29 values of N (10(1)25(5)80(10)100). To calculate an almost unbiased
estimator for a, b2** is used in the moment estimator for a, specifically,

n

0.806668 1.423234

a** =m[-b^* Ij 1+-

The notation ^(Ac)^ designates a sequence ofc-values from cnin to c^* in increments ofAc.
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APPENDIX D

Estimation Problems for the Weibull Distribution

K.O. Bowman

Computer Science and Mathematics Division
Oak Ridge National Laboratory

P.O.Box 2008

Oak Ridge, Tennessee 37831-6367

bowmanko@ornl.gov

December 14, 1999

Abstract

Asymptotic central moments and asymptotic moment ratios are given, the latter
involving Riemann Zeta functions. Maximum likelihood estimators for the Weibull
density have been discussed elsewhere (Bowman and Shenton, 1999b), and an impor
tant discovery was that these moments only exist if the shape parameter is restricted.
For this reason, particular attention is paid to moment estimators and the part played
by sample sizes, the 2 parameter and 3 parameter cases being considered. Extended
series for the moment estimators of the parameters are studied, these having the ap

pearance of divergency when arranged in descending powers of the sample size. For
these series terms are taken as far as those of order 20, and coefficients of the higher
order terms may exceed 1015, so that convergence accelerating processes are required.
The Pade rational fraction sequences are invoked. Validation of the approximants is

derived by comparative simulation studies. A set of useful algorithms is given for the
estimators of the parameters, these including means, variances, skewness and kurto

sis. Also, a brief account of Pade processes goes back to Stieltjes, who, one hundred
years ago, gave the semi-convergent series for lnT(z), identified the residue in terms of
Bernoulli numbers, and finally set up the corresponding Stieltjes continued fraction,

defining the first half-dozen partial numerators. It is interesting to note that G.H.
Hardy (Cambridge mathematician in the early part of the century), who to a large
extent introduced the rigors of the "New Maths", dallied with the old and showed
how the semi-convergent series involved in lnT(l) could in fact be "useful". Finally,
in the early part of the present century much dedicated effort and skill in algebraic
analysis was spent on evaluating moments and cumulants of sample moments. A brief
description of a powerful algorithm is included.
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1 Introduction

1.1 The Weibull Model

This paper supplies more information on the statistical methodology used in "Tech

nical Basis for Statistical Models of Extended Kic and Kia Fracture Toughness

Databases for RPV Steels" (Bowman and williams, 1999). The main field of the

oretical statistics includes statistical distributional models and the estimation of the

parameters involved. Having decided on a suitable model, questions of plausible

inferences arise.

For fracture toughness data the model preferred is the Weibull distribution. Its

density is

w(x;a,b,c) = —r—e~y\ (y = ,x > a,b,c> 0).

Here a, b, c refer to location, scale, and shape parameters.

This case has recently been studied by Bowman and Shenton (1998,1999a, 1999b).

There are special cases, and in particular the 2 parameter case with c (shape param

eter) known turns out to be useful. The density is

w(x, a, b\c) = j-i—e"^^) , (x >a, b> 0, c> 0).

1.2 Methods of Estimation

Conventionally the method of maximum likelihood takes front place. But here, from

Bowman and Shenton (1999b) moments of maximum likelihood estimators are tied

to the value of the shape parameter c. In fact, for example, the variance of c, the

maximum likelihood estimator of c, only exists if c > 2. Similarly the skewness of

the distribution of c only exists if c > 3, and kurtosis requires c > 4. The maximum

likelihood approach is therefore discarded.
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1.3 Moment Estimators

The moment estimators for the 3 parameter case can be solved using

_ 4.104683 - 1.148513V57 + 0-4413266! - 0.053025(v/61")3

(v^ is a sample skewness),

where in terms of the Riemann zeta function

A= 2C(3)/[C(2)]3/2 = 1.139547.

Here, c*3 is derived from yffil of the Weibull density.

For the scale parameter

bl = yjm2l[T(l + 2lcl)-T*(l + \/cl%

where m2 = £(xj - x)2/N, with x = E^Lj Xj/N. Finally, for the location,

oS = m'1-6Sr(l + l/^).

The subscripts on the estimators are used to indicate that the 3 parameter case is

intended.

It turns out; however, that the skewness and kurtosis of the distribution of c*z

for example are large numerically, requiring sample sizes of 300-500 to reduce the

departure from the normal distribution. A significant departure would be Bx > 4,

32 > 6. So, interest is focussed on the 2 parameter case.

Moment estimators a2 and b2 f°r tne 2 parameter Weibull density are defined by

bl =y^, 0u2 =&2[r(i +2/c)-r2(i +i/c)]
al = m[ - b*2T(l + 1/c),

where m\ = sample mean, m2 = sample second central moment. Note that \jva2j[i2
is location and scale free.

In the remaining sequel only the 2 parameter case is considered, the corresponding

subscript 2 being omitted.
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1.4 Moments of a* and b*

The moments of a* and b* can be expanded in terms of the incremental deviates

el = rn[ —/i'j, e2 = m2 —fi'2, and e3 = m'3 —/j,'3, m'r being a sample rth non-central

moment. Then, there is an algorithm to derive

i\r3
E(m\ - /ii)riK - /4)r2K - /4)

and its 4 dimensional analogue (Shenton and Bowman, 1975).

The expected value of the ensuing series in terms of (e\, e2, e3) and the sample size

N is arranged in descending powers of N and may be divergent (or semi-convergent).

Nonetheless, Pade sequences may be set up and studied for convergency tendencies

when N is not small.

For example,

^ = (m2 - m?)1/2 = [/4 + S2- (V: + e{f)1'2

=(^ -tf -2//^ +e2 -e2)1/2 =VSf (l +£2"2^£l"^) V2
T 1 /fn — 9.11.'. Ft -

= V^2 2 I M2

formally.

2 Moments of ^m^l^ the Standardized s.d

2.1 Mean and Variance

Assuming the existence of moments, we have

E l~NE 1 +
ra2 —E[m2)

(i-*) M2

Let
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formally; then

(-l)5~1l-3---(2s-3)
a, =

2ss\

1- I) «.-!•
, (s = 2,3,---; oo = l, a! = 1/2)

In particular, concerning expression (1)

F I™* I --E (l —-— X* - 5X4 1Xb _ 2lX& \V~^" ~ V1 ^ V+2/I2 8/I22 + I6/J23 128/J24 +256/I25 1024/I26 +'"j
(3)

where /J2 = (l - ^) £i2 and X= m2 - E(m2). Thus

2?(X*) = ^(m2), (s = l,2,.--)

and ^(m2) = 0, /4(m2) = (l - £) /z2-

2.2 Moments of 7722

Several decades ago the problem of deriving moments of sample moments was ap

proached by the skillful application of symmetric functions (David, Kendall and Bar

ton, 1966, MacMahon, 1960, Kotz, Johnson and Read, 1988). This approach involves

sophisticated and laborious algebraic analysis; for example, /i3(m4), and ^4(7714) are

not undertaken in a cavalier mathematical mood.

A recent study by Y.C. Patel (see Bowman and Shenton, 1988) using symmetric

functions considers moments up to Var(m,\ —3m2,) which includes terms of order A*--1

to N~7. For our present purpose, here are the results we need in expression (3):

, , t^ ^ ^ (h~l 2&-4 , 82-3\ 2M2(m2) =Var(m2) =^— ^— +-^-J //2,

E2 (jf\ =ft -12ft -6ft +20,
£3 (^y )=-ft +15ft +10ft - 30;

E3 (^J=ft - 20ft - 24ft - 15ft2 +180ft +192ft - 218.
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Here, Es(-) refers to the coefficient of N s, and in Pearson's notation,

ft = /V/4 A = f*/l4> f% = A*3A*5//4 ft = /V/4 ft = i4/t4-

Note that

H2(m2) involves coefficients of N'1 to AT-3,

(j,3(m2) involves coefficients of N~2 to N-5,

/i4(m2) involves coefficients of A^-2 to N~7.

Returning to (3), all the terms contribute to the Ar_3 term in EJm2/ii2. The N~1

term, from (3) is found from

1.

AT 8

For the N 2 term, we use

:Var\J^
1*2/

N

Var(ra2)
1-

for which in the last two terms the factors (1 —1/N)3 and (1 —1/N)4 may be ignored

since jJL3(m2) and /i4(m2) are each of order N~2.

um/1-
1 n -ft

N \ 8

+
^3(^2) 5;/4(m2)

16/U-l 128/z| '

2.3 Expression to Order N 2 for the Moments of \fnv2JJi2 in
General Sampling

The following formulas have been derived.

>-$

Far
M2

1 +
1 _ r Si. _ i__I 4. Mi _ Ml _ 3i
1 ^2 , IK 198 ~r 64 8 12f

+
8AT N2 {N -»• 00) (4)

m2 \ _ _ J_ _
N

£
/^2

^2,

1 _ _ \l fJ2~1 - 8 12+16 ~~
NJ I 4N N2
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/i4

03

r—\ &. _ W£ , 3& _ 3^. , 3^2-lf
/___ 1 8 32 ~ 16 4 ~ 32

02 / ^
The forth central moment is derived from

m2

02
= £

ro2

02
-4£

m2

02
03

m2

02,

m2

02
-6 £

02
02

_i_
32

E
m2

02

(6)

(7)

The expressions (4) and (5) for mean and variance involve the N~2 term contribu

tion. However the third central moment (6) provides only the basic asymptotic; the

A?"-3 and N~4 terms would be much more complicated. Note that the mean has a

component Jl —1/N, the variance, a component 1 —1/N. In (7), the component
function appears to be 1 —1/N, this arising from E(m2/fi2)2. Further study of the

formulas in (4)-(7) is given in the sequel.

2.4 Asymptotic Moments of the Weibull Random Variate

We have

^) =/;V[t;-r(i +i) dt. (8)

and

t* - r (i +1) =-c[Ht) - rW(i)] +^[in2W - r<2>(i)] +^[in3W - r<3>(i)]
+...+-Lpn'(*)-rW(i)],

s\cs

where T^(x) = fT(x), s = 0,1,---. T^(x) = T(x). Expression (8) shows that
asymptotically

1 r°° , *M.(*)~-/o e-'MQ-rVMYdt, (c->oo). (9)
Now (9) can be evaluated recursively. For there is the generating function

G(a)= /VV^W-rwwifl
Jo

= [°° e-Ha-°rWUdt (a>-l)
Jo

=e-a^T(a +1) fsince T^(1) =^ =̂ (1)] .
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Taking logarithms and differentiating we have

G'(a)
G(a)

= -axl){l) + ip(a+l).

Let

G(a)=A0 +̂ . +̂ -+..., (A0 =l).
Then

A A2a A3o? , Asas~x ( Aia A2o? \( a^^

where ipr(a) = ^j£
.0 ™1 rJ2Equating coefficient of a0, a1, a , • ••, we have

^i=0,

^2 = ^i(l)=C(2) = 7r2/6 = ^2c2 (c->oo),

A3 = ip2(l) = -2C(3) = 03c3,

A* = $,(1) + 3[Vi(l)]2 = tt4/15 + 3C2(2) = 3tt4/20 - /x4c4,

A5 = ^4(1) H-10^(1)^(1) = -24C(5) - 10tt2C(3)/3 = /z5c5,

A6 = ^s(l) + 10^i(l) + 15^(1)^(1) + 15^(1)

= 61tt6/168 + 40C2(3) =/i6c6.

From these we have the asymptotic moment ratios for a Weibull variate:

y/Fi =03/0f ~ -2C(3)/[C(2)]3/2 = -1.139547,
ft = 04/02 ~ 27/5,

0s/02/2 ~ -18.566616,

0e/02 = ft ~ 91.414247.

For the normal itself y/p\ = 0, ft = 3, /x5 = 0, and ft = 15. Similarly, higher order

terms for the asymptotic moments could be obtained.

81



3 Moments of Sample Moments

3.1 Some History back to Tchouproff

In 1918 and 1919, Tchouproffproduced articles of total length 55 pages in Biometrika

on the mathematical expectation of the moments of frequency distributions. For

example,

E(m'r - /4)K " 0*)K - ti) = M+s+t ~ 0X+t - M'X+t - 0t0r+, + 2v'TM/N2.

Notice that he did not give an expression for

E(mr - Hr)(m, - /i,)(mt - fit)

because central moments are not linear in non-central moments. At the time generat

ing functions were not frequently available in the literature. For non-central moments,

we have

I I M,a/ I M_L. I I M 1 Mxr-/4.)+3(sJ-VJ)+-r(*t-M',)l ^ N^ea(m'T-fi'r)+P(m'3-^3)+-ri.m't-(i't) _ J£e jj <~

For the special case of a single moment

N Axa A2o?ii i\ r ~i~t ,.i\/*jiN i. ora2 ora3 \ . Au
l i \ 2\N2 3\N3 J 1! 2! ' '

where assuming the existence of moments,

A2a A3a2 \ ( axa a2a2 a3a3 \
^ +^ +ir+--Jr +l!lv +2DNS+3Uv5 +'-j= (10)

a2a a3a2 \ ( Axa A2a2 A3a3
ai +iw +2^ +''Jro+-ir+^r +-3T +-

where A, = E(m'r - n'r)s, and as = E(xr - n'T)s.

The equality in (10) leads to the recurrence relations

aQAi = ayAQ,
a-iAi a2A0a0A2 + -jj- = —jj- +aiAi,

. , 2axA2 , a2Ai a3A0 2a2Axa0A3 +-jr + -j^- = -jp- + —fi- +axA2,
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and in general

r=0

'-1 (r - 11 asAr.s =r^(r-l\ Asar-S
Ns

s\ / 1 s -r

r, a^A*-T [w ~ (r +l)N'+\

s=0 \ S I •"" s-0 \ S

From this (Shenton, Bowman and Sheehan, 1971; Shenton and Bowman, 1975),

PJr-s-l'

(s = l,2,---).

3.2 The Multivariate Case

For simplicity we confine attention to the bivariate case, defining

Ar, = E(m'R - f,'RY(m's - /£)', ar,s = E(xR - »'RY(xs - n's)s.

The recursion for the coefficient of N~k in As>t is now defined by the two systems

s t

•^s+l,t ~~ Z_/ 2-/
A=0 fi-0 \ A

M

w

a?L = EE
s t

^.t+i
A=0 M=0 W v*>

A(k+\+ii-s-t)
"s+l-A.t—u^A.u

5 t

a=o^=o \^Ay \^y

Ak+X+fi-s-t)
Os-A.t+l-M^A./i

s t {

•(i-UEE
a=o^=o \ Ay y/^

where 5 is the Kronecker function, and

1. [sif*1] < A;<5 +i,

2. aJ5 = 0 for Jfc < 0 or k> s + 1 ,

3. [x] is the integer part of x, and

4. A),o = oo.o = 1; Aifl = A0,i = oi,o = 0,0,1 = 0.
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Successive values of As,t can be implemented for computer facilities. The funda

mental entities are univariate expectations, such as

E(x - »[)r(x2 - /4)' = Eyr(y2 - 2^y - fx2)s

=E Eo<,+™<.z!m;(s_z_m)!/^a+m (P =20':, q=-02).

After a considerable period of time Bowman and Shenton (1975) were able to

extend the approach in (11) to 3 and 4 dimensional cases. For example, the ratio

moments \fb[ = m3/m2 and b2 = mi/m2 involve m\, m'2, m'3 and m'4, which in

turn lead to fourfold summation in the fundamental non-central moment procedure.

These powerful algorithms have been used to determine terms as far as those of order

N~30, some loss of accuracy being possible. One may refer to Bowman and Shenton

(1975, 1978, 1992) and Shenton and Bowman (1967, 1970).

4 Moment Series and the Estimation of b*/b

4.1 Series

We now pay particular attention to the 2-parameter Weibull distribution (c known)

and the variate b*/b. Series to order N~12 and c = 1.1, 2.0 and 4.0 are given in Table

1. The constant term in /i'x is unity.

Comments:

• The N~12 coefficient is approximately 24! for the four moments when c = 1.1,

but decreases in value to 12!, approximately, when c = 4.0.

• The sign pattern for a variance is of alternating form; there is a delay of this

pattern for the variance when c —A.

• As far as the computations go, the series appear to be divergent.

• Some loss of accuracy might be expected in the N~12 and higher coefficients.
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Table 1. Moment Series for b*/b•= \/Tn2/fi2 (a = 0, 6=1)
s 0i 02 03 04

c = l.l

1 -0.12949808D+01 0.15899616D+01 O.OOOOOOOOD+OO O.OOOOOOOOD+OO

2 0.33541486D+01 -0.83852724D+01 0.85592997D+01 0.75839336D+01

3 -0.56619908D+02 0.12192693D+03 -0.15922945D+03 0.31042721D+02

4 0.21507737D+04 -0.44594410D+04 0.59382974D+04 -0.40771952D+04

5 -0.13880907D+06 0.28356838D+06 -0.38495160D+06 0.34140258D+06

6 0.13185520D+08 -0.26748184D+08 0.36888172D+08 -0.36652173D+08

7 -0.17017022D+10 0.34387291D+10 -0.47997698D+10 0.50863788D+10

8 0.28343473D+12 -0.57138560D+12 0.80493111D+12 -0.88910003D+12

9 -0.58790257D+14 0.11832810D+15 -0.16789751D+15 0.19088916D+15

10 0.14793076D+17 -0.29740587D+17 0.42442195D+17 -0.49291263D+17

11 -0.44258087D+19 0.88903683D+19 -0.12746590D+20 0.15046813D+20

12 0.15495262D+22 -0.31106228D+22 0.44771176D+22 -0.53535862D+22

c = 2.0

1 -0.78063616D+00 0.56127233D+00 O.OOOOOOOOD+OO O.OOOOOOOOD+OO

2 -0.96232698D-01 -0.41692742D+00 0.51316841D+00 0.94507987D+00

3 -0.33147003D+00 0.51269461D+00 -0.87597195D+00 -0.70721799D+00

4 0.48973594D+00 -0.15062476D+01 0.24114691D+01 -0.36107931D+00

5 -0.42316661D+01 0.91641468D+01 -0.13361996D+02 0.80478231D+01

6 0.41985036D+02 -0.90592470D+02 0.13031634D+03 -0.10617071D+03

7 -0.46045208D+03 0.98596446D+03 -0.14394820D+04 0.13126743D+04

8 0.67801792D+04 -0.14274214D+05 0.20751961D+05 -0.20565287D+05

9 -0.11562712D+06 0.24178330D+06 -0.35274231D+06 0.36748559D+06

10 0.22847435D+07 -0.47490717D+07 0.69432497D+07 -0.74979549D+07

11 -0.51594909D+08 0.10673997D+09 -0.15633198D+09 0.17345727D+09

12 0.13056954D+10 -0.26915937D+10 0.39490945D+10 -0.44737757D+10

c = 4.0

1 -0.71847869D+00 0.43695738D+00 0.0OO00OOOD+O0 O.OOOOOOOOD+OO

2 -0.29526372D+00 0.74315805D-01 0.84192689D-01 0.57279526D+00

3 -0.74615505D-01 -0.27505037D+00 0.42387706D+00 0.16476999D-01

4 0.40218228D+00 -0.99876453D+00 0.10768982D+01 -0.12693519D+01

5 0.27077063D+00 -0.76849670D-02 -0.10928083D+01 -0.54100228D+00

6 -0.91117444D-I-01 0.18844507D+02 -0.26371382D+02 0.27801511D+02

7 -0.29608695D+02 0.46344117D+02 -0.46076327D+02 0.81859275D+02

8 0.46472052D+03 -0.97748955D+03 0.14242622D+04 -0.15432113D+04

9 0.46478238D+04 -0.86469263D+04 0.11275708D+05 -0.14656681D+05

10 -0.27696733D+05 0.62349458D+05 -0.97731462D+05 0.10216518D+06

11 -0.86797056D+06 0.16989849D+07 -0.23721396D+07 0.29409633D+07

12 -0.15433914D+07 0.18234433D+07 -0.89768497D+06 0.36651252D+07
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• The analysis of divergent series and summation techniques is considered in

Baker and Hunter (1973), Baker and Gaves-morris (1981), Gaunt and Gattman

(1973), Emile Borel (1928), and Bender and Wu (1969).

For the relation between series and continued fraction, a well known example

relates to lnT(z). An historical account is given in Appendix D - Supplement.

5 Rational Fraction Sequences for b*/b and a*

5.1 Pade Sequences for b*/b, a = 0, b = 1. Mean: fi[(b*/b).

N = 15, 30, 50

The Stieltjes p, q form (Appendix A) is

, / /.. /fcn AT ( Qo Pi 01 P2 _JZ2 \

where N is the sample size.

If attention is paid to the ps and qs, there is no particular pattern but the mag

nitudes are in marked contrast to the series coefficients (Table 1). Nonetheless the

successive "convergents" suggest convergence.

The variance of b*/b = \/m2//z2 is derived from Var(Jm2/n2) = 1 —1/N —
[Ei^/^)}2.

5.2 Pade Sequence for fiffi/b), a —0, b= 1.

Again the convergence is satisfactory. From this and the expression (7) in §2.3, the

fourth central moment //4(&*/&) can be set up. The tables are excerpts from a larger

tabulation which supplies information for application formulas. A similar tabulation

has been set up for the moments of a*.
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s

3

4

5

6

7

Table 2a. Pade- sequences for fj,x(b*/b), a = 0, b = 1

c s P,
1.1 0

1 1.29498080D+00

2 2.85792050D+01

3 1.02994696D+02

4 -2.87904780D+03

5 4.23854877D+00

6 1.01771503D+02

7 -2.32229805D+04

N = 15 JV = 30

0.92052885 0.92638020 0.95862018 0.96026461

0.92264507 0.92340778 0.95947899 0.95960179

0.92276306 0.92275183 0.95951050 0.95950919

0.92276312 0.92252711 0.95951052 0.95948660

0.92281418 0.92243048 0.95952759 0.95947922

c

2.0

7.80636163D-01

-4.52941345D-01

4.49107516D+00

1.90868866D+00

-4.83205813D+01

3.22653061D+01

1.43189667D+03

15 N = 30

0.94752634 0.97463873 0.97387143

0.94744016 0.97385930

0.94743796 0.97386005

0.94743795 0.97386007

0.94743811 0.97386007

Q*
1.00000000D+00

1.29513372D+00

1.06422041D+01

-1.66090637D+00

3.06068568D+03

2.75310324D+02

2.93245484D+02

0.00000000D+00

N --

0.97475424

0.97515342

0.97516293

0.97516294

0.97517704

1.00000000D+00

-9.03910875D-01

2.23637326D+00

4.64352271D+00

5.82046739D+01

1.70823000D+00

5.67876139D+00

O.OOOOOOOOD+OO

N --

0.98462729

0.98434610

0.98434620

0.98434620

0.98434620

N--

0.95053202

0.94742688

0.94743742

0.94743791

0.94743805

0.97386016

0.97386007

0.97386007

0.97386007

N =

0.95429083

0.95076675

0.95077532

0.95077443

0.95077462

c

4.0

s

0

1

2

3

4

5

6

7

15

0.95075217

0.95078786

0.95077444

0.95077444

0.95077457

7.18478691D-01

5.75804712D-02

8.96207683D+00

-2.34908322D-01

1.65834052D+02

6.66251476D+00

4.53666946D+01

N = Z0

0.97661086 0.97571808

0.97571986

0.97572038

0.97572037

0.97572037

Qs
1.00000000D+00

-1.12943551D+00

-8.91028987D+00

-2.41353912D+00

1.60923060D+02

4.58700790D-01

1.47674034D+01

O.OOOOOOOOD+OO

N --

0.98583399

0.98551172

0.98551179

0.98551179

0.98551179

0.97572061

0.97572037

0.97572037

0.97572037

87

:50

0.97537597

0.97518018

0.97516273

0.97515968

0.97515892

50

0.98434869

0.98434621

0.98434620

0.98434620

0.98434620

50

0.98551134

0.98551180

0.98551179

0.98551179

0.98551179



Table 2b. Pade sequences for fi3(b*/b), a 0,6 = 1.

Q>
8.55929972D+00

1.86908718D+01

4.55912542D+01

7.89604697D+01

1.17496665D+02

1.58970019D+02

-7.16916918D-01

N:

0.00249531

0.0026.0199
0.00261472

0.00261710

s

3

4

5

6

AT

0.01698117

0.01922594

0.01977390

0.01994779

AT:

0.00204772

0.00205712

0.00205787

0.00205835

s • N--

3 0.00056323

4 0.00051634

5 0.00051634

6 0.00051763

c

1.1

c

2.0

c

4.0

s

0

1

2

3

4

5

6

-15

0.02450848

0.02173754

0.02082356

0.02044241

s

0

1

2

3

4

5

6

s

0

1

2

3

4

5

6

1.86030928D+01

5.49332713D+01

1.02475174D+02

1.62301982D+02

2.36679906D+02

4.16283017D+04

AT = 30

0.00587020 0.00688125

0.00630552 0.00653324

0.00637983 0.00645071

0.00639795 0.00642435

1.70698729D+00

7.33843657D+00

-2.55005908D+00

8.31581940D+01

-5.61303587D+01

-1.31790983D+02

: 15 TV = 30

0.00206145 0.00053949 0.00054047

0.00205776 0.00054028 0.00054030

0.00205774 0.00054030 0.00054030

0.00205828 0.00054030 0.00054030

-5.03460646D+00

-3.62176045D+00

1.20132751D+05

5.05276796D-04

1.04376010D+01

6.18334032D+01

15 N = 30

0.00052539 0.00011241 0.00011070

0.00051634 0.00011049 0.00011049

0.00051813 0.00011049 0.00011050

0.00051740 0.00011050 0.00011050

Qs
5.13168408D-01

1.04591943D+00

3.81997487D+00

6.83083518D+01

-4.95512295D-01

7.95455170D+01

1.39028461D+00

N ••

0.00019849

0.00019861

0.00019861

0.00019861

Qs
8.41926895D-02

2.49401567D+00

-2.09826701D-04

-1.20139305D+05

-6.61668057D+00

-2.41700973D+01

-1.59117949D+00

TV:

0.00003745

0.00003724

0.00003724

0.00003724

50

0.00269410

0.00263225

0.00262172

0.00261915

50

0.00019863

0.00019861

0.00019861

0.00019861

50

0.00003725

0.00003724

0.00003724

0.00003724



Note that the Pade approach has been used to assess the first four moments of

b*/b. The equalities mentioned for the variance and fourth central moment series as

checks and are referred to in the sequel.

5.3 Four Moment Approximating Distributions

If we have 4 moments (m'1,m2, \/b[,b2) for a statistic, then a 4 moment approximating

distribution may be set up. Useful choices are the Pearson system (Elderton and

Johnson, 1969) and the Johnson translation system (Johnson, 1949).

• The Pearson system: This is based on the differential equation

1 dy _ a + bx
ydx~ Ax2 + Bx + C'

where y is the density. An algorithm (Bowman and Shenton, 1979a, 1979b) is

available to set up the percentage points; 1%, 2.5%, 5%, 10%, 25%, 50%, 75%,

90%, 95%, 97.5%, 99%. There is a guide to the parameter limitations and also

the error involved.

• The Johnson translation system: This is described in Bowman and Shenton

(1980, 1981, 1988a, 1989b). The two systems are

Su: z=t+^sinrT1 (^p) [zeN(0,1)], and

SB: z=j+Slny, y= f *~M (C <x<C+A,C =»[(x) - A^(y)).

The reader is reminded that in the Su paper (Bowman and Shenton, 1980) the

equation for u* should read

u* =y\/2ft - 2ftV*(ft,ft;a,)^2 - 1.
The algorithms supplied are readily set up for computer implementation.

A comparison of assessments by simulation and Pade for a* and b* is given in

Table 3; some percentage points are also included.
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The agreement between the Pade and simulation assessments is most satisfactory,

especially for N = 50.

• Note that a* is positively biased and b* is negatively biased.

• Note also that moments have been set up under the assumption that a = 0,

6 = 1. These may be converted to a = o0, 6 = 60 as follows:

for the mean

Mi(°*l°0i bo) = o,Q + 6oA*i(a*l°i 1)

and for the variance

02(a*|oo,6o) = 6^2(a*|O,l).

Similarly

/ii(6*|oo,6o) = &o0i (b* |0,1)

and

02(&>O,&O)=&O02(&*|O,1).

Note that the skewness and kurtosis are location and scale free.
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Table 3a. Pade approximation of moments and percentage points of a* when c = 2.1,
6 = 1.0, a = 0.

N 0'i a Si ft 5% 25% 50% 75% 95%

10 Pade

MC

0.069

0.070

0.196

0.196

-0.011

-0.000

3.185

3.205

-0.25 -0.06 0.07 0.20 0.39

11 Pade

MC

0.063

0.063

0.187

0.186

-0.016

-0.030

3.174

3.139

-0.24 -0.06 0.06 0.19 0.37

12 Pade

MC

0.058

0.058

0.179

0.179

-0.019

-0.017

3.164

3.144

-0.24 -0.06 0.06 0.18 0.35

13 Pade

MC

0.053

0.054

0.172

0.172

-0.022

-0.019

3.155

3.138

-0.23 -0.06 0.05 0.17 0.33

14 Pade

MC

0.049

0.050

0.166

0.166

-0.024

-0.023

3.146

3.106

-0.22 -0.06 0.05 0.16 0.32

15 Pade

MC

0.046

0.046

0.160

0.161

-0.026

-0.022

3.139

3.122

-0.22 -0.06 0.05 0.15 0.31

20 Pade

MC

0.034

0.035

0.139

0.139

-0.031

-0.028

3.110

3.099

-0.20 -0.06 0.03 0.13 0.26

30 Pade

MC

0.023

0.024

0.114

0.114

-0.032

-0.029

3.077

3.104

-0.17 -0.05 0.02 0.10 0.21

40 Pade

MC

0.017

0.018

0.099

0.099

-0.031

-0.041

3.059

3.057

-0.15 -0.05 0.02 0.08 0.18

50 Pade

MC

0.014

0.014

0.088

0.089

-0.029

-0.029

3.048

3.076

-0.13 -0.05 0.01 0.07 0.16
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Table 3b. Pade approximation of moments and percentage points of 6* when c = 2.1,
b = 1.0, a = 0.

AT 0i a \/ft ft 5% 25% 50% 75% 95%

10 Pade

MC

0.922

0.921

0.225

0.224

0.335

0.327

3.141

3.122

0.58 0.76 0.91 1.07 1.31

11 Pade

MC

0.929

0.929

0.215

0.215

0.320

0.330

3.130

3.113

0.60 0.78 0.92 1.07 1.30

12 Pade

MC

0.935

0.934

0.206

0.206

0.307

0.302

3.121

3.085

0.62 0.79 0.92 1.07 1.29

13 Pade

MC

0.940

0.939

0.198

0.199

0.295

0.296

3.112

3.118

0.63 0.80 0.93 1.07 1.28

14 Pade

MC

0.944

0.944

0.191

0.192

0.285

0.285

3.105

3.091

0.65 0.81 0.94 1.07 1.27

15 Pade

MC

0.948

0.948

0.185

0.186

0.275

0.285

3.099

3.124

0.66 0.82 0.94 1.07 1.27

20 Pade

MC

0.961

0.960

0.161

0.161

0.240

0.236

3.076

3.068

0.71 0.85 0.95 1.07 1.24

30 Pade

MC

0.974

0.973

0.132

0.132

0.197

0.193

3.052

3.061

0.76 0.88 0.97 1.06 1.20

40 Pade

MC

0.981

0.980

0.115

0.115

0.171

0.194

3.039

3.070

0.80 0.90 0.98 1.06 1.17

50 Pade

MC

0.985

0.984

0.103

0.103

0.153

0.157

3.032

3.057

0.82 0.91 0.98 1.05 1.16
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6 A Collection of Simple Formulas for the Mo

ments and Moment Ratios

6.1 Means

Using the Pade results for (1.1 < c < 4.0) and (10 < N < 100) we have the algorithm

E(b*) A, A2
6 N N2

where

0.806668 1.423234
Ax = -0.827043 +

c c2
« ,n^n„ 3.990936 5.658460

A2 = 0.436183 + 5 ,
c cr

with absolute error less than 0.1% except at c = 1.1 and N = 10 for which the

error is 0.175%. The formula given in (4) for E(Jm2/fj,2) is derived from its series
development in terms of the random variate [m2—E(m2)]; the error for (1.1 < c < 4.0)

and (13 < N < 100) is less than 1%.

Note that we now have the important result that

1 + Ax/N + A2/N2

is almost unbiased for 6.

For the location parameter a, the moment estimator is

a* = m[ - 6T(1 + 1/c) (c known),

and

E(a") = m'x - 6*T(1 + 1/c)

is almost unbiased for the location parameter a.

6.2 Variances

From (5), cr(6*/6) = ^/l - 1/N - [E(b*/b))2, and this can be set up from E{b*2/b) or
the Pade form for Var(b2/b).
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6.3 Skewness and Kurtosis

The formula for ^/ft(6*/6) is

^$)~,m~MB>+%)
where

1.964495 3.330215
Bx = -0.600783 +

c c2
ntnnnn 13.437573 25.060284

B2 = -0.847900 + =
c cr

with for 1.1 < c < 3.0 and 10 < AT < 100 the maximum error is less than 5%. For

c > 3.0, 10 < N < 100, y/J3l < 0.15.

The formula for the ft(6*/6) is

where

ftfy)=ft(&*)~3+( C\ C2

N N2

102.464711 125.090738
d = 21.924414 +

c c2
n.o,^o™ 995.457126 1025.128798

C2 = -242.161370 + = ,
c cr

for values 1.1 < c < 3.2 and 12 < N < 100 with maximum errors less than 2%. For

c > 3.2 the kurtosis ft is approximately 3.

7 Conclusion

The approximate distributionofa function ofsample moments {m\,m!2, m'3, m4) using

computer oriented extended Taylor series has been successful especially for moment

ratiossuch as \fb[ = m3/m2 and 62 = mi/m2 (Shenton and Bowman, 1977; Bowman

and Shenton, 1978, 1988b, 1989a). In general the series for the first four moments

turn out to be divergent as far as can be judged from the pattern exhibited in the

first 12 to 20 or so terms (in power of A^-1). In most cases the general term (N~s)
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in the series can only be given by approximations such as cksT(as + 6), where a and

6 are at worst positive half-integers. The Pade approach is most likely to succeed if

a = \, 1, | or 2; for larger values of a the Pade Borel transformation (Bowman and
Shenton, 1978, ppllO-111; Shenton and Bowman, 1977) may be used.

Pade sequences point to a best assessment when successive terms in the sequences

are nearly the same; it is possible for this to occur suggesting to a false assessment.

Checks on the assessments, for the most part, rely on simulation studies and in the

present study the reader is referred to Tables 3a and 3b. In addition we mention that

since the 2parameter case of 6* refers to the moments of ^m2/n2 in sampling from a
gamma density cyc~1e~yC withc = 1, we cancompare the Weibull case with a segment

of the study Bowman and Shenton (1990), which treats the Pade approximants to

the moments of -^m^, Vh, an<^ h for various values of the shape parameter and
sample sizes N = 10, 15, •• •, 200. The comparisons are given in Tables 4 and 5. The

agreement is quite satisfactory. Note that the derivation of the moments in the two

cases take different routes. For the gamma there is a recursion scheme for the rth

central moment where-as the Weibull density uses the integral defined in equation

(8).

A comprehensive account of Pade methods is given in Brezinskie (1980a) and the

bibliography (1978, 1980b).
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Table 4. Checks and Balances for moments of E(^m2//j,2) and <j{\/m,2/n2)

N 10 15 30 50 75 100

c = 1.1

0i Pade

Eq(4)
0.8863

0.8033

0.9222

0.8832

0.9595

0.9491

0.9752

0.9713

0.9832

0.9815

0.9873

0.9863

a Pade

Eq(5)
0.3362

0.5197

0.2876

0.3968

0.2147

0.2577

0.1705

0.1916

0.1411

0.1529

0.1231

0.1309

c = 2.0

0i Pade

Eq(4)
0.9207

0.9081

0.9474

0.9417

0.9739

0.9724

0.9843

0.9838

0.9896

0.9893

0.9922

0.9920

a Pade

Eq(5)
0.2288

0.2763

0.1889

0.2164

0.1351

0.1455

0.1052

0.1101

0.0861

0.0888

0.0746

0.0764

c = 4.0

0i Pade

Eq(4)
0.9252

0.9185

0.9508

0.9477

0.9757

0.9749

0.9855

0.9852

0.9904

0.9902

0.9928

0.9927

a Pade

Eq(5)
0.2100

0.2386

0.1714

0.1879

0.1210

0.1272

0.0936

0.0966

0.0764

0.0780

0.0662

0.0672

son of the Distribution of 1

N Mean

from Weibull and

VPi ft

npari s/m2/n2

s.d.

i. gamma i

10 GPade

GMC

W

0.8784

0.8754

0.8776

0.3639

0.3621

0.3634

1.12

1.11

1.128

5.25

5.27

5.293

20 G Pade

GMC

W

0.9334

0.9334

0.9338

0.2798

0.2792

0.2797

0.88

0.87

0.877

4.47

4.47

4.477

50 GPade

GMC

W

0.9718

0.9711

0.9718

0.1887

0.1888

0.1887

0.63

0.64

0.625

3.82

3.95

3.818

W= Weibull distribution, G=Gamma distribution (Bowman and Shenton, 1990). For the
Weibull distribution, c = 1, a = 0, and 6 = 1. For the gamma distribution, p = 1, a = 1,
density e-^x/a)"-1 /[aT(p)].
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APPENDIX D - SUPPLEMENT

A Series and Continued Fractions: Stieltjes and

Hardy

A.l The Gamma Function and its Continued Fraction Com

ponent

The usual asymptotic series is

i„r(*) ~[z -1) Hz)-z+\ln^)+i^-3W+i^-l6ob+- ••(larg A<7r)'
(Al)

The general term in the series is

B 2s

2s(2s-l)22s-1'

where Bs is a Bernoulli number and B0 = 1, Bx = -1/2, B2 = 1/6, B4 = -1/30, and

for large s
2-(2s)\( 1 \ +1 2(25)!
l^F [T^¥^) >(_1) B2s > 2k)2* •

(See Handbook of Mathematical Functions, 1967)

This series has intrigued many students. G.H. Hardy (1949) gave the expression

logn! =Elog(m) =(n +i)log(n)-n+C+^-3^3 +̂ ---- (13.73)
with '

C= 1____L + _^_____L+ B*
1-2 3-4 5-6 7-8

Hardy remarks "The series are semi-convergent, and can be used to calculate logn!

and C. We shall see later that C = \ ln(2?r).
We cannot calculate C with great accuracy from (13.73) because n = 1 is too

small. The least term is that last written, which is 0.0054, and we can calculate
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C —.919- •• to 3 places, by stopping there. This value of C, used in (13.73), would

then give a fairly accurate value for Inn! for large n."

The coefficients in the series part of (Al), although decreasing in value initially,

ultimately steadily increase in value to oo. Nonetheless it can be proved for z real,

and positive, that the magnitude of the error committed at a particular term in the

series is less than the magnitude of the first term omitted. Actually,

lnT(z) =(* ~|) Hz) ~z +\ ln(27r) +J(z)
where

00, ( 1 \ zdu ,„. , _
In — — (U(z) > 0)

\l-e-2*»J z2 + U2 V W '
1 r

7T JO l-e-2*pj z2 + (J?
1/12

z +
1/30

53/280
Z+ 195/371

z +

as given by Wall (1948). The continued fraction was given by Stieltjes in a letter

he sent to Hermite (1889). One may find it in 'Correspondence D'Hermite et de

Stieltjes' (1905, pp348-352). We quote an excerpt which portrays Stieltjes as the

ardent numerical fan.

et cotte fraction continue remplace avec grand avantage la serie de

Stirling. Pour x = 1, J(l) == 0,081061.

La serie. La fraction continue.

Val.app. Corr Val.app. Corr

0,083 333 0,002 272 0,083 333 0,002 272

0,080 556 0,000 505 0,080 645 0,000 416

0,081 349 0,000 288 0,081 173 0,000 112

0,080 764 0,000 307 0,081 016 0,000 045

0,081 081 0,000 020

Si une fraction continue telle que(2) ou tous les at, 6j sont posi-

tifs est convergente pour x = p > 0, alors elle est toujours con-

vergente tant que x > 0. Mais je dois reflechir encore beau-

coups sur la question diffieile que j'ai indiquee tout a l'heure.

Votre tout devoue.

2992/2273
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A.2 Series to Continued Fractions

Stieltjes (1918) in his collected works (Vol II) on 'Sur une Applications des Fractions

Continues' (p394) considers the series

Co - cxz + c2z2 —c3z3 +

and expresses it as the continued fraction

60 bxz b2z b3z bQ

where

1- 1-1-1- b-iz1__1

1-^-TT-l_hz_

Bn =

An =

Co Ci

C\ c2

Cn-1 Cn

Cl

c2

c2

c3

Cn

Cn+1

Cn Cn+1 - " - C2„_l

60 = ^4i = Co, Ao = B0 = 1,

C„-l

C„

C2n-2

b^z
r=

(n = l,2,-.-)

62n-i =
An-n-1 Bn

6on =
in+1 B.n-l

An B„_l' "" An Bn

In connection with the problem of moments, Stieltjes preferred the form

1111 1

a0z+ ari+ a2z+ a3+ a4z-\

in which a0,ax,--- > 0 and J2a = °° f°r the moment problem to have a unique

solution (see Shohat and Tamarkin, 1948). The moment problem referred to here is

a mechanical problem and at the time had little to do with statistics or probability.

In the application to the series for the random variate b*/b the form preferred is

1N+ 1+ N+ 1+ AT + •
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For this case 7Y is a sample size and positive; if in addition go, pi, <?i, • •• are positive,

then the odd convergents form a decreasing set of upper bounds, where-as the even

convergents form a set ofincreasing lower bounds; ifthere isconvergence these limiting

bounds will be equal. However, this theoretical case rarely happens in practice. In

general the partial numerators are of a much lower order of magnitude than the

series coefficients, and it is this characteristic which makes the approach useful and

powerful. Note:

• Series may be truncated in an orderly pattern and continued fractions set up

for the truncated components.

• Similarly, the same holds for the inverted series.

• The above constitute the Pade table of approximation sequences.

A.3 The Baker-Gammel Conjecture

There is an interesting conjecture given in Baker (1975). It is called the Baker-

Gammel-Wills-conjecture (1961). Briefly, under certain conditions for a regular power

series, there is a sequence of approximants in the Pade table which converges (Baker,

ppl88-189). There are other possibilities. Forexample, there is the surprising formula

(n - l)r(in)_ = A _ 1\ _1 1 1_
4n - 1+ f + f + f + •1+ - T-4^T4^7 4n- (">0),y/2nT(\n + ±) V nj \

and in fact the left hand side is E(^/m^) for the normal density Ar(0,1) when n =

1,2,3,--,

There are further examples which do not seem to fit into the Pade scheme. For

example (Rogers, 1907a, 1907b) gives

/ r°° sinht -t/x,.\ _ __1 £^ 3a:2
eXP V70 ~T6 dt)~ l-x+2(l-x)+2(l-x) +---

exp
00 / cosh2ai

cosh 2t/;(
-'/* , 2(1 - a2)x2 (32 - a2)x2 (52 - a2)x2

-dt = 1 + v ' v ' y '
t 1+ 1+1+

(see Rogers 1907a and 1907b; also Bowman and Shenton, 1989, pl57).
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Applications of continued fractions in physics are many; see 'The Pade Approxi

mation and its Physical applications' by J.L. Basdevant (1971).

For computer extensions of series in applied mathematics there are interesting

examples and comments in Van Dyke (1975). He quotes the case of the 19th century

French astronomer Delaunay who spent a lifetime in extending a series in five variables

up to and including the ninth order.

Further information on the Pade table is given in Brezinski (1980), which includes

programs for various algorithms related to continued fractions. A useful algorithm is

also given in Wall (1948, Chapter IX). A classical treatise on continued fractions is

given in Oskar Perron (1957).
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