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NOMENCLATURE

location parameter of Weibull distribution
scale parameter of Weibull distribution
shape parameter of Weibull distribution

maximum-likelihood estimators

moment estimators for a 3-parameter Weibull distribution

moment estimators for a 2-parameter Weibull distribution

almost unbiased moment estimators for a 2-parameter Weibull distribution

sample moment coefficient of skewness

plane-strain crack-arrest fracture toughness

plane-strain static-initiation fracture toughness

applied Mode I stress-intensity factor

1** crude moment of the sample = sample mean, X

2" central moment of the sample about the sample mean
sample size

probability level

nil-ductility-transition temperature

test temperature

(T - RT,,; ) = mean normalized temperature of dataset
(T — RTypr) = normalized temperature

moment function

Weibull density

median K, or K. at 50% cumulative probability of failure
K}, or K, at p™ x100% cumulative probability of failure
sample mean

moment coefficient of skewness

moment coefficient of kurtosis

Euler’s gamma function

=T(1+1/¢)

=T(1+2/¢)

1°* central moment of the population = population mean
2" central moment of the population = population variance
3" central moment of the population

4™ central moment of the population

Padé sequences

polynomials in N of degrees s-1 and s , respectively
standard deviation and variance of the population
Riemann zeta function
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ABSTRACT: This report presents the technical basis for new statistical representations of
extended fracture toughness K. and K, databases. This effort was performed by the Heavy
Section Steel Technology (HSST) program at ORNL in the context of a probabilistic
methodology appropriate for use in an effort by the Nuclear Regulatory Commission (NRC)
to update its regulatory guidance for pressurized-thermal-shock (PTS) transients. The
representations for K. and K, were developed through rigorous statistical procedures applied
to extended fracture toughness databases for reactor pressure vessel (RPV) steels. A 2-
parameter Weibull distribution, with the parameters calculated by the Method of Moments
point-estimation technique, forms the basis for the new statistical models. Results of these
analyses are reported in both graphical and equation form.

1. INTRODUCTION

The Heavy-Section Steel Technology (HSST) Program at ORNL has produced new
statistical representations for the two properties, the plane-strain static initiation toughness
K, and the plane-strain crack-arrest toughness K, used to characterize the fracture
toughness of reactor pressure vessel (RPV) steels. This effort was performed in the context of
a probabilistic methodology appropriate for use in an overall effort by the Nuclear
Regulatory Commission (NRC) to update its regulatory guidance for pressurized-thermal-
shock (PTS) transients. These new representations for K. and K;, were developed through
the application of rigorous statistical procedures applied to an extended fracture toughness
database for RPV steels.



Developments of the extended database and the new statistical representations for K. and K,
have been accomplished through the following steps:

1. A survey was conducted to identify available K. data from pressure vessel steels that
could augment the amended database of EPRI NP-719-SR [1] published by Nanstad et al.
[2]. The EPRI report [1] includes the data used for construction of the original Kj.
fracture toughness curve given in Appendix A, Section XI, of the ASME Boiler and
Pressure Vessel Code [3]. The candidate K. data were evaluated using specific
requirements that included the following: (a) satisfaction of validity requirements given
in ASTM Standard E 399 [4], (b) availability in tabular form and (c) availability of the
reference nil-ductility transition temperature (R7ypr) determined according to ASME
Code requirements [5].

2. A similar survey was carried out to compile an extended K}, database that would include
those data given in the EPRI report [1]. Because the ASTM Standard E 1221 [6] for K, is
relatively new, many of the existing data were generated prior to adoption of the
standard. Thus, it was agreed that candidate K, data would be evaluated in a more
general context, including engineering judgment of acknowledged experts and general
acceptance by the nuclear technology community.

3. Analytical tools (computer codes, etc.) were assembled to implement statistical
approaches for interpreting the K. and Kj, data. Expert professional statisticians were
brought into the study to ensure that suitable methods were being applied to the data.

4. Statistical analyses of the K. and K, data were performed to establish trend and
confidence curves. Results of these analyses were reported in both graphical and equation
form.

This report presents the technical basis for new statistical representations of the extended K,
and K, databases. The results of Steps 1 and 2 of the study are given in Section 2 with a
description of the extended K. and K), databases. In Section 3, the analytical approach to
developing the statistical representation of the K. and K, databases is discussed, followed in
Section 4 by a summary of its application to K. and K;, where the resulting statistical models

are presented in both graphical and analytical form. Conclusions are summarized in Section



5. A complete tabulation of the extended K. and K}, databases is given in Appendix A, and
the results of a preliminary regression analysis of the original EPRI K database are
described in Appendix B.

A companion HSST report [7] describes an implementation of the K, and Kj, statistical
models into the FAVOR probabilistic fracture mechanics program [8]. The FAVOR
implementation of the new models provides a statistically-derived alternative to current PTS
assessment methodology. (The latter methodology utilizes a fracture toughness model that
defines the “mean minus 20” curve as the ASME K. curve [8]). In ref. [7], results obtained
from applying the new FAVOR implementation to PTS assessments of selected RPVs are
compared to those generated using the current methodology.



2. EXTENDED K;. AND K;, DATABASES

2.1 K;. Database

In 1978, the ASME Section XI Task Group on Flaw Evaluation published an EPRI Special
Report [1], which includes the experimental fracture toughness data used in the construction
of the ASME K. and K}, curves. In 1993, Nanstad et al. [2] at ORNL carried out a study to
review the technical bases applied in the establishment of the ASME K. curve. That study
compared the data reported in refs. [1, 9 - 11] to the graphical plots in the EPRI report and in
Appendix A of Section XI of the ASME code [3]. Errors were found in the EPRI NP-719-SR
tabular data that were corrected, and an amended database was generated and reported in
ref. [2].

The EPRI database (consisting of 171 K, data points) includes data from 11 materials using

compact tension C(T) and wedge-open-loading (WOL) test specimens ranging in size from
1T to 11T as summarized in Table 1. Figure 1 (as adapted from ref. [12]) gives a visual

indication of the range of C(T) specimen sizes employed in constructing the database, and

Fig. 2 shows how the specimen sizes are distributed across the normalized temperature range

of =385°F = (T'— RTypr ) = S0°F. All 171 K. data points are plotted in Fig. 3a as a function of
test temperature. A frequency histogram and cumulative frequency plot of the data points

distributed across the test temperature range are shown in Figs. 3b and 3c, respectively. The

same data in Fig. 3 is replotted in Fig. 4 with the test temperature being normalized by the

reference nil-ductility transition temperature, RTypr. The ASME K, curve (from
Figure A-4200-1 of ref. [3]) is plotted in Fig. 4a as a solid line; the dashed line in Fig. 4a is

an extension of the ASME K. curve using the equation given in ref. [3]. In Fig. 4b, the

highest frequency (i.e., the largest number of replicate tests) occurs at (7' - RTypr) = -170°F.

Note in Fig. 4c, that approximately 70 percent of the EPRI database occurs at normalized

temperatures of (T-R7ypr) < -100°F. In Figure A-4200-1 [3], the plotted ASME Kj. curve

extends from -100°F = (T'— RTypr) = +100°F; therefore, only 30 percent of the 171 point
EPRI database falls within the range of normalized temperatures covered by the lower bound -
curve in the ASME Code.

At ORNL, a survey was conducted to identify available K. data generated more recently
from pressure vessel steels that could augment the amended EPRI database published by
Nanstad et al. [2]. Fracture toughness data subsequently included in the extended database



had to satisfy the specific validity requirements of ASTM E 399 [4]. That survey produced
83 K. fracture toughness values (obtained from refs. [13-17]) that are plotted in Fig. 5 as a
function of normalized temperature (7— RTypr); Table 1 provides additional details
concerning the extended dataset, and the chemistry and heat treatment of the principal

materials in the dataset are given in Table 2.

The extended K. database, compiled from the amended EPRI data and from the ORNL
survey, provided a total of 254 fracture toughness data points for input to the statistical model
development described in Section 3 and applied in Section 4. A plot of the extended K,
database versus 7— RTypr is given in Fig. 6; the complete tabulation of the database is

included in Appendix A.

2.2 K;, Database

The ORNL survey of available K}, data produced an additional 62 fracture toughness values
[18-20] that were used to augment the 50 K, data points [21, 22] obtained from EPRI
NP-719-SR [1]. Sources and summary details of the additional data are identified in Table 3.
A plot of the original EPRI dataset is given in Fig. 7; the additional K}, data are plotted in
Fig. 8; and the combined dataset is presented in Fig. 9. The extended database consisting of
112 fracture toughness values provided the input to the statistical model development for K,
described in Section 4. A complete tabulation of the K, database is included in Appendix A.



3. DEVELOPMENT OF THE STATISTICAL MODEL
3.1 Background

The Weibull distribution, introduced just over a half-century ago [23-24], has a long history
in the fields of fatigue and fracture mechanics. The original applications involved the
breaking strength of materials (e.g., cotton fibers) and the yield strength of steels R5-26].
Considering its pedigree in fracture mechanics, it is perhaps logical that the Weibull
distribution should be the primary choice as the basis for the statistical model in the present
study. Among candidate models that could also be considered are the 3-parameter gamma
distribution, the lognormal distribution, and others.

3.2 The Weibull Density

In the case of the Weibull distribution, there are three parameters to estimate, and these refer
to the location, a, of the random variate, the scale, b, of the random variate, and most

importantly, the shape parameter, c. The density (see Fig. 10) is given by

wixla,b,c)=— » exp(-y°), (v=(x-a)/b, x>a, b,c>0) (1)

<
b
The Weibull density is derived from its distribution function

Pr(X < x)=1-exp(-»°) (2)

When the shape parameter, c, is small, the density is reverse J-shaped with a high probability
for ¢ in the vicinity of ¢= 0. When ¢ = 1, the density becomes the exponential with
moderate J-shape (skewness = 2 and kurtosis = 9), and as ¢ increases the conventional bell-

shape is reached.



3.3 Moments and Moment Ratios

The moments and moment ratio provide further insight into the Weibull model. The mean

and variance are

Mean: p/(x|ab,c)=a+b T'(1+1/c)
Variance: u,(x|a b,c)=b*{[(1+2/c)-T*(1+1/c)}

where I' is Euler’s gamma function. Skewness, \/Fl , as a moment ratio,
a, =B, = m(x] & b,0)/ [m(x]a, b,

represents a measure of asymmetry. The kurtosis, 3,, as a moment ratio is
B, = u,(x| @ b,c)/ [ (x| a, b, )P

In general, the moments of a Weibull distribution can be expressed by
u(x|a,b,c)= b*jo“'[t”c —TA+1/c)f exp(-f) dt (s=1.2,---)
For example, the third moment is

p(x|a,b,¢) = b [ [(1+3/) =3T(1+2/)[(1+1/c)+ 2T (1+1/c) |

It is interesting to note that for the standard case (@ =0, b= 1):

e The mean, 4, lies between 0 and 1 and is asymptotic to 1.0 asc— 8.

e The standard deviation, o, decreases from unity, and o*(x|a, b, c) =7’ /(6¢’) asc — 8.



o The skewness, /S, , decreases as c increases, is zero for ¢ = 3.602 and asymptotic to

-1.13asc— 8.

e The kurtosis, B,, decreases from 9 at ¢= 1 to 2.71 approximately at ¢ = 3.2 and then

increases to an asymptotic 5.4asc— 8.

Table 4 and Fig. 11 present the mean, standard deviation, skewness, and kurtosis of Weibull

densities for the standard case (@ =0, b = 1).

3.4 Point Estimation Procedures

3.4.1 Maximum Likelihood Method

The 3-parameter Weibull case has been studied by Bowman and Shenton [27). In ref. [27], it
was found that the moments of the maximum likelihood estimators a, l;, ¢ for location,
scale, and shape, respectively, only exist for specific values of ¢. For example, the existence
of the mean requires that ¢ > 1; the existence of the variance requires ¢ > 2; the existence of
the skewness requires ¢>3; and the existence of the kurtosis requires ¢ >4. These
requirements apply to all three maximum likelihood estimators. Thus if 2<¢ < 3, as is the
case for some of the data in the extended K. database, then only the means and variances
exist. In addition, there is the problem of sample (x,, x;, ..., xy) size N. If inferences are to be
made concerning percentage points for a, b, ¢ in the populations concerned, then N should be
250 or even 500 to achieve sharp enough intervals for each parameter. This aspect of the
maximum likelihood method directed attention to other methods of point estimation.

3.4.2 The Method of Moments

Denoting the moment estimators for the 3-parameter case by as*, b3*, and c;*, we have

. 4.104683-1.148513,[ +0.441326 b -0.053025(/5,)’ &)
C =
’ Jb + 4

where \/E is the sample skewness and, in terms of the Riemann zeta function,



A=2LB)[E () =1.139547.

The expression in Eq. (3) was found by regression analysis using the fact that for the Weibull

variable

VA() ==4 (c—> ).

The error involved in Eq.(3) is less than approximately 4% for ¢>1.1. For the scale

parameter

b =\Im,/[D(1+2/¢,*)~T*(1+1/¢,*)]

2 . -
where m, = E(xj —Y) /N is the second central moment of the sample about ¥, where

X= 27:1 x;/N is the mean of the sample. Finally, for the location parameter,

a*=m —-b¥ T(1+1/c¥) .
The subscripts on the estimators are used to indicate that the 3-parameter case is indicated.

Approximate distributions of these estimators may be derived from simulations studies.
Examples are given in Table 5. For the simulation study in Table 5, the simulation cycle was
50,000, in batches of 10,000. Power series in terms of N’ may be set up for the moments of
az* and b3*; however, the main point to note is that for the 3-parameter case samples as small

as 20 will be linked to excessive values of the skewness and kurtosis as discussed in [28].



3.5 The Problem of the Location Parameter, a

If the shape parameter, c, is given, then one may consider the 2-parameter case, namely
C c
w(x|a,b) = 37 exp(—y°),

where y=(x—-a)/b. From Sect. 3.4.2, we have the moment estimator for the scale

parameter as

b*=\m [T(1+2/c)-T*(1+1/c)]

and for the location parameter
a¥ =m;-b* I'(1+1/c) .

The moment estimators for the 2-parameter case are much simpler than for the 3-parameter
model. For the latter, c;* is linked to both the scale and shape estimators. These linkages
account for the increased complexity in the 3-parameter case.

Moments of b,* and a;* may be simulated by generating Weibull random variables (see
Table 6). The skewness is quite small (V= 15), and acceptable percentage points may be
derived by the procedures given in Bowman and Shenton 29-30]. For the simulations in
Table 6, a cycle of 50,000 was used. For example, in the case of sample size N = 50, a
resulting 250,000 random numbers from a Weibull distribution were used. Moments of these
were also computed to ensure that the samples were taken from the given Weibull
distribution. The NAG library [31] subroutine for random numbers from a Weibull

distribution was used in the simulation.

A check on the above procedure is needed. Moments of sample moments or sample moment
functions can be developed using Padé approximants based on infinite series. Thus a moment
function #(m), such as ,/mz , \/-bT , by, etc., may be expanded as

10



tm)=t,+t,/ N+t,/N*-- (N >o0),

where (2,),s =0,1,---, are not functions of N. Padé sequences { z}*/z, }, where z,* and
z, are polynomials in N of degrees s-1 and s , respectively, can be derived [32-34]. An
example of a moment series is given in Table 7; the series possibly diverges and loss of
accuracy may occur for terms #~, s> 12. A comparison of assessments by simulation and
Padé for a,* and b,* are given in Table 8; some percentage points are also included. The
agreement between the Padé and simulations assessment is most satisfactory, exceeding N =
50.

Note that a,* is positively biased and b,* is negatively biased. Note also that moments have
been set up under the assumption that a=0, b= 1, i.e., the standard case. These moments

may be converted to a = ay, b = b, as follows:

for the mean

,Ull(a*l agpby)=a, + lb#ll(a*loal)
pi(b* | ag, by) =byp(b*10,1)

and for the variance

H(a*|ag b)) = bozﬂz (a*|0,1)
1, (b*| a5, by) = by 11, (6*10,1)

11



4. APPLICATION OF THE STATISTICAL MODEL
4.1 The K;. Model

In the current study, the problem was to apply a Weibull model to the extended K. database
in which the test temperature has been normalized by the reference-nil-ductility-transition
temperature, RTypr. A previous study [35] investigated the EPRI K. database in the context
of the Master Curve [36-38] where the test temperature is normalized by the reference
temperature, T, and size corrections are applied to the toughness data to allow the
comparison of data from a range of specimen sizes. A Weibull distribution is assumed in
ref. [38] in which the shape parameter is fixed at 4 and the location parameter is fixed at the
experimentally-determined value of 18.2 ksi-Vin. (20 MPa-Vm). The shape parameter of 4 is
derived [36] from a theoretical treatment of cleavage initiation in which “weakest-link”
mechanisms are assumed to dominate the scatter in the data at a given test temperature. This
assumption allows a relationship to be developed between the probability of failure by
cleavage and the stress and strain fields ahead of the crack front as characterized by the
applied stress-intensity factor K; When two parameters are fixed, the Weibull model
becomes a 1-parameter Weibull distribution in which the density is described by

w(x|b) =%y3 exp(-v*") (y=(x-18.2)/b,x>182;b>0)

where in [38] b = (Ko — Kmin) and Ky = 18.2 ksi-Vin. (20 MPa-Vm). With the l-parameter
Weibull distribution, the scale parameter, b or specifically K is estimated in [38] with a
maximum likelihood point estimator.

Due to the heterogeneity of the K, database with its range of materials and specimen sizes
(in some cases within the same grouping of replicate tests when normalized by RTypy), it was
not clear that the theoretical treatment developed in previous studies necessarily accounted
for all of the dominant modes that produced the observed scatter in the data. The decision
was therefore taken to develop a strictly statistical model to characterize the trends and

scatter in the extended K. database.

12



The recent study by Bowman and Shenton [27] showed that for the asymptotic moment
profile of maximum likelihood estimators to exist, the shape parameter ¢ must be greater than
4. Furthermore, sample sizes at a single normalized temperature must be greater than
approximately 250. It is, therefore, not feasible to attempt to develop a full 3-parameter
Weibull model with the small sample sizes in either the K}, or K, databases. In the following,
maximum likelihood estimators are designated a, b,and & for the parameters a, b, and c,

respectively.

In a preliminary study of the original 171 point EPRI dataset, the data were divided into six
sets as follows: set 1 with 31 data points, set 2 with 41 points, set 3 with 47 points, set 4 with
17 points, set 5 with 16 points, and set 6 with 19 points. Different partitions were
investigated, but these 6 divisions gave more uniform results than others. Between a value of
20 and the minimum value of each set, three trial values of a were selected. Maximum
likelihood estimators b and ¢ were computed given a trial value of a. Distributional
properties of b and ¢ are much better than those of the 3-parameter case. The asymptotic

variance of ¢ is

Var(¢) = c*(0.6079/ N+3.8398/N?) (c — o)

and that for & is

Var(é) =

b (1.1087 , 03624-1.9881/c +1.8429/¢*

Iy N J (€= )

where N is the sample size. The values of b were different for each set, but the ¢ values were

between 2 to 3.

The focus of the analysis then turned to estimating the location parameter, a , as a function of
the normalized temperature. The maximum likelihood estimators are not valid since the value
of ¢ must be greater than 4 for the asymptotic moment profile of maximum likelihood

estimators to exist. There are no such restrictions on the moment estimators for ¢ > 0.

13



Define 4, =T'(1+1/c) and A4, =T'(1+2/¢), with a,* and b,* the estimators, then

b =\lm2/(’12—/112) , ay :ml’_b2*/11

To determine which set of parameters a, b, and ¢ gives the best fit, a “x* goodness of fit” test
was applied. Sturges [39] proposed the formula 1 +log » to estimate the number of groups

within each dataset, where # is the sample size.

The extended K. dataset of 254 data points was divided into 16 sets (see Table 9) and the

following procedure was applied:

e For the 16 sets, a,* and b,* were calculated for 25 values of ¢ in the interval 1.3(0.1)3.7'.
The resulting moment estimators were tested to insure that 18.2 < a,* <Data,,;,, where
Data,, is the smallest data value in the set. Eight to twenty values of a,* (given ¢) were

accepted according to the results of the test for each of the 16 sets.

e For each set, the data were partitioned into 4 groups to test the hypothesis that the data
came from a Weibull density with estimates a,*, b,*, and given ¢. Turning to the question
of goodness of fit of the 2-parameter Weibull distribution ¢ known), the x> values for
one degree of freedom are 3.8415 at the 95% level, 6.6349 at 99%, 7.8794 at 99.5%, and
10.8276 at 99.9%.

e In Table 10, the resulting x* values are given for the 16 sets at selected values of (T )
where T is the average (7 — RT, "or ) for the set. All of the sets produced acceptable x°

values, except for set 13 which was excluded from the final analysis.

¢ For the many combinations of the triplet (a,*, b,*, ¢) from which to choose, the selected
c value was chosen to obtain an a,* nearest to the preliminary study of the lower

boundary.

" The notation ¢ (Ac)cmax designates a sequence of c-values from ¢, 10 ¢y in increments of Ac .

min

14



e As noted in the preceding section, a,* is positively biased and b,* is negatively biased for
small samples. An almost unbiased estimator b,**(7) can be derived from
by*(T)/E(by*/b). An almost unbiased estimator a,**(7) follows by using b,**(7).
Table 10 includes values of E(b,*/b), derived from Padé sequences relating to the series
development of E(b,*). For example, where ¢ = 2.1, N=12, from Table 8b, the E(b,*/b)
is 0.935.

The data given in Table 10 (excluding set 13) formed the basis for the construction of the
final model. Curve fitting the approximate unbiased estimators a,**(7) and b,**(7) and ¢(7)

produced the following model definition for K :

a¥*(AT) =10.8957+23.4192 exp(0.0023 (AT)) [ksi—+/in.]

bX¥*(AT) =14.7582+42.6312 exp(0.0124(AT)) [ksi—+/in.] (4)
¢(AT) =2.03025+0.4983 exp(0.0135(AT))

where AT = (T-RTypr) is in °F. The new statistical model for the extended K, is, therefore,

w(x|a¥*(AT) ,b3*(AT) )=—b*i(é?) YA exp(=y D), (y = (x—af*(AT) )/bF*(AT) ).

where x = K}, in ksi-Vin.
To calculate the percentiles (e.g., xo:5, X095, €tc.), from Eq. (2) one obtains
%o5(AT) = {=In(0.5)}"““Db*(AT) +af*(AT),

X005 (AT) = {=In(0.05)}"““Vb}*(AT) + ag**(AT), (5)
x,(AT) = {~In(1- p)}"““Vb*(AT) +a}*(AT). (0<p<l)

Figure 12 shows a plot of the lower boundary curve, a,**, and the 1%, 50%, 95%, 99%, and
99.5% curves. Above the 99.5 pqrcentile, there are 3 points where the expected number is 2.
Above the 99% curve, there are 5 points where the expected number is 3. Above the 95%

15



curve, there are 14 points where the expected number is 13. For the 50% curve, there are
119 points against the expected value of 127. Considering the small sample for the sets
involved, the fit of 254 data points to the Weibull model is considered satisfactory.

4.2 The K;, Model

The procedures summarized in Section4.1 were then applied to K;,. The extended K, dataset
of 112 data points was initially divided into 13 sets for a preliminary analysis. To obtain an
acceptable degree of smoothness in the resulting point estimates for a,* and b,*, the data
were subsequently repartitioned into 4 sets (see Table 11), and the procedure applied to K}

was then repeated:

e For the 4 sets, a,* and b,* were calculated for 25 values of ¢ in the interval 1.3(0.1)3.7.
The resulting moment estimators were tested to insure that 18.2 < g,* <Data,,,, where
Data i, is the smallest data value in the set. Approximately twenty values of a,* (given c)

were accepted according to the results of the test for each of the 4 sets.

e For each set, the data were partitioned into 4 groups to test the hypothesis that the data
came from a Weibull density with estimates a,*, b,*, and given c. The required > values

for one degree of freedom are 3.8415 at the 95% confidence level, 6.6349 at 99%, 7.8794
at 99.5%, and 10.8276 at 99.9%.

o In Table 12, the resulting x° values are given for the 4 sets at a fixed value of c. All of the

sets produced acceptable % values.

e For the many combinations of the triplet (a,*, b,*, ¢) from which to choose, the selected
¢ value was chosen to obtain an a,* nearest to the minimum value of each set. It was
determined that a fixed value of ¢ =2.5 provided the best result for positioning a,*

correctly.

¢ Asnoted in the preceding section, a,* is positively biased and b,* is negatively biased for
small samples. The generalized equation given in Appendix C was applied to estimate
values for E(b,*/b) which in turn were used to calculate the almost unbiased estimator

b,**(T). The almost unbiased estimator a,**(7) follows by using b,**(7).

16



The data given in Table 12 formed the basis for the construction of the final model. Curve

fitting (see Fig. 13) the approximate unbiased estimators a,**(7) and b,**(7) produced the -
following model definition for Kj,:

a¥*(AT) =24.584+15.352 exp(0.012639(AT)) [ksi—+/in.]

br*(AT) =36.201+0.060307 (AT) [ksi—\/a] (6)
c =25

where AT = (T-RTypr) is in °F. The new statistical model for the extended K, is, therefore,

Wx|af (AT) b3(AT) )= gy Pexp(-y™), (= (x=af*(AT) )/S*AT) )

where x = K, in ksi-Vin.

To calculate the percentiles for x5, x5, €tc., Egs. (5) can again be used

X, s(AT) = {=In(0.5)}"**b}*(AT) +a**(AT),
X005 (AT) = {=1n(0.05)}* b *(AT) +a}*(AT),
x,(AT) ={~In(1- p)} **b}*(AT) +a}*(AT). (0<p<l)

Figure 14 shows a plot of the lower boundary curve, a,**, and the 1%, 50%, 95%, 99%, and
99.5% curves. Above the 99.5% curve, there is 1 point where the expected number for N =
112 is 1. Above the 99% curve, there is 1 point where the expected number is 2. Above the
95% curve, there are 7 points where the expected number is 6. For the 50% curve, there are
57 points above and 55 below. Considering the small sample for the sets involved, the fit of
112 data points to the Weibull model is considered satisfactory.
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S. CONCLUSIONS

This report has presented the technical basis for new statistical representations of the
extended K. and K, databases. This effort was performed in the context of a probabilistic
methodology appropriate for use in an overall effort by the Nuclear Regulatory Commission
(NRC) to update its regulatory guidance for pressurized-thermal-shock (PTS) transients.
These new representations for K}, and K, were developed through the application of rigorous
statistical procedures applied to extended fracture toughness databases for RPV steels.

In summary, the new statistical models have the following analytical forms:

K. Density, w(x| a**(AT),b,**(AT))

c(AT)

c(AT)-1 e( _
o) rlexp(-yA), (v = (x—ar*(AT) )/b¥*(AT) )

w(x|af*(AT) ,bF*(AT) )=

where the parameters of the distribution are calculated from Eq. (4)

a}*(AT) =10.8957+23.4192 exp(0.0023 (AT)) [ksi—+/in.]

b *(AT) =14.7582+42.6312 exp(0.0124(AT)) [ksi—+/in.]
o(AT) =2.03025+0.4983 exp(0.0135(AT))

with x = K, in ksi-Vin., AT = (T-RTypy) is in °F.

K;, Density, w(x| a;**(AT),b," (AT))

2.5
BF*(AT)

where the parameters of the distribution are calculated from Eq. (6)

w(x|af*(AT) ,b3*(AT) )= Y exp(=y*), (y=(x—a}*(AT) )/B*(AT) )

af*(AT) =24.584+15.352 exp(0.012639(AT)) [ksi-+/in.]

b¥*(AT) = 36.201+0.060307 (AT) [ksi—+/in.]
c =25

with x = K, in ksi-Vin., AT = (T-RTyp7) is in °F.
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Example Problem Applying the New Statistical Model for K,

As an example of how to apply the new statistical model for K, let the test temperature be .
T = -5 °F for a material with RTypr = 5 °F; therefore, AT = T— RTypr = -10 °F. We then
calculate the parameters of the model by Eq. (4)

aX*(AT) =10.8957+23.4192 exp(0.0023 (AT)) [ksi—+/in.]

b¥*(AT) =14.7582+42.6312 exp(0.0124(AT)) [ksi—+/in.]
c(AT) =2.03025+0.4983 exp(0.0135(AT))

a**(~10) =10.8957+23.4192 exp(0.0023 (~10)) =33.78241 [ksi—+/in.]

b¥*(-10) =14.7582+42.6312 exp(0.0124(-10)) =52.41774 [ksi—+/in.]
c(~10) =2.03025+0.4983 exp(0.0135(~10)) = 2.46562

The median value of K, representing a 50% cumulative probability of failure is then xs.
From Eq. (5) withp=0.5

x,(AT) = {~In(1- p)}/*Dp**(AT) +aF*(AT). (0<p<1)

Xy5(=10) = {~In(1-0.5)}"**%2 52 41774 + 33.78241 = 78.96 [ksi —+/in.]

For a 1% cumulative probability of failure, the corresponding value of Kj. is xg; calculated
from Eq. (5) with p =0.01

Xy01(—10) = {~In(1—0.01)}}">4652 52 41774 + 3378241 = 41.90 [ksi—+/in.]

Additional properties of the distribution may also be calculated, for example the mean and

standard deviation at this normalized temperature are

Mean:

K popmeary (<10) = a*(=10) +b#*(=10) T(1+1/c(-=10))= | 80.28 [ksi-+/in.]

Standard Deviation:

o(=10) = b *(—10)4{T(1 + 2/ (- 10)) - T*(1+1/c(~10))} = | 20.14 [ksi—~/in.]

Note that for an asymmetric distribution, the median and the mean are not the same.

19



ACKNOWLEDGEMENTS

The surveys of the K; and K, literature and unpublished databases were carried out by
Drs. M. A. Sokolov and S. K. Iskander, respectively, of the Metals and Ceramics Division. The
support of Dr.R. K. Nanstad of the Metals and Ceramics Division in this project is also
acknowledged. P. W. McGrady of the Computational Physics and Engineering Division
performed the initial regression analyses of the EPRI K;. database. Consultations with Dr. D. A.
Wolf of the Computer Science and Mathematics Division on various statistical aspects of the

analysis are also gratefully acknowledged.

20



References

EPRI Special Report, 1978, “Flaw Evaluation Procedures: ASME Section XI,” EPRI
NP-719-SR, Electric Power Research Institute, Palo Alto, CA.

R. K. Nanstad, J. A. Keeney, and D. E. McCabe, “Preliminary Review of the Bases
for the K. Curve in the ASME Code,” ORNL/NRC/LTR-93/15, Oak Ridge National
Laboratory, Oak Ridge, TN, 1993.

ASME Boiler and Pressure Vessel Code, Section XI, Article A-4000: Material
Properties, American Society of Mechanical Engineers, New York, NY, (1998) 413-
417.

Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,
E 399-90, Annual Book of ASTM Standards - Section 3: Metals Test Methods and
Analytical Procedures, Vol. 03.01 Metals — Mechanical Testing; Elevated and Low-
Temperature Tests; Metallography, American Society for Testing and Materials,
West Conshohocken, PA, 1998.

ASME Boiler and Pressure Vessel Code, Section III, Article NB-2331, American
Society of Mechanical Engineers, New York, NY, (1998).

Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture
Toughness, K, , of Ferritic Steels, E 1221-88, Annual Book of ASTM Standards
Section 3: Metals Test Methods and Analytical Procedures, Vol. 03.01 Metals —
Mechanical Testing; Elevated and Low-Temperature Tests; Metallography, American
Society for Testing and Materials, West Conshohocken, PA, 1998.

B. R. Bass, P. T. Williams, T. L. Dickson, and W. J. McAfee, “Revised K,/K},
Fracture Toughness Curves for Application to PTS Assessments of Reactor Pressure
Vessels,” ORNL/LTR-99/??, Oak Ridge National Laboratory, Oak Ridge, TN,
November 1999.

T. L. Dickson, “An Overview of FAVOR: A Fracture Analysis Code for Nuclear
Reactor Pressure Vessels,” in Transactions of the 13th International Conference on
Structural Mechanics in Reactor Technology (SMIRT 13), Volume IV, Porto Alegre,
Brazil, (1995) 701-706.

-W. O. Shabbits, W. H. Pryle, and E. T. Wessel, Heavy Section Fracture Toughness

Properties of A533, Grade B, Class-1 Steel Plate and Submerged Arc Weldments,
HSST Technical Report 6, WCAP-7414, December 1969.

T. R. Mager, F. O. Thomas, and W. S. Hazelton, Evaluation by Linear Elastic
Fracture Mechanics of Radiation Damage to Pressure Vessel Steels, HSST Technical
Report 5, WCAP-7328, Revised, October 1969.

T. R. Mager, Fracture Toughness Characterization Study of A533, Grade B, Class-1
Steel, HSST Technical Report 10, WCAP-7578, October 1970.

21



[16]

[17]

[21]

[22]

[23]

N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for
Deformation, Fracture, and Fatigue, 2" ed., Prentice Hall, Upper Saddle River, N.J.,
(1999) 319.

R. K. Nanstad, F. M. Haggag, and D. E. McCabe, Irradiation Effects on Fracture
Toughness of Two High-Copper Submerged-Arc Welds, HSSI Series 5, USNRC
Report NUREG/CR-5913 (ORNL/TM-12156/V1 and V2) Vol. 1 and 2, Oak Ridge
National Laboratory, Oak Ridge, TN, October 1992.

D. E. McCabe., A Comparison of Weibull and f,. Analysis of Transition Range
Fracture Toughness Data, USNRC Report NUREG/CR-5788 (ORNL/TM-11959),
Oak Ridge National Laboratory, Oak Ridge, TN, January 1992.

T. Jawadate, Y. Tanaka, S. Ono, and J. Watanabe, “An Analysis of Elastic-Plastic
Fracture Toughness Behavior for J,, Measurements in the Transition Region,”
Elastic-Plastic Fracture: Second Symposium, Vol. II-Fracture Resistance Curves and
Engineering Applications, (edited by C. F. Shih and J. P. Gudas) ASTM STP 803,
(1983) I1531-11561.

D. E. McCabe, R. K. Nanstad, S. K. Iskander, R. L. Swain, Unirradiated Material
Properties of Midland Weld WF-70, USNRC Report NUREG/CR-6249 (ORNL/TM-
12777), Oak Ridge National Laboratory, Oak Ridge, TN, October 1994.

J. J. McGowan, R. K. Nanstad, and K. R. Thoms, Characterization of Irradiated
Current-Practice Welds and A533 Grade B Class 1 Plate for Nuclear Pressure Vessel
Service, USNRC Report NUREG/CR-4880 (ORNL-6484/V1 and V2), Oak Ridge
National Laboratory, Oak Ridge, TN, July 1988.

S. K. Iskander, W. R. Corwin, R. K. Nanstad, Results of Crack-Arrest Tests on Two
Irradiated High-Copper Welds, USNRC Report NUREG/CR-5584 (ORNL/TM-
11575), Oak Ridge National Laboratory, Oak Ridge, TN, December 1990.

S. K. Iskander, C. A. Baldwin, D. W. Heatherly, D. E. McCabe, I. Remec, and R. L.
Swain, Detailed Results of Testing Unirradiated and Irradiated Crack-Arrest
Toughness Specimens from the Low Upper-Shelf Energy, High Copper Weld, WEF-70,
NUREG/CR-6621 (ORNL/TM-13764) under preparation.

S. K. Iskander, R. K. Nanstad, D. E. McCabe, and R. L. Swain, “Effects of Irradiation
on Crack-Arrest Toughness of a Low Upper-Shelf Energy, High-Copper Weld,”
Effects of Radiation on Materials: 19" International Symposium, ASTM STP 1366,
M. L. Hamilton, A. S. Kumar, S. T. Rosinski, and M. L. Grossbeck, eds., American
Society for Testing and Materials, to be published in 1999.

E. J. Ripling and P. B. Crosley, “Strain Rate and Crack Arrest Studies,” HSST 5"
Annual Information Meeting, Paper No. 9, 1971. :

E. J. Ripling and P. B. Crosley, “Crack Arrest Studies,” HSST 6" Annual Information
Meeting, Paper No. 10, 1972.

W. Weibull, “A Statistical Theory of the Strength of Materials,” Proceedings of the
Royal Swedish Institute for Engineering Research, No. 151, 1939.

22



[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

- [35]

[36]

[37]

[38]

[39]

W. Weibull, “A Statistical Distribution Function of Wide Applicability,” Journal of
Applied Mechanics 18, (1951) 293-297.

S. Kotz, N. L. Johnson, and C. B. Read, Encyclopedia of Statistical Science, Vol. 9,
(edited by C. E. Antle and L. J. Bain), John Wiley & Sons, New York, 1988.

N. L. Johnson, S. Kotz, and N. Balakrishanan, Discontinuous Univariate
Distributions Volume 1, Second Edition, John Wiley & Sons, New York, 1994.

K. O. Bowman and L. R. Shenton, “Asymptotic Profile for Moments of Maximum
Likelihood Estimators and the Weibull Densities,” submitted for publication in
Commun. Statist. Theory and Method, 1999.

K. O. Bowman and L. R. Shenton, Properties of Estimators for the Gamma
Distribution, Marcel Dekker, Inc., 1988.

K. O. Bowman and L. R. Shenton, “Approximate Percentage Points for Pearson
Distributions,” Biometrika 66, (1979) 147-151.

K. O. Bowman and L. R. Shenton, “Further Approximate Pearson Percentage Points
and Cornish-Fisher,” Comm. Stat. Computa. B(8), (1979) 231-244.

NAG Fortran Library, The Numerical Algorithms Group Ltd, Oxford UK. 1999
G. A. Baker, Jr., Essentials of Padé Approximants, Academic Press, New York, 1975.

L. R. Shenton and K. O. Bowman, “The Development of Techniques for the
Evaluation of Sampling Moments,” Int. Statist. Rev. 43(3), (1975) 317-334.

K. O. Bowman and L. R. Shenton, Continued Fractions in Statistical Applications,
Marcel Dekker, Inc., 1989.

M. A. Sokolov, “Statistical Analysis of the ASME K, Database,” Transactions of the
ASME 120, (1998) 24-28.

K. Wallin, “The Scatter in K, -Results, Eng. Fracture Mech. 19(6), (1984) 1085-
1093.

J. G. Merkle, K. Wallin, and D. E. McCabe, “Technical Basis for an ASTM Standard
on Determining the Reference Temperature, T}, for Ferritic Steels in the Transition
Range,” NUREG/CR-5504 (ORNL/TM-13631) Oak Ridge National Laboratory,
November 1998.

Standard Test Method for Determination of Reference Temperature, T), for Ferritic
Steels in the Transition Range E 1921-97, Annual Book of ASTM Standards Section
3: Metals Test Methods and Analytical Procedures, Vol. 03.01 Metals — Mechanical
Testing; Elevated and Low-Temperature Tests; Metallography, American Society for
Testing and Materials, West Conshohocken, PA, 1998.

H. Sturges, “Sturges’ Rule,” J. Amer. Statist. Assoc. 21, (1926) 65-66.

23



Table 1. Summary of K;. Extended Database

Temp. (T-RTypp) No. of
Specimen Size Range Range Data
Material Source Type Rﬁe (°F) (°F) Points
EPRI Database EPRI NP-719-SR
1 HSST 01 subarc Shabbits (1969) c(T) 1T - 6T -200 to -50 -200 to -50 8
weldment
2 A533B Cl. 1 Shabbits (1969) C(T) 1T - 8T -200t0 0 -200t0 0 8
subarc weld
3 HSST 01 Mager (1970) c(T) 1T -150 -170 17
4 HSST 03 Mager (1970) c(T) 1T -150 -170 9
5 AS533B Cl. | Mager (1969) WOL 1T - 2T -320to - -385t0-215 13
150
6 HSST 02 Mager (1969) WOL & C(T) 1T-2T -200to 0 -200t0 0 41
6 HSST 02 Shabbits (1969) c(T) IT- 11T -250to 50 -250to 50 28
7 AS533B Cl. 1 Mager (1969) WOL IT-2T -320to - -275t0 -155 10
weldment 200
8 AS533BCl. 1 Mager (1969) WOL 1T -2T -320to - -320to0 -200 6
weldment/HAZ 200
9 A508 CL.2 Mager (1969) WOL 1T -2T -320to - -370t0 -150 12
European Forging 100
10 A508 Class 2 unpublished C(T) 2T - 6T -150t0 0 -201 to -51 9
11 A508 Class 2 unpublihsed (T 2T - 8T -125t0-75 -190 to -30 10
Total 171
Additional Additional Data
Data
12 HSSI Weld 72W NUREG/CR-5913. C(T) 1T4T -238to0 5 -229to 14 12
13 HSSI Weld 73W NUREG/CR-5913 c(m 1T4T -238to -58 -209 to -29 10
14 HSST Plate 13A NUREG/CR-5788 c(T) 1T4T -238to - -229 to -94 43
103
15 A508 CL. 3 ASTM STP 803 Bx2B C(T) 1T4T -238to0 -4 -225t09 6
16 Midland Nozzle NUREG/CR-6249 c(T) 1T -148to -58 -200to-110 6
Course Weld
17 Midland Beltline NUREG/CR-6249 c(T) 1T -148 -171 2
18 Plate 02 4" Irr. NUREG/CR-4880 (M) 1T -148to - -148t0 -139 4
Series (68-71W) 139
Total 83
Grand Total 254

REFERENCES FOR TABLES 1 AND 2

EPRI Special Report, 1978, Flaw Evaluation Procedures: ASME Section XI, EPRI NP-719-SR, Electric Power
Research Institute, Palo Alto, CA.

W. O. Shabbits, W. H. Pryle, and E. T. Wessel, Heavy Section Fracture Toughness Properties of A533, Grade B,
Class-1 Steel Plate and Submerged Arc Weldments, HSST Technical Report 6, WCAP-7414, December
1969.

T. R. Mager, F. O. Thomas, and W. S. Hazelton, Evaluation by Linear Elastic Fracture Mechanics of Radiation
Damage to Pressure Vessel Steels, HSST Technical Report 5, WCAP-7328, Revised, October 1969.

T. R. Mager, Fracture Toughness Characterization Study of A533, Grade B, Class-1 Steel, HSST Technical Report
10, WCAP-7578, October 1970.

R. K. Nanstad, F. M. Haggag, and D. E. McCabe, Irradiation Effects on Fracture Toughness of Two High-Copper
Submerged-Arc Welds, HSSI Series 5, USNRC Report NUREG/CR-5913 (ORNL/TM-12156/V] and V2)
Vol. 1 and 2, Oak Ridge National Laboratory, Oak Ridge, TN, October 1992.

D. E. McCabe., 4 Comparison of Weibull and f,. Analysis of Transition Range Fracture Toughness Data, USNRC
Report NUREG/CR-5788 (ORNL/TM-11959), Oak Ridge National Laboratory, Oak Ridge, TN, January
1992.

T. lawadate, Y. Tanaka, S. Ono, and J. Watanabe, “An Analysis of Elastic-Plastic Fracture Toughness Behavior for
Ji. Measurements in the Transition Region,” Elastic-Plastic Fracture: Second Symposium, Vol. Il-Fracture
Resistance Curves and Engineering Applications, ASTM STP 803, (1983) I1531-11561.
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D. E. McCabe, R. K. Naﬂstad, S. K. Iskander, R. L. Swain, Unirradiated Material Properties of Midland Weld
WF-70, USNRC Report NUREG/CR-6249 (ORNL/TM-12777), Oak Ridge National Laboratory, Oak
Ridge, TN, October 1994.

J. J. McGowan, R. K. Nanstad, and K. R. Thoms, Characterization of Irradiated Current-Practice Welds and
A533 Grade B Class 1 Plate for Nuclear Pressure Vessel Service, USNRC Report NUREG/CR-4880 (ORNL-
6484/V1 and V2), Oak Ridge National Laboratory, Oak Ridge, TN, July 1988.

Table 2. Chemistry and Heat Treatment of Principal Materials

25

Chemistry — wt (%) Heat
Material ID  Specificatio Source C P Mn Ni Mo Si Cr Cu S Al Treatment
n
HSSTO!  AS533BCL1  Mager | 22 012 148 68 .52 25 - - 018 - Note 1
1970
HSST 02 AS533BClL 1 gvlagei 22 012 1.48 .68 .52 25 - - .018 - Note 2
1969
HSST03  AS533BCL 1 f\/[agei 20 011 126 56 45 25 .10 .13 018  .034 Note 3
(1970)
HSST 02 AS533BClL. 1  Shabbits | 22 .012 1.48 .68 52 25 - - .018 - Note 4
1969
HSST 01 A533BCl. | S(habbi)ts d2 014 1.35 65 .52 23 - - .012 - Note 5
subarc weld (1969)
B&W subarc  AS533BCl.1  Shabbits | .10 .009 1.77 .64 42 36 - - .015 - Note 6
weldment (1969)
PW/PH A533BCl. 1 Mager 09 019 125 1.08 52 23 .05 22 A3 .037 Note 7
weldment (1969)
MDO07 AS08Cl. 2 Mager 18  .009 1.16 72 S1 24 28 - 10 - Note 8
European Ring forging  (1969)
- A533B Mager A9 012 1.37 52 45 25 13 A5 016 048 Note 9
cl1 (1969)
A A533B weld 5788 .09 006 1.66 .60 58 04 27 23 .006 -
W A533B weld 5788 10 005 1.56 .60 .58 04 25 21 .005 -
" Notes:
1. Normalizing: 1675 °F 4 hr, air cooled
Austentizing: 1600 °F 4 hr
Quenching;: Water quench
Tempering: 1225 °F 4 hr, furnace cooled
Stress Relief: 1150 °F 40 hr, furnace cooled
2. Normalizing: 1675 °F 4 hr, air cooled
Austentizing: 1600 °F 4 hr
Quenching: Water quench
Tempering: 1225 °F 4 hr, furnace cooled
Stress Relief: 1150 °F 40 hr, furnace cooled
3. Normalizing: 1675 °F 12 hr, air cooled
Austentizing: 1575 °F 12 hr
Quenching: Water quench
Tempering: 1175 °F 12 hr, furnace cooled
Stress Relief: 1125 °F 40 hr, furnace cooled
4. Normalizing: 1675+ 25 °F 4 hr
Austentizing: 1520 °F - 1620 °F 4 hr
Quenching: Water quench.
Tempering: 1200 °F — 1245 °F 4 hr, air cooled
Stress Relief: 1150 £ 25 °F 40 hr, furnace cooled to 600 °F
5. Post Weld: 1150+ 25°F 12 hr
Intermediate 1100 + 25 °F 15 min



6. Post Weld 1100 °F - 1150 °F 12 hr
Intermediate 1100 °F-1150 °F 15 min
7. 620 °C 27 hr, air cooled
8. 925 °C Shr
Quenching: Water quench
650 °C 3 hr, furnace cooled
620 °C 24 hr, air cooled
9. 910 °C 8 hr
Quenching: Water quench
680 °C 10 hr, furnace cooled
850 °C 8hr
Quenching: Water quench
690 °C 8 hr, air cooled
620 °C 24 hr, air cooled
Table 3. Summary of K;, Extended Database
Test Temp. (T-RTNDT) No. of
Specimen Size Range Range Data Points
Material Source Type Range (°F) (°F)
EPRI Database EPRI NP-719-SR
1 HSST 02 Ripling (1971) C(T) IT3T  -1501t0 121 -150t0 121 50
Additional Additional Data
Data
2 HSSI Weld 72W NUREG/CR-5584 C(T) crack arrest -78to 41 “68to51 32
3 HSSI Weld 73W NUREG/CR-5584 C(T) crack arrest -7810 59 -48 10 89 26
4 MW15J NUREG/CR-6621 C(T) crack arrest -4 to 50 -36t0 18 4
Total = 112

REFERENCES FOR TABLE 3
EPRI Special Report, 1978, Flaw Evaluation Procedures: ASME Section XI, EPRI NP-719-SR, Electric Power
Research Institute, Palo Alto, CA.

E. J. Ripling and P. B. Crosley, “Strain Rate and Crack Arrest Studies,” HSST 5" Annual Information Meeting,
Paper No. 9, 1971.

S. K. Iskander, W. R. Corwin, R. K. Nanstad, Results of Crack-Arrest Tests on Two Irradiated High-Copper Welds,
USNRC Report NUREG/CR-5584 (ORNL/TM-11575), Oak Ridge National Laboratory, Oak Ridge, TN,

December 1990.

S. K. Iskander, C. A. Baldwin, D. W. Heatherly, D. E. McCabe, I. Remec, and R. L. Swain, Detailed Results of
Testing Unirradiated and Irradiated Crack-Arrest Toughness Specimens from the Low Upper-Shelf

Energy, High Copper Weld, WF-70, NUREG/CR-6621 (ORNL/TM-13764) under preparation.

S. K. Iskander, R. K. Nanstad, D. E. McCabe, and R. L. Swain, “Effects of Irradiation on Crack-Arrest Toughness of
a Low Upper-Shelf Energy, High-Copper Weld,” Effects of Radiation on Materials: 19" International
Symposium, ASTM STP 1366, M. L. Hamilton, A. S. Kumar, S. T. Rosinski, and M. L. Grossbeck, eds.,
American Society for Testing and Materials, to be published in 1999.

26



Table 4. Mean, Standard Deviation, Skewness, and Kurtosis of Weibull Density

Shape Parameter Mean Std. Deviation  Skewness  Kurtosis

4 u’ o VB, B2
1.2 0.9407 0.7872 1.52 6.24
1.4 09114 0.6596 1.20 4.84
1.6 0.8966 0.5737 0.96 4.04
1.8 0.8893 0.5112 0.78 3.56
2.0 0.8862 0.4633 0.63 3.25
2.2 0.8856 0.4249 0.51 3.04
2.4 0.8865 0.3935 0.40 2.91
2.6 0.8882 0.3670 0.32 2.82
2.8 0.8905 0.3443 0.24 2.76
3.0 0.8930 0.3246 0.17 2.73
32 0.8957 0.3072 0.11 2.71
34 0.8984 0.2918 0.05 2.71
3.6 0.9011 0.2780 0.00 2.72
3.8 0.9038 0.2656 -0.05 2.73
4.0 0.9064 0.2543 -0.09 2.75
4.2 0.9089 0.2440 -0.13 2.77
4.4 09114 0.2345 -0.16 2.79
4.6 0.9137 0.2258 -0.19 2.82
4.8 0.9160 02178 -0.23 2.85
5.0 0.9182 0.2103 -0.25 2.88
52 0.9202 0.2034 , -0.28 2.91
54 0.9222 0.1969 -0.31 2.94
5.6 0.9241 0.1908 -0.33 2.97
5.8 0.9260 0.1851 -0.35 3.00
6.0 0.9277 0.1798 -0.37 3.04
6.2 0.9294 0.1747 -0.39 3.07
6.4 0.9310 0.1700 -0.41 3.10
6.6 0.9325 0.1655 -0.43 3.13
6.8 0.9340 0.1612 -0.45 3.16
7.0 0.9354 0.1572 -0.46 3.19
oo 1.0000 0 -1.13 5.4
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Table S. Simulation Study of 3-Parameter Weibull Density (@ =0,b=1)

c N Mean G VB, B,
1.5 20 a3* -0.1778 02933  -3.0524 56.9235
by*  1.2008  0.3801 1.8130 23.2091
c;*  2.0087  0.8358 7.3181 288.2254

50 az;* -0.0808 0.1674 -0.4247 3.6671

by 1.0928  0.2311  0.3559 3.3975

c;* 17139 04113  0.8262 4.5043
20 50 a;*  -0.0628 0.1884  -0.7211 4.6178
bs*  1.0653 02265  0.6018 4.1276

c;* 22294 0.5753  1.1289 6.1499
30 50 a* -0.0600 02774  -2.7998 50.5081
bs*  1.0583 02954 24757 40.3715
c;* 33110  1.1351  3.8903 88.6025

40 50 a;* -0.0996 1.1047 -94.6727 13422
by*  1.0971  1.1088  93.6296 13234

c;* 45401  5.8649  60.7017 12151
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Table 6. Moments of Moment Estimators a,*, b,* Given ¢ by Simulation (a=0,5=1)

a* by*

c N W’ o VB, B, W’ o____ VB, B,

1.1 15 0.0748 0.1941 -0.5312 4.5585 | 0.9220 0.2885  0.8453  4.3463
30 0.0403 0.1456 -0.5520 4.3182 | 09578 0.2142 0.6473  3.8629
50 0.0247 0.1175 -0.5439 4.0882 | 0.9745 0.1706  0.5449  3.6760

1.5 15 0.0544 0.1683  -0.1981 3.5019 | 0.9394 0.2248 0.5264 3.4893
30 0.0285 0.1214 -0.1964 33790 | 0.9682 0.1628 03800 3.2782
50 0.0172  0.0956 -0.1954 3.2947 | 0.9812 0.1279 03137 3.2221

2.0 15 0.0468 0.1608 -0.3695 3.1557 | 0.9470 0.1896 0.3147 3.1570
30 0.0242 0.1140 -04315 3.1263 | 09726 0.1353 0.2156  3.0787
50 0.0145 0.0889 -0.4358 3.0928 | 0.9839 0.1054 0.1755 3.0710

25 15 0.0445 0.1615 0.0087 3.0314 | 0.9496 0.1755 0.1949  3.0408
30 0.0229  0.1139 0.0025 3.0458 | 09742 0.1242 0.1267 3.0184
50 0.0137 0.0884 0.0047 3.0355 | 0.9848 0.0964 0.0991 3.0223

3 15 0.0441 0.1648 0.0077 29666 | 09504 0.1707 0.1323  2.9891
30 0.0226  0.1161 0.0091 3.0047 | 0.9747 0.1204 0.0801 2.9939
50 0.0135 0.0900 0.0153 3.0092 | 09850 0.0933 0.0573  3.0022

35 15 0.0444 0.1688 -0.0131 29294 [ 0.9505 0.1702 0.1080 2.9604
30 0.0228  0.1190 -0.0008 2.9797 | 0.9747 0.1200 0.0609  2.9796
50 0.0136 0.0922 0.0099 29940 | 09850 0.0929 0.0387 2.9919

4.0 15 0.0450 0.1730 -0.0423 29103 | 09502 0.1718 0.1075  2.9447
30 0.0231 0.1220 -0.0181 29644 | 09746 0.1212 0.0589  2.9700
50 0.0138 0.0945 -0.0027 29852 | 0.9849 0.0939 0.0350 2.9861

4.5 15 0.0458 0.1770 -0.0746 29046 | 0.9497 0.1743 0.1206  2.9394
30 0.0235 0.1250 -0.0385 2.9563 | 0.9743 0.1231 0.0671 29644
50 0.0140 0.0969 -0.0185 2.9808 | 0.9848 0.0954 0.0404 2.9835

5.0 15 0.0465 0.1807 -0.1072 29091 | 09492 0.1772 0.1411 2.9430
30 0.0239 0.1278 -0.0601 29538 | 0.9740 0.1253  0.0810 2.9631
50 0.0143  0.0991 -0.0355 29797 | 09846 0.0972 0.0510  2.9835
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Table 7a. Asymptotic Series for Moments of a;* when c=2.1,a=0,b=1

N w’ L% M3 L%
1 0.67891756E+00 0.39190262E+00 0.00000000E+00 0.00000000E+00
2 0.12065197E+00  -0.12936388E+00  -0.62858268E-01 0.46076300E+00
3 0.22596801E+00 0.39926399E+00 0.65259996E+00 0.87633222E-01
4 -0.94143717E-01  -0.57533240E+00  -0.12345449E+01  -0.45578535E+00
5 0.96779137E+00 0.23255354E+01 0.39983611E+01 0.34831723E+01
6 -0.10428443E+02  -0.24242021E+02  -0.38215069E+02  -0.40062234E+02
7 0.66616458E+02 0.16238149E+03 0.26774912E+03 0.28350636E+03
8 -0.82602889E+03  -0.18977491E+04  -0.30275244E+04  -0.34750509E+04
9 0.10768022E+05 0.24561289E+05 0.39176514E+05 0.46256651E+05
10 -0.15348588E+06  -0.34850034E+06  -0.55694455E+06  -0.67302490E+06
11 0.26402856E+07 0.59300523E+07 0.94425785E+07 0.11655858E+08
12 -0.49216457E+08  -0.11011743E+09  -0.17548365E+09 -0.21976221E+09
13 0.10176100E+10 0.22674047E+10 0.36138770E+10 0.45838897E+10
14 -0.23129054E+11  -0.51357576E+11  -0.81872046E+11  -0.10495521E+12
15 0.56876611E+12 0.12598299E+13 0.20096260E+13 0.25992204E+13
16 -0.15107494E+14  -0.33404345E+14  -0.53326454E+14  -0.69525005E+14
17 0.42259638E+15 0.93595653E+15 0.14998528E+16 0.19721783E+16
18 -0.14408778E+17 -0.31119021E+17 -0.48868476E+17 -0.63863669E+17
19 0.32275602E+18 0.77677964E+18 0.13275018E+19 0.18288223E+19
20 -0.25705929E+20  -0.49572875E+20 -0.72137529E+20 -0.89681505E+20

Table 7b. Asymptotic Series for Moments of b,* when c=2.1,a=0,b=1

3

w/ |27} Ys |
1 -0.76653772E+00 0.53307543E+00 0.00000000E+00 0.00000000E+00
2 -0.13622315E+00  -0.31513378E+00 0.42414305E+00 0.85250825E+00
3 -0.25513113E+00  0.30142190E+00 -0.54175408E+00  -0.54631884E+00
4 0.10629377E+00 -0.62227956E+00 0.10815229E+01 0.42079527E-01
5 -0.10926932E+01 0.22788332E+01 -0.34612660E+01 0.14272741E+01
6 0.11774324E+02  -0.25259961E+02 0.35523787E+02 -0.28133440E+02
7 -0.75213885E+02  0.16823523E+03 -0.25469337E+03 0.21130414E+03
8 0.93263503E+03 -0.19779396E+04 0.28792702E+04 -0.27350607E+04
9 -0.12157728E+05 0.25731005E+05 -0.37781724E+05 0.38011792E+05
10 0.17329456E+06  -0.36501582E+06 0.53803912E+06 -0.56144208E+06
11 -0.29810372E+07 0.62249534E+07 -0.91590334E+07 0.98972354E+07
12 0.55568265E+08 -0.11566618E+09 0.17061368E+09 -0.18861713E+09
13 -0.11489413E+10 0.23823551E+10 -0.35170950E+10 0.39629734E+10
14  0.26114053E+11 -0.53976022E+11 0.79750846E+11 -0.91286141E+11
15  -0.64216946E+12  0.13241005E+13 -0.19583356E+13 0.22703091E+13
16 0.17057576E+14  -0.35090021E+14 0.51940681E+14 -0.60867305E+14
17 -0.47713457E+15 0.98075810E+15 -0.14523905E+16 0.17166386E+16
18 0.16266128E+17  -0.33212689E+17 0.49214936E+17 -0.58878863E+17
19  -0.36411951E+18 0.75367963E+18 -0.11234241E+19 0.13282242E+19
20  0.29018090E+20 -0.59146123E+20 0.86434712E+20 -0.10733751E+21
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Table 8a. Padé Approximation of Moments and Percentage Points of a,*

whenc=2.1,b=1.0,a=90

N u’ o VB, B, 5%  25%  50%  75%  95%
10  Padé 0.069 0.196 -0.011 3.18 -025 -0.06 007 020 039
MC  0.070 0.196 -0.000 3.205
11 Padé 0.063 0.187 -0.016 3.174 -024 -006 006 0.19 037
MC  0.063 0.186 -0.030 3.139
12 Padé 0.058 0.179 -0.019 3.164 -024 -006 006 0.18 035
MC  0.058 0.179 -0.017 3.144
13 Padé 0.053 0.172 -0.022 3.155 -023 -006 005 0.17 033
MC  0.054 0172 -0.019 3.138
14  Padé 0.049 0.166 -0.024 3.146 -022 -006 0.05 016 032
MC  0.050 0.166 -0.023 3.106
15 Padé 0.046 0.160 -0.026 3.139 -022 -0.06 0.05 0.15 03Il
MC  0.046 0.161 -0.022 3.122
20 Padé 0.034 0.139 -0.031 3.110 -020 -0.06 003 013 026
MC  0.035 0.139 -0.028 3.099
30  Padé 0.023 0.114 -0.032 3.077 -0.17 -0.05 002 010 021
MC  0.024 0.114 -0.029 3.104
40 . Padé 0.017 0.099 -0.031 3.059 -0.15 -005 0.02 008 0.8
~ MC  0.018 0.099 -0.041 3.057
50 Padé 0.014 0.088 -0.029 3.048 -0.13 -0.05 001 007 0.16
MC  0.014 0.089 -0.029 3.076
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Table 8b. Padé Approximation of Moments and Percentage Points of b,*
whenc=21,6=1.0,a=0

N u’ o VB, B, 5% 25%  50%  75%  95%

10 Padé 0922 0225 0335 3.141 058 076 091 1.07 131
MC 0921 0224 0327 3.122

11 Padé 0.929 0215 0320 3.130 0.60 078 092 1.07 130
MC 0929 0215 0330 3.113

12 Padé 0935 0206 0307 3.121 062 079 092 1.07 1.29
MC  0.934 0206 0302 3.085

13 Padé 0940 0.198 0295 3.112 063 080 093 1.07 128
MC 0939 0.199 0296 3.118

14 Padé 0.944 0.191 0.285 3.105 065 081 094 107 127
MC 0944 0192 0.285 3.091

15 Padé 0948 0.185 0275 3.099 066 082 094 1.07 127
MC 0948 0.186 0285 3.124

20 Padé 0961 0.161 0240 3.076 071 0.85 095 107 1.24
MC 0960 0.161 0.236 3.068

30 Padé 0974 0.132 0.197 3.052 076 088 097 1.06 1.20
MC 0973 0.132 0.193 3.061

40 Padé 0981 0.115 0.171 3.039 080 09 098 1.06 1.17
MC 0980 0.115 0.194 3.070

50 Padé 0985 0.103 0.153 3.032 0.82 091 098 1.05 1.16
MC 0984 0.103 0.157 3.057
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Table 9. The Extended K;. Database Binned into 16 Groups

Bin | (T-RTypy) Static Initiation Toughness Data, K,
(°F) (ksi-Vin.)
1 -385 31.6,32.5
-370 39.6,27.5,47.5
-320 25.9,23.7,30.3
2 -315 40.9,37.1,44.0,40.8,31.2
-300 432,47941.6,51.3
3 -275 29.7,27.2
-265 30.6,29.0,35.6,42.8
-250 37.3,35.2,40.4,30.5,44.2,55.0,43.3,37.3
4 -228.6 35.09,35.45,37.82,25.36,26.18,29.27,29.45,30.18,31.00,32.82
33.82,36.00,36.36,32.09,33.73,34.27,34.91,35.09,36.00,37.45
37.45,39.55,39.73,40.36,42.36,43.73,46.45,49.55,49.64,30.09
33.00,36.55,37.00,39.36,39.91,40.91,41.45,42.18,46.45,48.64
53.18
-225 37.29,39.89,44.22
5 -215 46.9,66.9
-208.8 34.64,37.82,38.18,39.45
-205 37.6,37.8,43.6,55.6
-201 52.2,45.5
6 -200 46.6,35.1,45.2,30.5,37.5,41.0,31.2,30.8,44.0,34.6,
39.9,38.5,44.4,34.6,39.9,34.8,71.2,57.2,45.63,44.63,
42.81,33.45,32.36
7 -190 47.2,409,42.542.5
-180 40.1,52.8,66.2
-176 46.0,64.3,50.0,45.6,68.0
-175 55.8,43.5,56.2
8 -171 36.45,34.91
-170 43.9,39.4,31.3,47.3,50.4,41.2,54.0,50.9,35.5,33.2,37.2,37.1,37.1
34.7,35.0,32.6,29.4,44.0,31.4,39.3,31.3,33.0,38.1,31.1,44.9,39.4
9 -155 70.7
-153 43.36
-150 56.1,29.7,31.5,41.2,30.5,42.1,37.7,40.7,44.1,37.4,41.8,56.0
-148 38.09
10 -1404 | 4255
-140 52.0,64.6,56.6
-139 33.45,39.27,40.09
-125 61.1,39.1,48.3,43.4,38.1
11 -110 49.81
-102.6 | 45.09,58.73,67.64
-100 96.0,55.2,51.4,59.0,56.2,50.2,42.2,48.5,48.5,54.8,54.4,48.3

48.3,41.9,49.7
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Bin | (T-RTypy) Static Initiation Toughness Data, K},
(°F) (ksi-Vin.)
12 -93.6 32.64,55.82,53.73,62.09,70.82
-90 64.7,62.4
-82.8 58.18,60.64,65.55
-76 45.0
=75 90.3,93.1,50.3,46.6
-63.0 63.30
13 -51 107.0
-50 72.6,71.6,65.1,65.0,67.5,65.0,56.7,64.6,64.7
-48.6 63.27,73.82,90.91
14 -30 81.0
-28.8 66.09,75.55,76.45
-25 105.9,61.0,58.7,45.9
-12.6 93.45
15 0 113.1,66.4,93.7,83.4,73.9,66.9,87.2,87.5
16 9.0 69.37
144 74.64
25 98.9,74.5,90.5,110.3
50 148.6,137.3,139.0
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Table 10. Sixteen K;. Datasets Fitted to Weibull Density

Bin N T(°F) m,’ Vm, a*(D a**T) b*D b**D) oD  E(b*)b)
1 8 -355.00 32.33 7.81 2291 21.60 10.20 11.61 1.3 2.37 0.878
2 9 -308.33 42.00 5.81 23.80 20.17 12.37 13.49 3.7 2.30 0917
3 14 -257.86 37.00 7.66 24 .82 24.04 13.66 14.53 1.7 242 0.940
4 44 -228.35 37.76 6.30 25.31 25.09 14.06 14.30 2.1 0.63 0.983
5 12 -207.27 44.68 9.49 26.52 22.83 20.51 24.65 2.1 1.34 0.935
6 23 -200.00 40.69 9.29 26.50 25.93 15.83 16.46 1.6 3.14 0.962
7 15 -180.33 50.77 941 27.25 26.04 26.42 27.78 2.8 1.01 0.951
8 28 -170.07 38.56 6.57 27.70 27.37 11.94 12.31 1.7 0.47 0.970
9 15 -150.40 4273 10.91 28.16 2797 15.99 16.20 1.4 5.54 0.937
10 12 -133.53 46.55 9.96 29.96 28.75 18.65 20.01 1.8 2.13 0.932
11 19 -100.94 53.99 11.91 31.82 30.87 25.02 26.09 2.0 245 0.959
12 16 -83.46 60.95 15.27 31.39 29.87 33.37 35.09 2.1 1.46 0.951
13 13 -49.75 71.37 13.43 34.80 32.59 40.89 43.36 3.1 11.78 0.943
14 9 -25.44 73.78 18.40 36.16 42 .47 47.84 51.61 2.6 0.24 0915
15 8 0.00 84.01 15.44 38.38 33.65 50.71 55.97 35 0.61 0.906
16 9 30.38 104.79  30.61 42 20 36.38 70.66 77.22 2.3 1.48 0915
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Table 11. The Extended K;, Database Binned into Four Groups

Bin (T-RTy\pr) Crack Arrest Toughness, K},
(°F) (ksi-vin.)
1 -150 28.0
-70 43.0, 48.0, 43.0
-67.8 60.1
-66 48.2,69.2
-64.2 51.9
-47.8 62.8
-46 52.8
-44.2 65.5
-42.6 61.0, 64.6
-39 66.4, 67.3 69.2, 83.7
-36.2 63.7
2 -19 473, 66.4, 68.3,77.4
-18.2 79.0
-17.2 64.6
-15.6 83.7
-12 54.6, 55.5, 77.4, 82.8, 89.2, 94.6,97.4
-0.2 97.1
0.0 68.0, 58.0, 48.0, 57.0, 62.0, 58.0, 60.0, 65.0, 60.0, 58.0,
53.0, 58.0, 70.0, 57.0, 57.0, 61.0
3 4.4 77.4
6.2 68.3
8 61.0,72.8,91.0
9.8 70.1, 81.0
13.2 88.3
15 85.5, 85.5, 86.5, 93.7
16.8 82.8
17.8 119.7
22 68.0
33.2 100.1
35 59.0, 84.0, 62.0, 106.5, 111.9, 112.8
384 93.7
40.2 113.8
404 101.0
42 84.6,97.4, 103.7
438 98.3
4 49.2 113.8
50 92.0, 73.0, 75.0
51 104.7
53 91.9
71 97.4,101.9, 102.8, 108.3
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Bin (T-RT\pr) Crack Arrest Toughness, K},
(°F) (ksi-vin.)
75 94.0, 107.0, 77.0, 81.0, 91.0, 101.0
80 109.0
83 87.0,94.0,107.0, 111.0
89 120.1
96 111.0
102 117.0
105 118.0, 103.0, 107.0, 130.0
107 87.0
110 88.0, 88.0
112 112.0
115 111.0
121 116.0

Table 12. Four K, Datasets Fitted to Weibull Density

Bin N Tepy m Vm a*(D ar*@ bAD) bD oD} Ebb)

18 -52.32  60.02 1051 35.46 3433 27.68 28.95 25 263 0956
31 -6.81 67.27 1392 3474 33.94 36.67 37.56 25 487 0976
29 24.69 8829 1645 49.86 48.85 4332 44 .45 25 096 0974
34 83.27 100.82 13.66 68.89 68.18 35.99 36.78 25 169 0978

PBOW N —
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Fig. 1. Two compact fracture toughness specimens, C(T), with #=5.1 cm for the
smaller specimen and W = 61 cm for the larger (adapted from Fig. 8.28 in Ref.
[11]).
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Fig. 2. Size distribution of C(T) specimens in the EPRI K;, database [1].
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= HSST 01 subarc weld (Shabbits) = A533 B weld (Mager)

= A533B subarc weld (Shabbits) s A533 B weld-HAZ (Mager)
a  HSST 01 (Mager) = A508 Cl. 2 (Mager)
° HSST 03 (Mager) o A508 Cl 2 (unpublished)
v A533 B (Mager) o A508 CI. 2 (unpublished)
o HSST 02 (Mager)
L. 172
ch (ksi-in ")
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Fig. 3. Distribution of EPRI data base with test temperature: (a) K. data, (b) frequency
histogram and (c) cumulative frequency distribution.
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HSST 01 subarc weld (Shabbits) A533 B weld-HAZ (Mager)

s A533B subarc weld (Shabbits) A508 Cl. 2 (Mager)

4 HSST 01 (Mager) o A508 Cl 2 (unpublished)
¢ HSST 03 (Mager) a  A508 Cl. 2 (unpublished)
v A533 B (Mager) ASMEK

* HSST 02 (Mager) ——ASMEK (extended)

» A533 B weld (Mager)

K, (ksi-in"?)
20— T T T T T T T T T T T

ASME Klc Curve
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L . i
50 |- L 3R i
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Fig. 4 Distribution of EPRI K|, database with normalized temperature (T — RTnp7): (a)
K. data, (b) frequency histogram, and (c) cumulative frequency distribution.
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HSSI Weld 72W ¢ Midland Beltline

HSSI Weld 73W a  Plate 02 (68-71W)
HSST Plate 13A —— ASME ch
A508Class3 ~  — ASME ch (extended)

Midland Nozzle Course Weld

K_(ksi-in"?)

200 LI T | DR L L L
i ASME K Curve
150 lc -
100 - -
50 .
. ASME K . Curve (extended)
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Fig. 5. Additional K;. data.
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¢ HSST 01 subarc weld (Shabbits) © A508 Cl. 2 (unpublished)
= A533B subarc weld (Shabbits) - HSSI Weld 72W
4 HSST 01 (Mager) & HSSi Weld 73W
* HSST 03 (Mager) 8 HSST Plate 13A
v Ab533 B (Mager) o AS508Class 3
o HSST 02 (Mager) o Midland Nozzle Course Weld
= AS533 B weld (Mager) o Midland Beltline
s Ab533 B weld-HAZ (Mager) ¢ Plate 02 (68-71W)
= A508 Cl. 2 (Mager) ASMEK
¢ AS508 Cl 2 (unpublished) ——— ASME ch (extended)
K, (ksiin"?)
200 T T T
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150 |- k .
100 - —
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Fig. 6 Distribution of extended K, database with normalized temperature (T — RTypy):
(a) K, data, (b) frequency histogram, and (c) cumulative frequency distribution.
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Appendix A — Listings of K;. and K;, Extended Databases

Table Al — Static Initiation Toughness K;. Extended Database

Table A2 - Crack Arrest Toughness K;, Extended Database
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Table Al. Static Initiation Toughness K;. Extended Database

Material Reference Source  Specimen Type Orientation  Temp RTypy T - RTupr K.
ID No. (°F) (°F) (°F) (ksivin)

HSST 01 Shabbits 1T-CT 1 -200 0 -200 46.6
subarc (1969) 1T-CT 1 -175 0 -175 55.8
weldment 4T-CT 4 -150 0 -150 56.1
4T-CT 4 -125 0 -125 61.1

4T-CT 4 -100 0 -100 96.0

4T-CT 4 -75 0 =75 90.3

4T-CT 4 75 0 =75 93.1

6T-CT 6 =50 0 -50 726

A533B Class 1 Shabbits IT-CT 1 -200 0 =200 35.1
subarc (1969) 1T-CT 1 =200 0 -200 452
weldment 1T-CT 1 -320 0 -320 25.9
1T-CT 1 -320 0 =320 237

4T-CT 4 -100 0 -100 552

4T-CT 4 -50 0 -50 71.6
4T-CT 4 -25 0 -25 105.9

8T-CT 8 0 0 0 113.1

HSST 01 Mager (1969) 1T-CT 1 RW -150 20 -170 439
1T-CT 1 RW -150 20 -170 394

1T-CT 1 RW -150 20 -170 31.3

1T-CT 1 RwW -150 20 -170 473

1T-CT 1 RwW -150 20 -170 504

1T-CT 1 RW -150 20 -170 412

1T-CT 1 RW -150 20 -170 54.0

1T-CT 1 RwW -150 20 -170 50.9

1T-CT 1 RW -150 20 -170 355

1T-CT 1 RW -150 20 -170 332

1T-CT 1 RW -150 20 -170 372

1T-CT 1 RW -150 20 -170 37.1

1T-CT 1 RW -150 20 -170 37.1

1T-CT 1 RW -150 20 -170 347

1T-CT 1 RW -150 20 -170 350

1T-CT 1 RW -150 20 -170 326

1T-CT 1 RW -150 20 -170 294

HSST 03 Mager (1969) 1T-CT 1 RW -150 20 -170 44.0
1T-CT 1 RW -150 20 -170 314

1T-CT 1 RW -150 20 -170 393

1T-CT 1 RW -150 20 -170 313

1T-CT 1 RW -150 20 -170 33.0

1T-CT 1 RW -150 20 -170 38.1

1T-CT 1 RW -150 20 -170 31.1

IT-CT 1 RW -150 20 -170 449

1T-CT 1 RW -150 20 -170 394

A533B Class 1 Mager (1969) IX-WOL 1 RW -320 65 -385 316
IT-WOL 1 RW -320 65 -385 325

IX-WOL 1 RW =250 65 2315 409

1X-WOL 1 RW -250 65 =315 37.1

IX-WOL 1 RW -250 65 2315 44.0

1T-WOL 1 RW -250 65 =315 40.8

1T-WOL 1 RW -250 65 -315 31.2
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Material Reference Source  Specimen Type Orientation Temp RTypr T-RTher K.
1D No. (°F) (°F) (°F) (ksivin)

1X-WOL 1 RW -200 65 -265 30.6
1X-WOL 1 RW -200 65 -265 29.0
1T-WOL 1 RW =200 65 -265 35.6
1T-WOL 1 RwW -200 65 -265 428
2T-WOL 2 RW -150 65 -215 46.9
2T-WOL 2 RW -150 65 =215 66.9
HSST 02 Mager (1969) 1X-WOL 1 RW -200 0 -200 30.5
1X-WOL 1 RW -200 0 -200 375
1X-WOL 1 RW -200 0 -200 41.0
1T-WOL 1 RW -200 0 -200 312
1T-WOL 1 RwW -200 0 -200 30.8
1T-WOL 1 RW -175 0 -175 435
1X-WOL 1 RW -150 0 -150 29.7
IX-WOL - 1 RW -150 0 -150 315
1X-WOL 1 RW -150 0 -150 412
1X-WOL 1 RW -150 0 -150 30.5
1X-WOL 1 RW -125 0 -125 39.1
1T-WOL 1 RW -125 0 -125 483
1T-WOL 1 RW -125 0 -125 434
1T-WOL 1 RW -125 0 -125 38.1
2T-WOL 2 RW -100 0 -100 514
2T-WOL 2 RW -100 0 -100 59.0
2T-WOL 2 RW -100 0 -100 56.2
2T-WOL 2 RW -100 0 -100 50.2
2T-WOL 2 RW -50 0 =50 65.1
2T-WOL 2 RW -50 0 -50 65.0
2T-wWOL 2 RW -50 0 -50 67.5
2T-WOL 2 RW -50 0 -50 65.0
1X-WOL 1 RW -250 0 -250 37.3
1X-WOL 1 RW -200 0 -200 440
1X-WOL 1 RW -200 0 -200 346
1X-WOL 1 Rw - -200 0 -200 39.9
1X-WOL 1 RW -200 0 -200 385
1T-CT 1 RW -150 0 -150 421
1T-CT 1 RW -150 0 -150 377
1T-CT 1 RW -150 0 -150 40.7
1T-CT 1 RW -100 0 -100 422
IT-CT 1 RW -100 0 -100 48.5
IT-CT 1 RW -100 0 -100 48.5
1T-CT 1 RW -75 0 -75 50.3
1T-CT 1 RW -75 0 -75 46.6
1T-CT 1 RW -100 0 -100 54.8
1T-CT 1 RW -100 0 -100 54.4
2T-WOL 2 RW -50 0 -50 56.7
2T-WOL 2 RW 0 0 0 66.4
2T-WOL 2 RW 0 0 0 93.7
2T-WOL 2 RW 0 0 0 834
A533B Class 1 Mager (1969) 1X-WOL 1 =320 -45 =275 29.7
weld 1X-WOL 1 -320 -45 =275 272
1X-WOL 1 -250 -45 -205 376
1X-WOL 1 -250 -45 -205 37.8
1T-WOL 1 -250 -45 -205 43.6
2T-WOL 2 -250 -45 -205 55.6
1T-WOL 1 -225 -45 -180 40.1
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Material Reference Source  Specimen Type Orientation Temp RTypr T-RTwpr K.
ID No. (°F) (°F) (°F) (ksivin)

IT-WOL 1 225 45 -180 52.8

2T-WOL 2 -225 45 -180 66.2

2T-WOL 2 200 45 -155 70.7

A533B Class 1 Mager (1969) 1X-WOL 1 -320 0 -320 303
weld-HAZ 1X-WOL 1 -250 0 -250 352
1X-WOL 1 -250 0 -250 404

IT-WOL 1 -250 0 -250 30.5

IT-WOL 1 -250 0 -250 442

2T-WOL 2 -200 0 -200 71.2

A508 Class 2 Mager (1969) 1X-WOL 1 -320 50 -370 39.6
European IX-WOL 1 -320 50 -370 275
Forging IT-WOL 1 -320 50 -370 475
“ring forging” IX-WOL 1 -250 50 -300 432
1X-WOL 1 -250 50 -300 479

1X-WOL 1 -250 50 -300 41.6

1T-WOL 1 -250 50 -300 51.3

1T-WOL 1 -200 50 -250 55.0

2T-WOL 2 -200 50 -250 433

2T-WOL 2 -150 50 -200 57.2

2T-WOL 2 -125 50 -175 56.2

2T-WOL 2 -100 50 -150 56.0

HSST 02 Shabbits 6T-CT 6 RW 25 0 25 98.9
(1969) 6T-CT 6 RW 25 0 25 74.5

6T-CT 6 RW 25 0 - 25 90.5

6T-CT 6 RW 0 0 0 73.9

6T-CT 6 RW 0 0 0 66.9
11T-CT 11 RW 50 0 50 148.6
10T-CT 10 RW 50 0 50 137.3
10T-CT 10 RW 50 0 50 139.0

4T-CT 4 RW 0 0 0 87.2

4T-CT 4 RW -25 0 -25 61.0

4T-CT 4 RW -25 0 -25 58.7

4T-CT 4 RW -25 0 -25 459

10T-CT 10 RW 0 0 0 87.5
10T-CT 10 RW 25 0 25 110.3

I1T-CT 1 RW -250 0 -250 373

IT-CT 1 RW -200 0 -200 44 4

IT-CT 1 RW -200 0 -200 346

1T-CT 1 RW -200 0 -200 399

IT-CT 1 RW -200 0 -200 34.8

IT-CT 1 RW -150 0 -150 44.1

1T-CT 1 RW -150 0 -150 374

IT-CT 1 RW -150 0 -150 41.8

1T-CT 1 RW -100 0 -100 483

1T-CT 1 RW -100 0 -100 483

1T-CT 1 RW -100 0 -100 419

2T-CT 2 RW -100 0 -100 497

2T-CT 2 RW -50 0 -50 64.6

2T-CT 2 RW -50 0 -50 64.7

A508 Class 2 unpublished 2T-CT 2 -150 51 -201 522
outside of 2T-CT 2 -150 51 -201 455

EPRI NP-719-SR 2T-CT 2 -125 51 -176 46.0

2T-CT 2 -125 51 -176 643

2T-CT 2 -125 51 -176 50.0
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Material Reference Source  Specimen Type Orientation Temp RTwpr T-RTwpr K

ID No. (°F) (°F) (°F) (ksivin)

4T-CT 4 -25 51 -76 450

6T-CT 6 0 51 =51 107.0

2T-CT 2 -125 51 -176 45.6

2T-CT 2 -125 51 -176 68.0

A508 Class 2 unpublished 2T-CT 2 -75 65 -140 52.0
outside of 2T-CT 2 -75 65 -140 64.6

EPRI NP-719-SR 2T-CT 2 -75 65 -140 56.6

2T-CT 2 -25 65 90 64.7

2T-CT 2 =25 65 90 62.4

8T-CT 8 35 65 -30 81.0

2T-CT 2 -125 65 -190 472

2T-CT 2 -125 65 -190 409

2T-CT 2 -125 65 -190 425

2T-CT 2 . -125 65 -190 425

HSSI Weld NUREG/CR- IT-CT 1 T-L -238 94 -228.6 35.09
72W 5913 1T-CT 1 T-L -238 94 -228.6 3545
IT-CT 1 T-L -238 94 -228.6 37.82

IT-CT 1 T-L -149.8 94 -140.4 42.55

1T-CT 1 T-L -112 94 -102.6 45.09

2T-CT 2 T-L -112 94 -102.6 58.73

2T-CT 2 T-L -112 94 -102.6 67.64

2T-CT 2 T-L -58 94 -48.6 63.27

4T-CT 4 T-L -58 94 -48.6 73.82

4T-CT 4 T-L -58 94 -48.6 90.91

4T-CT 4 T-L 22 94 -12.6 9345

4T-CT 4 T-L 5 94 144 74.64

HSSI NUREG/CR- IT-CT 1 T-L -238 292 -208.8 34.64
73W 5913 1T-CT 1 T-L -238  -29.2 -208.8 37.82
IT-CT 1 T-L- -238 292 -208.8 38.18

1T-CT 1 T-L -238  -29.2 -208.8 39.45

2T-CT 2 T-L -112 292 -82.8 58.18

2T-CT 2 T-L -112 =292 -82.8 60.64

2T-CT 2 T-L 112 -29.2 -82.8 65.55

2T-CT 2 T-L -58 -29.2 -28.8 66.09

4T-CT 4 T-L -58  -29.2 -28.8 75.55

4T-CT 4 T-L -58 -29.2 -28.8 76.45

HSST Plate 13 NUREG/CR- IT-CT 1 L-T -103 94 -93.6 32.64
5788 (A533B 2T-CT 2 L-T -103 94 -93.6 55.82

Plate 13A) 4T-CT 4 L-T -103 94 -93.6 53.73
4T-CT 4 L-T -103 94 -93.6 62.09

4T-CT 4 L-T -103 -94 -93.6 70.82

WT-CT 0.5 L-T -238 94 -228.6 25.36

wT-CT 0.5 L-T -238 94 -228.6 26.18

WI-CT 0.5 L-T -238 94 -228.6 29.27
“T-CT 0.5 L-T -238 94 -228.6 29.45
“T-CT 0.5 L-T -238 94 -228.6 30.18
“I-CT 0.5 L-T -238 94 -228.6 31.00
“T-CT 05 L-T -238 94 -228.6 32.82
WI-CT 0.5 L-T -238 94 -228.6 33.82
BI-CT 05 L-T -238 94 -228.6 36.00
BT-CT 0.5 L-T -238 94 -228.6 36.36
1T-CT 1 L-T -238 94 -228.6 32.09
IT-CT 1 L-T -238 94 -228.6 33.73
1T-CT 1 L-T -238 94 -228.6 3427
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Material Reference Source  Specimen Type Orientation Temp RTypr T-RTwpr K.
ID No. (°F)  (°F) (°F) (ksivin)
1T-CT 1 L-T -238 94 -228.6 3491
1T-CT 1 L-T -238 94 -228.6 35.09
1T-CT 1 L-T -238 94 -228.6 36.00
1T-CT 1 L-T -238 94 -228.6 3745
1T-CT 1 L-T -238 -94 -228.6 37.45
1T-CT 1 L-T -238 94 -228.6 39.55
1T-CT 1 L-T -238 94 -228.6 39.73
1T-CT 1 L-T -238 -94 -228.6 40.36
1T-CT 1 L-T -238 94 -228.6 4236
1T-CT 1 L-T -238 94 -228.6 43.73
1T-CT 1 L-T -238 94 -228.6 46.45
1T-CT 1 L-T -238 94 -228.6 49.55
1T-CT 1 L-T -238 94 -228.6 49.64
2T-CT 2 L-T -238 -94 -228.6 30.09
2T-CT 2 L-T -238 94 -228.6 33.00
2T-CT 2 L-T -238 94 -228.6 36.55
2T-CT 2 L-T -238 94 -228.6 37.00
2T-CT 2 L-T -238 94 -228.6 39.36
2T-CT 2 L-T -238 94 -228.6 39.91
2T-CT 2 L-T -238 94 -228.6 40.91
2T-CT 2 L-T -238 -94 -228.6 4145
2T-CT 2 L-T -238 94 -228.6 42.18
2T-CT 2 L-T -238 94 -228.6 46.45
2T-CT 2 L-T -238 94 -228.6 48.64
2T-CT 2 L-T -238 94 -228.6 53.18
A508 Class 3 Iwadate, et al. Bx2B 1 NA -238 -13 -225 37.29
ASTM STP Bx2B 1 NA -238 -13 =225 39.89
803 Bx2B 1 NA -238 -13 =225 4422
Bx2B 4 NA -166 -13 -153 43.36
Bx2B 4 NA -76 -13 -63 63.30
Bx2B 3 NA -4 -13 9 69.37
Midland Nozzle = NUREG/CR- () 1 -58 52 -110 49.81
Course Weld 6249 (M) 1 -148 52 -200 45.63
(0¢))] 1 -148 52 -200 44.63
C(T) 1 -148 52 200 4281
C(T) 1 -148 52 200  33.45
c( 1 -148 52 -200 32.36
Midland Beltline NUREG/CR- Cc( 1 -148 23 -171 36.45
6249 () 1 -148 23 -171 3491
Plate 02 4th Irr. NUREG/CR- () 1 T-L -148 0 -148 38.09
Series 4880, 1988 () 1 T-L -139 0 -139 3345
Plate 02 Cc() 1 T-L -139 0 -139 39.27
(68-71W) C(T) 1 T-L -139 0 -139 40.09
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Table A2. Crack Arrest Toughness K;, Extended Database

Material Reference Specimen  Size  Orentation Temp RTypy T-RTypr K,
Source ID No. (°F) (°F) (°F) (ksivin)
HSST-02  EPRINP (1) 14 L-T -150 0 -150 28.0
HSST-02  719-SR cm 1 L-T -70 0 -70 43.0
HSST-02  Ripling (1971) cm 2 L-T -70 0 -70 480
HSST-02 C( 2 L-T -70 0 -70 430
HSST-02 () 1 L-T 0 0 0 68.0
HSST-02 () 1 L-T 0 0 0 58.0
HSST-02 (1) 1 L-T 0 0 0 48.0
HSST-02 cm 1 L-T 0 0 0 57.0
HSST-02 (1) 1 L-T 0 0 0 62.0
HSST-02 cm 1.3 L-T 0 0 0 58.0
HSST-02 C( 1.3 L-T 0 0 0 60.0
HSST-02 () 1.3 L-T 0 0 0 65.0
HSST-02 C( 1.6 L-T 0 0 0 60.0
HSST-02 cm 1.6 L-T 0 0 0 58.0
HSST-02 C( 2 L-T 0 0 0 53.0
HSST-02 cm 2 L-T 0 0 0 58.0
HSST-02 () 2 L-T 0 0 0 70.0
HSST-02 cm 2 L-T 0 0 0 57.0
HSST-02 C( 3 L-T 0 0 0 57.0
HSST-02 () 3 L-T 0 0 0 61.0
HSST-02 () 2 L-T 22 0 22 68.0
HSST-02 C( 1.4 L-T 35 0 35 59.0
HSST-02 (1) 1.6 L-T 35 0 35 84.0
HSST-02 (1) 2 L-T 35 0 35 62.0
HSST-02 (1) 1.4 L-T 50 0 50 92.0
HSST-02 () 2 L-T 50 0 50 73.0
HSST-02 () 3 L-T 50 0 50 75.0
HSST-02 cm 1 L-T 75 0 75 94.0
HSST-02 (1) 1.6 L-T 75 0 75 107.0
HSST-02 cm 2 L-T 75 0 75 77.0
HSST-02 cm 2 L-T 75 0 75 81.0
HSST-02 (M) 2 L-T 75 0 75 91.0
HSST-02 C( 2 L-T 75 0 75 101.0
HSST-02 cm 2 L-T 80 0 80 109.0
HSST-02 cm 2 L-T - 83 0 83 87.0
HSST-02 () 3 L-T 83 0 83 94.0
HSST-02 C( 3 L-T 83 0 83 107.0
HSST-02 C(M) 3 L-T 83 0 83 111.0
HSST-02 Cc 2 L-T 96 0 96 111.0
HSST-02 () 2 L-T 102 0 102 117.0
HSST-02 C() 1.8 L-T 105 0 105 118.0
HSST-02 C(M) 2 L-T 105 0 105 103.0
HSST-02 cm 2 L-T 105 0 105 107.0
HSST-02 cm 3 L-T 105 0 105 130.0
HSST-02 (1) 2 L-T 107 0 107 87.0
HSST-02 () 2 L-T 110 0 110 88.0
HSST-02 C( 2 L-T 110 0 110 88.0
HSST-02 (M) 1.1 L-T 112 0 112 112.0
HSST-02 (1) 2 L-T 115 0 115 111.0
HSST-02 (1) 1.1 L-T 121 0 121 116.0
72W NUREG/CR-5584 C(T) Crack -77.8 -10 -68 60.1
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Material Reference Specimen  Size  Orientation  Temp RTypr T-RTypr K,
Source ID No. (°F) (°F) (°F) (ksivin)

W C(T) runs -76 -10 -66 482
T2W C( in -76 -10 -66 69.2
T2W C( welding -74.2 -10 -64.2 51.9
W C(T) direction -52.6 -10 -42.6 61.0
W C(T) -52.6 -10 -42.6 64.6
W C(T) -49 -10 -39 66.4
72W C(T) -49 -10 -39 67.3
W (M) -49 -10 -39 69.2
72W C(T) -49 -10 -39 83.7
W C(T) -25.6 -10 -15.6 83.7
W (M) =22 -10 -12 54.6
2W () 22 -10 -12 55.5
W C(T) 22 -10 -12 774
72W C(T) =22 -10 -12 82.8
W C(T) 22 -10 -12 89.2
W C(T) =22 -10 -12 94.6
72W C(M) =22 -10 -12 974
W (D 3.2 -10 13.2 88.3
PAY C(M) 5 -10 15 85.5
72W c(M) 5 -10 15 85.5
W C(M) 5 -10 15 86.5
W C(M) 5 -10 15 93.7
W () 6.8 -10 16.8 82.8
72W C(T) 284 -10 384 93.7
W () 30.2 -10 40.2 113.8
2W (D) 32 -10 42 84.6
72W (M) 32 -10 42 974
W C(T) 32 -10 42 103.7
W C(T) 33.8 -10 43.8 98.3
W (M) 39.2 -10 492 113.8
72W C(T) 41 -10 51 104.7
73W NUREG/CR-5584 C(M) Crack -77.8 -30 -47.8 62.8
73W (M) runs -76 -30 -46 52.8
73W (M) in -74.2 -30 -44.2 65.5
73W C(T) welding -49 -30 -19 473
73W C(T) direction -49 -30 -19 66.4
73W C(T) -49 -30 -19 68.3
73W (M) -49 -30 -19 77.4
73W (D 472 -30 -17.2 64.6
73W () 256 =30 4.4 774
73W C(M) -23.8 -30 6.2 68.3
73W C(M) 222 -30 8 61.0
73W C(M) -22 -30 8 72.8
73W C(M) -22 -30 8 91.0
73W c(M) -20.2 -30 9.8 70.1
73W () -20.2 -30 9.8 81.0
73W c(M) 3.2 -30 33.2 100.1
73W c(M) 5 -30 35 106.5
73W () 5 -30 35 111.9
73W c(M) 5 -30 35 112.8
73W () 104 -30 404 101.0
73W C(T) 23 -30 53 91.9
73W (M) 41 -30 71 974
73W () 41 -30 71 101.9
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Material Reference Specimen  Size  Orientation  Temp RTwpr T-RTapr K,

Source ID No. (°F) (°F) (°F) (ksivin)
73W C( 41 -30 71 102.8
3W D 41 -30 71 108.3
3W c(M) 59 -30 89 120.1
MW15JC NUREG/CR-6621 C( Crack -4 322 -36.2 63.7
MWI15JBr M runs 14 322 -18.2 79.0
MWI15IEr! D in welding 32 322 -0.2 97.1
MWI15JF C(T) direction 50 322 17.8 119.7
REFERENCES FOR TABLE A2

EPRI Special Report, 1978, Flaw Evaluation Procedures: ASME Section XI, EPRI NP-719-SR,
Electric Power Research Institute, Palo Alto, CA.

E. J. Ripling and P. B. Crosley, “Strain Rate and Crack Arrest Studies,” HSST 5" Annual
Information Meeting, Paper No. 9, 1971.

S. K. Iskander, W. R. Corwin, R. K. Nanstad, Results of Crack-Arrest Tests on Two Irradiated
High-Copper Welds, USNRC Report NUREG/CR-5584 (ORNL/TM-11575), Oak Ridge
National Laboratory, Oak Ridge, TN, December 1990.

S. K. Iskander, C. A. Baldwin, D. W. Heatherly, D. E. McCabe, I. Remec, and R. L. Swain,
Detailed Results of Testing Unirradiated and Irradiated Crack-Arrest Toughness
Specimens from the Low Upper-Shelf Energy, High Copper Weld WF-70,
NUREG/CR-6621 (ORNL/TM-13764) under preparation.

S. K. Iskander, R. K. Nanstad, D. E. McCabe, and R. L. Swain, “Effects of Irradiation on Crack-
Arrest Toughness of a Low Upper-Shelf Energy, High-Copper Weld,” Effects of
Radiation on Materials: 19" International Symposium, ASTM STP 1366, M. L. Hamilton,
A. S. Kumar, S. T. Rosinski, and M. L. Grossbeck, eds., American Society for Testing
and Materials, to be published in 1999.
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Appendix B — Results of Preliminary Regression Analysis

The first phase of this study involved a least-squares regression analysis to investigate
potential parametric representations of the K and K, databases. The software package
TableCurve2D [B1] was employed to analyze the EPRI K. database. TableCurveZD is a
regression analysis tool with 3,491 built-in linear and 176 nonlinear functions that can be
quickly solved and ranked for goodness of fit for a given dataset. These model forms include,
among others, polynomial, exponential, rational, Chebyshev polynomials, and Fourier series.
TableCurve2D also allows user-defined linear and nonlinear functions to be input as
candidate model forms for curve fitting. Linearity here refers to the linearity of the
coefficients (parameters) of the function being fitted. The resulting curve fits can be ranked
by a selection of different statistics to determine an optimal fit. For this study, the F-statistic

measure of merit was applied to rank the curve fits.

The data were initially grouped by material type and then curve fits were performed. Some of
these groups had too few data points for a meaningful curve fit; however, three material
groups did warrant further investigation. HSST 02 data reported by Shabbits [B2] and Mager
et al. [B3] had the most data points and also the broadest normalized temperature
distribution. Two other materials, A533 B Class 1 weldment [B3] and A 533 B Class |
weldment/HAZ [B3], were also analyzed, although their normalized temperature ranges did
not extend very far into the transition region. A 3-parameter nonlinear exponential function

of the form

K, =a+bexp[c(T - RT,,; )] (B.1)

was used. Equation (B.1) is linear in its parameters g and b and nonlinear in the parameter c.
As presented in Fig. B1, the curve fit of the HSST 02 material group looked very similar to
the overall curve fit of the data. This result suggested that the data can be represented by a
family of curves. The curve fits of the last two groups also looked similar in the lower-shelf
region but turned up abruptly at lower temperatures due to a lack of data in the transition

region.

The entire data set was then analyzed, and the fits were ranked using the F-statistic. The top
88 out of a total of 242 curve fits discovered by TableCurve2D are listed in Table Bl where
the first column is the ranking, the second column is the F-statistic, and the third column is
the model form used in the curve fit. The F-statistic measure of merit is defined by
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E(yi _yi)z _E(yi _.}’}i)2
i=1 i=t
k-1

F= . (B.2)
Z(yi_j}i)z
n—k

where n is the number of data points, k is the number of coefficients fitted, y; are the data
values, ¥ is the sample mean, and y is the predicted value.

The four top-ranked curve-fit candidates are shown in Figs. B2-B5 along with their 99
percent prediction curves and histogram residual plots. These four fits have the following
model forms:

Model 1: In(K, )=a+b(T - RT, ;) (B.3)

Model 2: (K,)"* =a+b(T - RT,,,) (B.4)

_a +c(T —RTNDT)
“ " 1+b(T -RT,,,)

Model 3: (B.5)

Model 4: K, =a+bexplc(T - RT,,, )] (B.6)

Models 3 and 4 are both nonlinear forms. Although all of these four functions fit the data
with a high F-statistic, some exhibit undesirable behavior outside of the limits of the data.
Models 1 and 2 do not have a lower asymptote with decreasing normalized temperature.
Models 3 and 4 do have a lower asymptote; however, Model 3 does not follow a consistent
trend as the normalized temperature increases beyond the upper bound of the data. Model 4
exhibits the best behavior at both ends of the range of the data set, but the lower 99 percent
prediction curve falls below the estimated X, of 18.2 ksivin (20 MPavm). The fit to
Model 4 has the following parameters: a=36.68 ksivin, b= 51.49 ksivin, and ¢ =
0.01153°F. These coefficients are almost identical to the independently-derived curve fit (for
the same model form) in Ref. [B4].
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When derived as a maximum likelihood estimator, the least-squares technique assumes that
the errors are independent and distributed normally about the predicted regression curve. The
assumption of a constant standard deviation inherent in the standard least squares method can
be relaxed through the use of a weighted regression analysis; however, these weights must be
estimated and input by the user. A nonweighted regression analysis was used in this study.
The degree of normality of the error modes in the data relative to the predicted curve fit can
be inferred by inspection of the residuals, defined as the difference between the actual data
and the predicted value. The histograms presented in Figs. B2b to B5b indicate some degree
of skewness in the residuals that imply the possible presence of nonrandom error modes in
the dataset. This result is consistent with the findings of other researchers [B5] and has
motivated the investigation of a different model form that is not dependent upon an
underlying symmetric normal distribution to describe the deviations from the predicted

Curves.

References for Appendix B

Bl. TableCurve2D, User’s Manual, Version 4 for Windows 95, NT & 3.1,SPSS Inc.,
Chicago, IL, 1997.

B2. W. O. Shabbits, W. H. Pryle, and E. T. Wessel, Heavy Section Fracture Toughness Properties of

' A533, Grade B, Class-1 Steel Plate and Submerged Arc Weldments, HSST Technical Report 6,

WCAP-7414, December 1969.

B3. T. R. Mager, F. O. Thomas, and W. S. Hazelton, Evaluation by Linear Elastic Fracture
Mechanics of Radiation Damage to Pressure Vessel Steels, HSST Technical Report 5, WCAP-
7328, Revised, October 1969,

B4. R. K. Nanstad, J. A. Keeney, and D. E. McCabe, “Preliminary Review of the Bases for the K.
Curve in the ASME Code,” ORNL/NRC/LTR-93/15, Oak Ridge National Laboratory, 1993.

Bs. J. G. Merkle, K. Wallin, and D. E. McCabe, “Technical Basis for an ASTM Standard on

Determining the Reference Temperature, Ty, for Ferritic Steels in the Transition Range,”
NUREG/CR-5504 (ORNL/TM-13631) Oak Ridge National Laboratory, November 1998.
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Table B1. Top-Ranked Model Forms Calculated by

TableCurve2D

F-Statistic

Model Form

27
28
29
30
31
32
33
34
35
36
37
38
39

B R R NN R KD —
mmguw~oo§o:oﬁ;§$5:5°w\’O\Uﬂ-\-wN'—‘WE

212.08316474
202.73543020
202.10095146
194.44231080
176.25900038
171.28645651
170.24942226
164.27947091
159.13106263
149.87823234
146.13142246
143.76110728
141.07999819
137.29791795
137.22995434
134.99360842
130.98649922
124.92269692
124.92269692
124.92269692
123.06568751
115.33293665
109.76890768
104.70649060
101.55552931
99.886096880

98.539924648
98.407676705
95.436616294
95.436616294
95.436616294
95.436616294
95.256825667
94.403752943
93.064358636
90.888406094
84.126204190
82.500766448
81.574302114

Iny =a + bx

y*(0.5)=a+ bx

y = (a + ex)/(1 + bx) [NL]

y=a + b exp(ex) [NL]
yM-1)=a+bx

y=a+bx

y0.5) =a+ bx + cx2
y=a+bx+cx"2

Iny =a + bx + ¢x2

Iny =a +bx + ¢ exp(x)
y=a+bx+c exp(x)

Iny =a + bx + cx"3
y=a+bx+cx"3

y=a+bx +cx"2 +d exp(x)
Fourier Series Polynomial 1x2
y=(a+cx)/(1 +bx +dx"2) [NL]
y=a+bx+cx"3 +d exp(x)
Chebyshev = >8td Polynomial Order 3
Chebyshev Polynomial Order 3
y=a+bx + ¢cx"2 + dx"3

y™N0.5) =a+bx + cx"2 + dx"3

y*2 =a+bx +cx2

Iny =a + bx + cx"2 + dx"3
y=a+bx+cx"2 +dx"3 + e exp(x)
y"2 =a+ bx + cx"2 + dx"3
y=(a+cx+ex"2)/(1 +bx + dx"2)
[NL]

y -1)=a+bx + ¢ exp(x)
y=a+bx"2 + cx3 + d exp(x)
High Precision Polynomial Order 4
Chebyshev Polynomial Order 4
Chebyshev = >Std Polynomial Order 4
y=a+bx+cx"2 + dx"3 + ex"4
yN-1)=a+ bx + cx™2

y(-1)=a+ bx + cx”"3

y™N0.5) =a+ bx + cx™2 + dx"3 + ex™4
Fourier Series Polynomial 2x2
y=a+bx"2 + ¢ exp(x)

Iny =a+bx + ¢x™2 + dx"3 + ex"4
y*2 =a+bx + ¢cx™2 + dx"3 + ex™4
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Table B1. Top-Ranked Model Forms Calculated by

TableCurve2D
Ran F-Statistic Model Form

k

40 | 78.019197528 High Precision Polynomial Order 5

41 78.019197528 Chebyshev = >Std Polynomial Order 5

42 | 78.019197528 Chebyshev Polynomial Order 5

44 | 76.248415354 y=a+Dbexp(x)

45 | 76.220106695 y~(0.5) =a+bx +cx2 + dx"3 + ex™4
+ £x75

47 | 73.648681893 Iny =a+ bx"2 +c exp(x)

49 | 67.900165448 Chebyshev Polynomial Order 6

50 | 67.900165448 High Precision Polynomial Order 6

51 | 67.900165448 Chebyshev =>Std Polynomial Order 6

52 | 67.749311766 y=a+bx"2+cx"3

53 | 67.736722397 Iny=a+bx+cx*2 +dx"3 +ex™ +
x"S

54 | 66.589185788 Fourier Series Polynomial 3x2

55 | 63.418238130 y=a+bx"3+c exp(x)

56 | 63.126196234 y~(-1)=a+bx +cx™2 +dx"3

57 | 60.358790633 y™0.5)=a+b exp(x)

58 | 60.255288266 Chebyshev =>Std Polynomial Order 7

59 | 60.255288266 Chebyshev Polynomial Order 7

60 | 60.255288266 High Precision Polynomial Order 7

61 60.222001357 y=a+bx"2 +cx™4

64 | 57.747180396 y=a+bx"2

65 | 57.285235500 y~(0.5)=a+bx"2

66 | 55.585467658 Iny=(a+cx)/(1 +bx)

67 | 54.862287108 y~(0.5)=(a +cx)/(1 +bx)

68 | 52.511231768 Fourier Series Polynomial 4x2

69 | 52.399927006 Chebyshev =>Std Polynomial Order 8

70 | 52.399927006 Chebyshev Polynomial Order 8

71 52.399927006 High Precision Polynomial Order 8

72 | 50.377723858 Iny=a+bx"2 +cx"3

74 | 47.134766769 y~(-1)=a+ bx +cx"2 +dx"3 +ex™4

75 | 46.357029818 Chebyshev Polynomial Order 9

76 | 46.357029818 High Precision Polynomial Order 9

77 | 46357029818 Chebyshev =>Std Polynomial Order 9

78 | 44972169153 y"2=a+ bexp(x)

79 | 42.493046529 Iny=a+bx"3 + cexp(x)

81 | 41.595572118 y~(-1)=a+bx"2 + cexp(x)

82 | 41.553003885 Fourier Series Polynomial 5x2

83 | 41.522828495 Chebyshev Polynomial Order 10

84 | 41.522828495 High Precision Polynomial Order 10

85 | 41.522828495 Chebyshev =>Std Polynomial Order

10
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Table B1. Top-Ranked Model Forms Calculated by

TableCurve2D
Ran F-Statistic Model Form

k

87 | 40.422344924 Chebyshev Rational Order 4/4

88 | 40.422344924 Chebyshev =>Std Rational Order 4/4

89 | 39.521249612 y~(-1)=a+bx +cx"2 +dx"3 +ex™ +
x5

90 | 38.415760094 High Precision Polynomial Order 11

91 | 38.415760094 Chebyshev =>Std Polynomial Order
11

92 | 38.415760094 Chebyshev Polynomial Order 11

93 | 35.062442660 Chebyshev =>Std Polynomial Order
12

94 | 35.062442660 Chebyshev Polynomial Order 12

95 | 35.062442660 High Precision Polynomial Order 12

96 | 34.629893962 Fourier Series Polynomial 6x2

97 | 33.566708227 Chebyshev =>Std Polynomial Order
13

98 | 33.566708227 Chebyshev Polynomial Order 13

99 | 33.566708227 High Precision Polynomial Order 13
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Fig. B1. TableCurve2D curve fits using a 3-parameter exponential function for 4 material

groups compared to a general curve fit of all of the data.
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In (K )=4.531225 + 0.003532*(T-RT , )
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Fig. B2. Results of regression analysis for the Rank 1 functional form (a) curve with K,
data and (b) frequency histogram of residuals.
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Fig. B3. Results of regression analysis for the Rank 2 functional form (a) curve with K,
data and (b) frequency histogram of residuals.
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K, = (84.412953 + 0.1689053(T-RT )/

(1+0.008925822*(T-RT | )
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Fig. B4. Results of regression analysis for the Rank 3 functional form (a) curve with K;,
data and (b) frequency histogram of residuals.
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KIc =36.68 + 51.49* EXP( 0.01153*(T-RT NDT) )
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Fig. B5. Results of regression analysis for Rank 4 curve fit: 3-term exponential functional
form (a) curve with K. data and (b) frequency histogram of residuals.

71



Appendix C — Derivation of Almost Unbiased Estimator b, anda,

In general,

Varlm, )=(1—%)y2 ~ (e,

Hence, if the mean and variance of the population exist, then

E /ﬂ 51f1—1<1 (n=2,3,)
H h

This is true for the Weibull density case. By moment,

b \/I"(l+%)—l"2(l+%)=\/m—2

and, since [, = b\/I“(I +2)-T?*(1+1), we have

—_.b‘ = m2 - e wa
b —7;(1 (n—2,3, )
and '

E(b)<b

,ul'(x)=a+br(1+l) m(x)=a* +b* F(1+-1—j
c c
* 4 1
a*=m, —b* l'(1+—)
c

a*-a=m —b* \'(1+~1—)—,ul'+b(‘(l+lj
c ¢
4 4 1
= — p, +(b—b%) l‘(1+—)
c

Now for a* , we have

Hence

and

and in expectation
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E(a*-a)= E(b—b*) r(p%)

and
a= E{a*— (b—-b%) l'(l+lﬂ—) a< E(a*)
c

An almost unbiased estimator, b,**, can be calculated from

since b > E(b*).

b*
S *= -2 )
(E(b¥)/b)
An approximation for E(b,")/b is
*
EGD |, AL A o
where
. 1.4232
4, = 0827043 + 2800068 1423234
¢ c
4, = 0436183 -3220936 , 5.658460
¢ c

Eq. (C.2) is valid for ¢ 21.1, N 210 and with errors less than 0.1%, except for c=1.1, N=
10, which has an error of 0.175%. Eq.(C.2) was derived by using 35 values of
¢ (1.1(0.1)4.5)" and 29 values of N (10(1)25(5)80(10)100). To calculate an almost unbiased

estimator for a, b,** is used in the moment estimator for a, specifically,

, 1
ar*=m —bf* l‘(1+;)

" The notation cu(Ac)cms designates a sequence of c-values from ¢y, t0 Gay in increments of Ac.
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APPENDIX D

Estimation Problems for the Weibull Distribution

K.O. Bowman
Computer Science and Mathematics Division
Oak Ridge National Laboratory
P.O.Box 2008
QOak Ridge, Tennessee 37831-6367
bowmanko@ornl.gov

December 14, 1999

Abstract

Asvmptotic central moments and asymptotic moment ratios are given, the latter
involving Riemann Zeta functions. Maximum likelihood estimators for the Weibull
density have been discussed elsewhere (Bowman and Shenton, 1999b), and an impor-
tant discovery was that these moments only exist if the shape parameter is restricted.
For this reason, particular attention is paid to moment estimators and the part playved
by sample sizes, the 2 parameter and 3 parameter cases being considered. Extended
series for the moment estimators of the parameters are studied, these having the ap-
pearance of divergency when arranged in descending powers of the sample size. For
these series terms are taken as far as those of order 20, and coefficients of the higher
order terms may exceed 10'°, so that convergence accelerating processes are required.
The Padé rational fraction sequences are invoked. Validation of the approximants is
derived by comparative simulation studies. A set of useful algorithms is given for the
estimators of the parameters, these including means, variances, skewness and kurto-
sis. Also, a brief account of Padé processes goes back to Stieltjes, who, one hundred
vears ago, gave the semi-convergent series for InI'(z), identified the residue in terms of
Bernoulli numbers, and finally set up the corresponding Stieltjes continued fraction,
defining the first half-dozen partial numerators. It is interesting to note that G.H.
Hardy (Cambridge mathematician in the early part of the century), who to a large
extent introduced the rigors of the “New Maths”, dallied with the old and showed
how the semi-convergent series involved in In (1) could in fact be “useful”. Finally,
in the early part of the present century much dedicated effort and skill in algebraic
analysis was spent on evaluating moments and cumulants of sample moments. A brief
description of a powerful algorithm is included.
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1 Introduction

1.1 The Weibull Model

This paper supplies more information on the statistical methodology used in “Tech-
nical Basis for Statistical Models of Extended K;. and Kj, Fracture Toughness
Databases for RPV Steels” (Bowman and williams, 1999). The main field of the-
oretical statistics includes statistical distributional models and the estimation of the
parameters involved. Having decided on a suitable model, questions of plausible

inferences arise.
For fracture toughness data the model preferred is the Weibull distribution. Its

density is .
C- —
yb eV, (y=xba,x>a,b,c>0).

Here a, b, c refer to location, scale, and shape parameters.

w(z;a,b,c) =

This case has recently been studied by Bowman and Shenton (1998, 1999a, 1999b).
There are special cases, and in particular the 2 parameter case with ¢ (shape param-

eter) known turns out to be useful. The density is

_ c—1 z—a\C
w(z,a,b|c) = (i—-g?)—e"('r) , (z > a,b>0,c>0).

1.2 Methods of Estimation

Conventionally the method of maximum likelihood takes front place. But here, from
Bowman and Shenton (1999b) moments of maximum likelihood estimators are tied
to the value of the shape parameter ¢. In fact, for example, the variance of ¢, the
maximum likelihood estimator of ¢, only exists if ¢ > 2. Similarly the skewness of
tﬁe distribution of ¢ only exists if ¢ > 3, and kurtosis requires ¢ > 4. The maximum

likelihood approach is therefore discarded.
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1.3 Moment Estimators

The moment estimators for the 3 parameter case can be solved using

. _ 4104683 — 1.148513V/by + 0.441326h, — 0.053025(v/5;)?3
3 Vo1 + A

(v/b; is a sample skewness),

where in terms of the Riemann zeta function
A =2¢(3)/[¢C(2)]** = 1.139547.

Here, c} is derived from /B, of the Weibull density.

For the scale parameter

by = \/ma/[C(1+2/c3) — T2(1 + 1/c5)],
where my = ¥(z; — £)?/N, with £ = Ef’:l z;/N. Finally, for the location,
ay =mj —bBI(1+1/c).

The subscripts on the estimators are used to indicate that the 3 parameter case is
intended.

It turns out; however, that the skewness and kurtosis of the distribution of cj
for example are large numerically, requiring sample sizes of 300-500 to reduce the
departure from the normal distribution. A significant departure would be £, > 4,
B, > 6. So, interest is focussed on the 2 parameter case.

Moment estimators a} and b} for the 2 parameter Weibull density are defined by

g

S IS
§
[ &)

. (e =0T +2/c) —T?*1 +1/c)]

=m) - b'(1+1/c),

where m) = sample mean, my = sample second central moment. Note that |/mo i
is location and scale free.
In the remaining sequel only the 2 parameter case is considered, the corresponding

subscript 2 being omitted.
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1.4 Moments of a* and b*

The moments of a* and b* can be expanded in terms of the incremental deviates
£ = m| — u}, €& = my — uy, and €3 = my — p3, m, being a sample rth non-central

moment. Then, there is an algorithm to derive
E(my — )™ (mj — 1) (m5 — 15)"

and its 4 dimensional analogue (Shenton and Bowman, 1975).

The expected value of the ensuing series in terms of (€1, €2, €3) and the sample size
N is arranged in descending powers of N and may be divergent (or semi-convergent).
Nonetheless, Padé sequences may be set up and studied for convergency tendencies
when N is not small.

For example,

Vi = (my = mP)? = [py + &3 — () + 1)

= (s~ = e+ ea = D = v (14

1 _2/ _ 2
afpe (mmiaa) ]

H2

€9 — 2uhe, ~ 6%) 1/
K2

formally.

2 Moments of \/ms/us, the Standardized s.d.

2.1 Mean and Variance

Assuming the existence of moments, we have

B(ma)| "
\/:2 \/: e Al 1__)u2 (N=2,3,--"). (1)
Let
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formally; then

(-1)*"11.3.--(2s-3)
255!

3

In particular, concerning expression (1)

g™ /1_1E1+_X__X2+X3_5X4+7X5_21X6+
142 N 20y 8 163 1283 2564,° 102448
(3)

, (8=23,--;a=1, ag=1/2)

Qs =

where [, = (1 - —}V) pe and X = my — E(my). Thus
E(Xs)=#s(m2)’ (S=1a2a"')

and ,u,l(mg) = 0, ,ull(mQ) = (1 - I_{f) H2-

2.2 Moments of my

Several decades ago the problem of deriving moments of sample moments was ap-
proached by the skillful application of symmetric functions (David, Kendall and Bar-
ton, 1966, MacMahon, 1960, Kotz, Johnson and Read, 1988). This approach involves
sophisticated and laborious algebraic analysis; for example, u3(ms), and ps(my) are
not undertaken in a cavalier mathematical mood.

A recent study by Y.C. Patel (see Bowman and Shenton, 1988) using symmetric
functions considers moments up to Var(my —3m2) which includes terms of order N~!
to N~7. For our present purpose, here are the results we need in expression (3):

pa(my) = Var(ms) = (ﬁzj\—r 1_ 2[3;\[; 4 4 52N—3 3) 2,

ma
E, (#—32) = B4 — 12, — 651 + 20,

2

3
2

4
E, (’_”_42.> = B — 208, — 24035 — 1542 + 18003, + 192, — 218.

K2
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Here, E(-) refers to the coefficient of N=%, and in Pearson’s notation,

Bs = ps/15, Ba= e/t B3 = paps/ps, Bo= pa/us, b= p3/us.
Note that
p2(my) involves coefficients of N™1 to N3,
p3(my) involves coefficients of N=2 to N3,
pa(msz) involves coefficients of N=2 to N~7.

Returning to (3), all the terms contribute to the N=3 term in E\/ma/us. The N7!

term, from (3) is found from

11 ma . 1 (1-5,
I—N[—-§Var( #2} 1.e. 1—]—V—< 8 )

For the N~2 term, we use

1
 Q—

1—
N

Var(m,) + p3(me)  Spa(my)

for which in the last two terms the factors (1 —1/N)? and (1 —1/N)* may be ignored

since psz(mz) and pq(mo) are each of order N~2.

2.3 Expression to Order N2 for the Moments of \/my/us in

General Sampling

The following formulas have been derived.

. 1 1— ﬂ__.w_ﬁzz._*_?ﬁl_%_ll_
E%N 1-5 1+ 8Nﬁ2+16 B8 (Noo0)  (4)
o) ()]
ar — =1l == —
K2 N H2
70 3
(i Y[l B-g+R-R-3 ;
N 4N N2 (5)



Ma\ o8 " 3 "6 — 4 32 32
2 A . ©)

The forth central moment is derived from

2
()= () ()= ()
mo 2 mo mo ‘
(B () E(E) o

The expressions (4) and (5) for mean and variance involve the N=2 term contribu-

tion. However the third central moment (6) provides only the basic asymptotic; the

N~3 and N~* terms would be much more complicated. Note that the mean has a

component /1 — 1/N, the variance, a component 1 — 1/N. In (7), the component
function appears to be 1 — 1/N, this arising from E(m;/p9)2. Further study of the

formulas in (4)-(7) is given in the sequel.

2.4 Asymptotic Moments of the Weibull Random Variate

We have .
Us(z) = /0 et [t% -T (1 + %)} dt, (8)
and
-1 (14 %) - %[ln(t) — )+ ﬁlc—z[ln2(t) — T + :s,ics[lni*(t) ORY

[’ (2) - TO(),

where T'¥)(z) = £I(z), s = 0,1,---. TO(z) = I'(z). Expression (8) shows that

4.4

asymptotically

polz) ~ = [T et ~TO@WPa, (e - o). (9)

Now (9) can be evaluated recursively. For there is the generating function
G(a) = / et -TO W) gy
0

o0
=/ e~ttemet V) gy (o> -1)
0

= e %W (a+1) <since r1)y=—2<= d}(l)) :
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Taking logarithms and differentiating we have

G'(e)
= — 1 .
) = —av(1) + ¥la+ 1)
Let \
Ala Aza
G(a) = Ao 1 T ’ (Ao - 1)
Then
Ay Aza? At Ao | Axd? a1y
Ak S+ Ty = (e ) (et S
where ¥, (a) = —d—";(,i’).
Equating coefficient of a?, a!, o?,- -, we have

A =0,
=Pi(1) ={(2) =7°/6 = pc® (¢ = o),
= (1) = —2((3) = usc’,
= 93(1) + 3[¢1 (1)]* = 7%/15 + 3¢*(2) = 3% /20 = puac?,
= q(1) + 1091 (1)9h(1) = ~24¢(5) — 107%¢(3)/3 = psc”,
= s(1) + 1095(1) + 159 (1)9hs(1) + 1593 (1)

= 617°%/168 + 40¢2(3) = uec®.
From these we have the asymptotic moment ratios for a Weibull variate:

VBy = /3 ~ —20(3)/[C(2)P/* = ~1.139547,
B2 = pa/ s ~ 27/5,
pis/us'? ~ —18.566616,
te/ 13 = Py ~ 91.414247.

For the normal itself /61 =0, 82 = 3, us = 0, and B4 = 15. Similarly, higher order

terms for the asymptotic moments could be obtained.
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3 Moments of Sample Moments

3.1 Some History back to Tchouproff

In 1918 and 1919, Tchouproff produced articles of total length 55 pages in Biometrika

on the mathematical expectation of the moments of frequency distributions. For

example,
E(ml. — pb)(mly — ph) (my = 1) = (Kyyspe = Hbops = Hobrys — Hebrrs + 26 psy) /N,
Notice that he did not give an expression for

E(mr — pr)(ms — ps)(me — pie)

because central moments are not linear in non-central moments. At the time generat-

ing functions were not frequently available in the literature. For non-central moments,

we have

N
( r_.! )+3 s __ ./ +( t_ .7
B e m =y ) +A(ml —p ) +v(m—p) — {Ee O —pp A ZhatnE Zi) )

For the special case of a single moment

ola;, oo N Ao Azo?
an: Tans to) At

Eeme—nr) — [Eea(z’—u’r)/N]N — (1 +
where assuming the existence of moments,

A A 2 2 3
(A1+—2—‘5+ ke +> (ao+a1a+a2a + 222 +--->= (10)

1! 2! 1IN 2IN2  3IN3

2 2 3
G a3Q Al Ay Asa
(a1+ 2 2 +---)(Ao+ =22 2 +)

N T 3INe STRNE] 3l

where A, = E(m, — ul)?, and a, = E(z" — p))°.

The equality in (10) leads to the recurrence relations

agA; = a1 Ay,
A A
apAy + alNl = az;vo + a4y,

201A2 4 (12A1 _ (13A0 + 202A1

N NZ _ N2 N tad

aoA3 +
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and in general

s=0

= r-1 Qs Ar_ =(r-1 Asar_g
E( s )_N;_azz‘: s )Nr—s—l'

From this (Shenton, Bowman and Sheehan, 1971; Shenton and Bowman, 1975),

s 1 s—r
= 1A | oo = ——————— =1,2,--).
Asir Z (r Gr—1 (Nr (r + 1)Nr+1> (s=1,2 )

r=0

3.2 The Multivariate Case

For simplicity we confine attention to the bivariate case, defining

Ay = E(mly — pla) (ms — p5)*,  ans = E(z" — pp) (=% — us)°.

The recursion for the coefficient of N=* in A,, is now defined by the two systems

k+A
§k+)1t—§:§: )()aa+1 ,\t—-uA(++#St)
u

A=0 p=0
k—=X—
—(1—6xu) EZ( ) ( )a)\“A(+1 )\#t)p
A=0 p=0 17

k
gkt)+1 E Z o ti1- #A( +A+p—s—t)
A=0 p=0 17

S [s) [t
~1-6u 3 3 AV
A=0p=0 \ A/ \u '
where ¢ is the Kronecker function, and

L[] <k <s+t,
2. Ag, =0fork<OQork>s+1,
3. [z] is the integer part of z, and

4. Ago = aop =1; A1 = Aoy = a1,0 = a1 = 0.
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Successive values of A, can be implemented for computer facilities. The funda-
mental entities are univariate expectations, such as

E(z — p})"(z® — po)* = Ey"(v% — 21y — pa2)°*

s—l—-m

slp™q ,
= Z ZosH.mS,l!m!(s — 1= m)!;ufr+2l+m (p = 2#1, q= —pg).

After a considerable period of time Bowman and Shenton (1975) were able to
extend the approach in (11) to 3 and 4 dimensional cases. For example, the ratio
moments b, = ms/m3/* and b, = my/m2 involve m), m}, mj and m/, which in
turn lead to fourfold summation in the fundamental non-central moment procedure.
These powerful algorithms have been used to determine terms as far as those of order
N30 some loss of accuracy being possible. One may refer to Bowman and Shenton

(1975, 1978, 1992) and Shenton and Bowman (1967, 1970).

4 Moment Series and the Estimation of 5" /b

4.1 Series

We now pay particular attention to the 2-parameter Weibull distribution (¢ known)
and the variate b* /b. Series to order N™!? and ¢ = 1.1, 2.0 and 4.0 are given in Table
1. The constant term in 4 is unity.

Comments:

e The N~!2 coefficient is approximately 24! for the four moments when ¢ = 1.1,

but decreases in value to 12!, approximately, when ¢ = 4.0.

e The sign pattern for a variance is of alternating form; there is a delay of this

pattern for the variance when ¢ = 4.
e As far as the computations go, the series appear to be divergent.

e Some loss of accuracy might be expected in the N~'2 and higher coefficients.
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Table 1. Moment Series for b* /b= \/ma/p2 (a =0, b=1)

s 1 p2 p3 4
c=1.1
1 -0.12949808D+01 0.15899616D+01  0.00000000D+00  (.00000000D+00
2  0.33541486D+01 -0.83852724D+01 0.85592997D+01  0.75839336D+01
3 -0.56619908D+02 0.12192693D+03 -0.15922945D+03  0.31042721D+02
4 0.21507737D+04 -0.44594410D+04  0.59382974D+04 -0.40771952D+04
5 -0.13880907D+06 0.28356838D+06 -0.38495160D+06  0.34140258D+06
6 0.13185520D+08 -0.26748184D+08 0.36888172D+08 -0.36652173D+08
7 -0.17017022D+10 0.34387291D+10 -0.47997698D+10 0.50863788D+10
8 0.28343473D+12 -0.57138560D+12  0.80493111D+12 -0.88910003D+12
9 -0.58790257D+14 0.11832810D+15 -0.16789751D+15 0.19088916D+15
10 0.14793076D+17 -0.29740587D+17  0.42442195D+17 -0.49291263D~+17
11 -0.44258087D+19 -0.88903683D+19 -0.12746590D+20 0.15046813D+20
12 0.15495262D+22 -0.31106228D+22 0.44771176D+22 -0.53535862D+22
c=2.0 ‘
1 -0.78063616D+00 0.56127233D+00 0.00000000D+00  0.00000000D+00
2 -0.96232698D-01 -0.41692742D+00 0.51316841D+00 0.94507987D+00
3 -0.33147003D+00 0.51269461D+00 -0.87597195D+00 -0.70721799D+00
4 0.48973594D+00 -0.15062476D+01 0.24114691D+01 -0.36107931D+00
5 -0.42316661D+01 0.91641468D+01 -0.13361996D-+02  0.80478231D+01
6 0.41985036D+02 -0.90592470D+02 0.13031634D+03 -0.10617071D+03
7 -0.46045208D+03 0.98596446D+03 -0.14394820D+04 0.13126743D+04
8 0.67801792D+04 -0.14274214D+05 0.20751961D+05 -0.20565287D+05
9 -0.11562712D+06 0.24178330D+06 -0.35274231D+06 0.36748559D+06
10  0.22847435D+07 -0.47490717D+07 0.69432497D+07 -0.74979549D+07
11 -0.51594909D+08 0.10673997D+09 -0.15633198D+09 0.17345727D+09
12 0.13056954D+10 -0.26915937D+10  0.39490945D+10 -0.44737757D+10
c=4.0
1 -0.71847869D+00 0.43695738D+00 0.00000000D+00  0.00000000D+00
2 -0.29526372D+00 0.74315805D-01 0.84192689D-01  0.57279526D+00
3  -0.74615505D-01 -0.27505037D+00 0.42387706D+00 0.16476999D-01
4 0.40218228D+00 -0.99876453D+00 0.10768982D+01 -0.12693519D+01
5  0.27077063D+00 -0.76849670D-02 -0.10928083D+01 -0.54100228D+00
6 -0.91117444D+01 0.18844507D+02 -0.26371382D+02 0.27801511D+02
7. -0.29608695D+02 0.46344117D+02 -0.46076327D+02 0.81859275D+02
8 0.46472052D+03 -0.97748955D+03  0.14242622D+04 -0.15432113D+04
9 0.46478238D+04 -0.86469263D+04 0.11275708D+05 -0.14656681D+05
10 -0.27696733D+05 0.62349458D+05 -0.97731462D+05 0.10216518D4-06
11 -0.86797056D+06 0.16989849D+07 -0.23721396D+07  0.29409633D+-07
12 -0.15433914D+07  0.18234433D+07 -0.89768497D+06 0.36651252D+-07
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e The analysis of divergent series and summation techniques is considered in
Baker and Hunter (1973), Baker and Gaves-morris (1981), Gaunt and Gattman
(1973), Emile Borel (1928), and Bender and Wu (1969).

For the relation between series and continued fraction, a well known example

relates to InI'(z). An historical account is given in Appendix D - Supplement.

5 Rational Fraction Sequences for b*/b and a*

5.1 Padé Sequences for b*/b, a = 0, b = 1. Mean: pj(b*/b).
N = 15, 30, 50

The Stieltjes p, g form (Appendix A) is

p’l(b‘/b)=N<q° D1 @1 D2 a2 >

N+ 1+ N+ 1+ N+ -

where N is the sample size.

If attention is paid to the p, and g,, there is no particular pattern but the mag-
nitudes are in marked contrast to the series coefficients (Table 1). Nonetheless the

successive “convergents” suggest convergence.
The variance of b*/b = (/ma/u, is derived from Var(y/mg/ps) = 1 - 1/N —

[E(\/ mz/#z)]Q-

5.2 Padé Sequence for us(b*/b), a =0, b= 1.

1/ pm oo P2 @
-3 8 B Bt
wlb'/0) = G \NF 14 Nt 1+ N+ -

Again the convergence is satisfactory. From this and the expression (7) in §2.3, the
fourth central moment p4(b*/b) can be set up. The tables are excerpts from a larger
tabulation which supplies information for application formulas. A similar tabulation

has been set up for the moments of a*.
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Table 2a. Padé sequences for p)(b*/b),a=0,b=1

c 3 P, Qs
1.1 0 1.00000000D+00
1 1.29498080D+00 1.29513372D+00
2 2.85792050D+01 1.06422041D+01
3 1.02994696D+02 -1.66090637D+00
4 -2.87904780D+03 3.06068568D+03
5 4.23854877D+00 2.75310324D+02
6 1.01771503D+02 2.93245484D+02
7 -2.32229805D+04  0.00000000D+00
s N=15 N =30 N =50
3 0.92052885 0.92638020 0.95862018 0.96026461 0.97475424 0.97537597
4 0.92264507 0.92340778 0.95947899 0.95960179 0.97515342 0.97518018
5 0.92276306 0.92275183 0.95951050 0.95950919 0.97516293 0.97516273
6 0.92276312 0.92252711 0.95951052 0.95948660 0.97516294 0.97515968
7 0.92281418 0.92243048 0.95952759 0.95947922 0.97517704 0.97515892
c s P, Qs
20 O 1.00000000D+00
1 7.80636163D-01  -9.03910875D-01
2 -4.52941345D-01 2.23637326D+00
3 4.49107516D+00 4.64352271D+00
4 1.90868866D+00 5.82046739D+01
5 -4.83205813D+01 -1.70823000D+00
6 3.22653061D+01 -5.67876139D+00
7 1.43189667D+03  0.00000000D+00
s N=15 N =30 N =50
3 0.95053202 0.94752634 0.97463873 0.97387143 0.98462729 0.98434869
4 0.94742688 0.94744016 0.97385930 0.97386016 0.98434610 0.98434621
5 0.94743742 0.94743796 0.97386005 0.97386007 0.98434620 0.98434620
6 0.94743791 0.94743795 0.97386007 0.97386007 0.98434620 0.98434620
7 0.94743805 0.94743811 0.97386007 0.97386007 0.98434620 0.98434620
c s P, Qs
40 0 1.00000000D+00
1 7.18478691D-01 -1.12943551D+00
2 5.75804712D-02 -8.91028987D+00
3 8.96207683D+00 -2.41353912D+00
4  -2.34908322D-01 1.60923060D+02
5 -1.65834052D+02 4.58700790D-01
6 -6.66251476D+00 1.47674034D+01
7 4.53666946D+01  0.00000000D+00
s N=15 N =30 N =50
3 0.95429083 0.95075217 0.97661086 0.97571808 0.98583399 0.98551134
4 095076675 0.95078786 0.97571986 0.97572061 0.98551172 0.98551180
5 0.95077532 0.95077444 0.97572038 0.97572037 0.98551179 0.98551179
6 0.95077443 0.95077444 0.97572037 0.97572037 0.98551179 0.98551179
7 0.97572037 0.97572037 0.98551179 0.98551179

0.95077462 0.95077457
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Table 2b. Padé sequences for p3(b*/b), a =0, b = 1.

c S P, Qs
1.1 0 . 8.55929972D+00
1 1.86030928D+01 1.86908718D+01
2  5.49332713D+01 4.55912542D+01
3 1.02475174D+02 7.89604697D+01
4 1.62301982D+02 1.17496665D+02
5 2.36679906D+02 1.58970019D-+02
6 -4.16283017D+04 -7.16916918D-01
s N=15 N=230 N =50
3 0.01698117 0.02450848 0.00587020 0.00688125 0.00249531 0.00269410
4 0.01922594 0.02173754 0.00630552 0.00653324 0.00260199 0.00263225
5 0.01977390 0.02082356 0.00637983 0.00645071 0.00261472 0.00262172
6 0.01994779 0.02044241 0.00639795 0.00642435 0.00261710 0.00261915
c 8 P, Qs
20 0 5.13168408D-01
1 1.70698729D+00 1.04591943D+00
2 7.33843657D+00  3.81997487D+00
3 -2.55005908D+00 -6.83083518D+01
4 8.31581940D+01  -4.95512295D-01
5 -5.61303587D+01  7.95455170D+01
6 -1.31790983D+02 1.39028461D+00
s N=15 N =30 N =50
3 0.00204772 0.00206145 0.00053949 0.00054047 0.00019849 0.00019863
4 0.00205712 0.00205776 0.00054028 0.00054030 0.00019861 0.00019861
5 0.00205787 0.00205774 0.00054030 0.00054030 0.00019861 0.00019861
6 0.00205835 0.00205828 0.00054030 0.00054030 0.00019861 0.00019861
c s P, Qs
40 0 8.41926895D-02
1 -5.03460646D+00 2.49401567D+00
2 -3.62176045D+00 -2.09826701D-04
3 1.20132751D+05 -1.20139305D+05
4  5.05276796D-04 -6.61668057D+00
5 1.04376010D+01 -2.41700973D+01
6 6.18334032D+01 -1.59117949D+00
s N=15 N =30 N =50
3 0.00056323 0.00052539 0.00011241 0.00011070 0.00003745 0.00003725
4 0.00051634 0.00051634 0.00011049 0.00011049 0.00003724 0.00003724
5 0.00051634 0.00051813 0.00011049 0.00011050 0.00003724 0.00003724
6 0.00051763 0.00051740 0.00011050 0.00011050 0.00003724 0.00003724
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Note that the Padé approach has been used to assess the first four moments of
b* /b. The equalities mentioned for the variance and fourth central moment series as

checks and are referred to in the sequel.

5.3 Four Moment Approximating Distributions

If we have 4 moments (m), ma, v/b1, bp) for a statistic, then a 4 moment approximating
distribution may be set up. Useful choices are the Pearson system (Elderton and

Johnson, 1969) and the Johnson translation system (Johnson, 1949).

e The Pearson system: This is based on the differential equation

lggi_ a+ bz
ydz Az?2+ Bz +C’

where y is the density. An algorithm (Bowman and Shenton, 1979a, 1979b) is
available to set up the percentage points; 1%, 2.5%, 5%, 10%, 25%, 50%, 75%,
90%, 95%, 97.5%, 99%. There is a guide to the parameter limitations and also

the error involved.

e The Johnson translation system: This is described in Bowman and Shenton

(1980, 1981, 1988a, 1989b). The two systems are

Sy: z=-y+dsinh™ <:v_:\—_£) [2¢N(0,1)], and

z—¢

m) (€ $3<C+AC = phlz) — Mil(y).

Sp: z=v+dlny, y=(

The reader is reminded that in the Sy paper (Bowman and Shenton, 1980) the

equation for w* should read

o =\[\/28 — 280 (Ba, i) —2 - 1.
The algorithms suppliéd are readily set up for computer implementation.

A comparison of assessments by simulation and Padé for a* and b* is given in

Table 3; some percentage points are also included.
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The agreement between the Padé and simulation assessments is most satisfactory,

especially for NV = 50.
e Note that a* is positively biased and b* is negatively biased.
e Note also that moments have been set up under the assumption that a = 0,

b = 1. These may be converted to a = ag, b = by as follows:

for the mean

p (a”|ao, bo) = ao + bopy (a0, 1)

and for the variance
piz(a*|ao, bo) = bjuz(a’]0,1).

Similarly
iu'll(btlao’ bO) = bﬂiu"l(btioa 1)

and
pa2(b*|ao, bo) = bﬁuz(b‘IO, 1).

Note that the skewness and kurtosis are location and scale free.
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Table 3a. Padé approximation of moments and percentage points of a* when ¢ = 2.1,
b=1.0,a=0.

N ph o VB B 5% 25% 50% 75% 95%

10 Padé 0.069 0.196 -0.011 3.185 -0.25 -0.06 0.07 0.20 0.39
MC 0.070 0.196 -0.000 3.205

11 Padé 0.063 0.187 -0.016 3.174 -0.24 -0.06 0.06 0.19 0.37
MC 0.063 0.186 -0.030 3.139

12 Padé 0.058 0.179 -0.019 3.164 -0.24 -0.06 0.06 0.18 0.35
MC 0.058 0.179 -0.017 3.144

13 Padé 0.053 0.172 -0.022 3.155 -0.23 -0.06 0.05 0.17 0.33
MC 0.054 0.172 -0.019 3.138 '

14 Padé 0.049 0.166 -0.024 3.146 -0.22 -0.06 0.05 0.16 0.32
MC 0.050 0.166 -0.023 3.106

15 Padé 0.046 0.160 -0.026 3.139 -0.22 -0.06 0.05 0.15 0.31
MC 0.046 0.161 -0.022 3.122

20 Padé 0.034 0.139 -0.031 3.110 -0.20 -0.06 0.03 0.13 0.26
MC 0.035 0.139 -0.028 3.099

30 Padé 0.023 0.114 -0.032 3.077 -0.17 -0.05 0.02 0.10 0.21
MC 0.024 0.114 -0.029 3.104

40 Padé 0.017 0.099 -0.031 3.059 -0.15 -0.05 0.02 0.08 0.18
MC 0.018 0.099 -0.041 3.057

50 Padé 0.014 0.088 -0.029 3.048 -0.13 -0.05 0.01 0.07 0.16
MC 0.014 0.089 -0.029 3.076
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Table 3b. Padé approximation of moments and percentage points of b* when ¢ = 2.1,
b=10,a=0.

N Y o VB B 5% 25% 50% T75% 95%

10 Padé 0.922 0.225 0.335 3.141 0.58 0.76 091 1.07 1.31
MC 0.921 0.224 0.327 3.122

11 Padé 0.929 0.215 0.320 3.130 0.60 0.78 092 1.07 1.30
MC 0.929 0.215 0.330 3.113

12 Padé 0.935 0206 0.307 3.121 0.62 079 0.92 1.07 1.29
MC 0.934 0.206 0.302 3.085

13 Padé 0.940 0.198 0.295 3.112 0.63 0.80 0.93 1.07 1.28
MC 0939 0.199 0.296 3.118

14 Padé 0.944 0.191 0.285 3.105 0.65 081 0.94 1.07 1.27
MC 0.944 0.192 0.285 3.091

15 Padé 0.948 0.185 0.275 3.099 0.66 0.82 0.94 1.07 1.27
MC 0.948 0.186 0.285 3.124

20 Padé 0.961 0.161 0.240 3.076 0.71 0.85 095 1.07 124
MC 0.960 0.161 0.236 3.068

30 Padé 0.974 0.132 0.197 3.052 076 0.88 0.97 1.06 1.20
MC 0.973 0.132 0.193 3.061

40 Padé 0981 0.115 0.171 3.039 0.80 0.90 098 106 1.17
MC 0.980 0.115 0.194 3.070

50 Padé 0.985 0.103 0.153 3.032 0.82 0.91 0.98 1.05 1.16
MC 0.984 0.103 0.157 3.057
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6 A Collection of Simple Formulas for the Mo-

ments and Moment Ratios

6.1 Means
Using the Padé results for (1.1 < ¢ < 4.0) and (10 < N < 100) we have the algorithm
E(b*) A A
R R

where

. 1.4 4
A; = —0.827043 + 0.806668 _ 2:;23

c
3.990936  5.658460
+ =

A; =0.436183 —

)

with absolute error less than 0.1% except at ¢ = 1.1 and N = 10 for which the
error is 0.175%. The formula given in (4) for E(W) is derived from its series
development in terms of the random variate [my— E(mg2)]; the error for (1.1 < ¢ < 4.0)
and (13 < N < 100) is less than 1%.
Note that we now have the important result that
" _ b
1+ A;/N + Ay/N?

is almosf unbiased for b.

For the location parameter a, the moment estimator is -
a*=m; —b'T(1+1/c) (c known),

and
E(a™)=m; —=b"T(1+ 1/c)

is almost unbiased for the location parameter a.

6.2 Variances

From (5), o(b*/b) = \/1 —1/N — [E(b*/b)]?, and this can be set up from E(b}/b) or
the Padé form for Var(b3/b).
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6.3 Skewness and Kurtosis

The formula for 1/3;(b*/b) is

2 (3)= Br(b*) ~ %<Bl+&)

where

1. _
B, = —0.600783 + 964495 + 3.330215

c c2
13.437573 _ 25.060284
c c?

By, = —0.847900 +

with for 1.1 < ¢ < 3.0 and 10 < N < 100 the maximum error is less than 5%. For
¢>3.0,10 < N <100, /B <0.15.
The formula for the B,(b*/b) is

o (5) =819+ (64 8)

where

102.464 .0

C, = 21.924414 - 0 06 i + 12-5 ;0738
995.457126  1025.128798
c

c?

bl

C, = —242.161370 +

for values 1.1 < ¢ < 3.2 and 12 < N < 100 with maximum errors less than 2%. For

¢ > 3.2 the kurtosis 3, is approximately 3.

7 Conclusion

The approximate distribution of a function of sample moments (m}, mj, mj, mj) using
computer oriented extended Taylor series has been successful especially for moment
ratios such as /b, = mg,/m2 and by = my/m3 (Shenton and Bowman, 1977; Bowman
and Shenton, 1978, 1988b, 1989a). In general the series for the first four moments
turn out to be divergent as far as can be judged from the pattern exhibited in the

first 12 to 20 or so terms (in power of N~'). In most cases the general term (N¥)
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in the series can only be given by approximations such as ck*I'(as + b), where a and
b are at worst positive half-integers. The Padé approach is most likely to succeed if
a= %, 1, % or 2; for larger values of a the Padé Borel transformation (Bowman and
Shenton, 1978, pp110-111; Shenton and Bowman, 1977) may be used.

Padé sequences point to a best assessment when successive terms in the sequences
are nearly the same; it is possible for this to occur suggesting to a false assessment.
Checks on the assessments, for the most part, rely on simulation studies and in the
present study the reader is referred to Tables 3a and 3b. In addition we mention that
since the 2 parameter case of b* refers to the moments of 1/ms/p2 in sampling from a
gamma density cy°~'e™¥" with ¢ = 1, we can compare the Weibull case with a segment
of the study Bowman and Shenton (1990), which treats the Padé approximants to
the moments of |/ma, v/b1, and b, for various values of the shape parameter and
sample sizes N = 10, 15, - - -, 200. The comparisons are given in Tables 4 and 5. The
agreement is quite satisfactory. Note that the derivation of the moments in the two
cases take different routes. For the gamma there is a recursion scheme for the rth
central moment where-as the Weibull density uses the integral defined in equation

(8):

A comprehensive account of Padé methods is given in Brezinskie (1980a) and the

bibliography (1978, 1980b).
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Table 4. Checks and Balances for moments of E(1/ma/us2) and o(y/ma/us)

N 10 15 30 50 75 100
c=1.1
pi Padé 0.8863 0.9222 0.9595 0.9752 0.9832 0.9873
Eq(4) 0.8033 0.8832 0.9491 0.9713 0.9815 0.9863
o Padé 0.3362 0.2876 0.2147 0.1705 0.1411 0.1231
Eq(5) 0.5197 0.3968 0.2577 0.1916 0.1529 0.1309
c=20
p; Padé 0.9207 0.9474 0.9739 0.9843 0.9896 0.9922
Eq(4) 0.9081 0.9417 0.9724 0.9838 0.9893 0.9920
c Padé 0.2288 0.1889 0.1351 0.1052 0.0861 0.0746
Eq(5) 0.2763 0.2164 0.1455 0.1101 0.0888 0.0764
c=4.0
py Padé 0.9252 0.9508 0.9757 0.9855 0.9904 0.9928
Eq(4) 0.9185 0.9477 0.9749 0.9852 0.9902 0.9927
o Padé 0.2100 0.1714 0.1210 0.0936 0.0764 0.0662
Eq(5) 0.2386 0.1879 0.1272 0.0966 0.0780 0.0672

Table 5. Comparison of the Distribution of \/ma/us from Weibull and gamma distribution

N Mean s.d. N/
10 GPadé 0.8784 0.3639 1.12 5.25
G MC 0.8754 0.3621 1.11 5.27
w 0.8776 0.3634 1.128 5.293
20 G Padé 0.9334 0.2798 0.88 4.47
G MC 09334 0.2792 0.87 4.47
w 0.9338 0.2797 0.877 4.477
50 G Padé 0.9718 0.1887 0.63 3.82
G MC 09711 0.18388 0.64 3.95
W 0.9718 0.1887 0.625 '3.818

W= Weibull distribution, G=Gamma distribution (Bowman and Shenton, 1990). For the
Weibull distribution, ¢ = 1, @ = 0, and b = 1. For the gamma distribution, p = 1, a = 1,
density e~%/%(z/a)?~! /[aT(p)]-
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APPENDIX D - SUPPLEMENT

A Series and Continued Fractions: Stieltjes and

Hardy

A.1 The Gamma Function and its Continued Fraction Com-

ponent

The usual asymptotic series is

- (Jarg 2] < 7).

1 1 11 1 1
InT ~( ——)1 o] L 4
nl'(z) ~ (2= 3 ) In(e) —2+5 InQm)+ 5~ = 3553+ 195075 ~ 168077

(A1)

The general term in the series is

B, 1
25(2s5 — 1) 2271’

where B, is a Bernoulli number and By = 1, By = —1/2, B, = 1/6, By = —1/30, and
for large s (25)
2-(2s)! 1 2(2s)!
-1 s+1 5 .
2n)° (1 _ 21—2s> > (0" Bas > 5
(See Handbook of Mathematical Functions, 1967)

This series has intrigued many students. G.H. Hardy (1949) gave the expression

Io nl:Z":lo (m)=(n+l)lo (n)=n+C+ B B B (13.73)
g : & 9) 8 1-2n 3-4n3  5.6nd '

with -
_ B B, B; B,
C=l-135%34 56 78
Hardy remarks “The series are semi-convergent, and can be used to calculate logn!
and C. We shall see later that C =  In(2).

We cannot calculate C with great accuracy from (13.73) because n = 1 is too

small. The least term is that last written, which is 0.0054, and we can calculate
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C = .919--- to 3 places, by stopping there. This value of C, used in (13.73), would
then give a fairly accurate value for Inn! for large n.”

The coefficients in the series part of (Al), although decreasing in value initially,
ultimately steadily increase in value to co. Nonetheless it can be proved for z real,
and positive, that the magnitude of the error committed at a particular term in the

series is less than the magnitude of the first term omitted. Actually,

mr@):(z—%)mu)-z+%m@ﬂ4nn@

where
1 oo 1 zdu
= [T
I(2) s /0 g (1 - e'z’”‘) 224 p? (®(z) > 0)
12
= "1/30
o . 53/280
195/371

z+
4 29292.{.2.2'73
as given by Wall (1948). The continued fraction was given by Stieltjes in a letter
he sent to Hermite (1889). One may find it in ‘Correspondence D’Hermite et de

Stieltjes’ (1905, pp348-352). We quote an excerpt which portrays Stieltjes as the

ardent numerical fan.
et cotte fraction continue remplace avec grand avantage la série de

Stirling. Pour z = 1, J(1) == 0,081061.

La série. La fraction continue.
Val.app. Corr Val.app. Corr
0,083 333 0,002 272 0,083 333 0,002 272
0,080 556 0,000 505 0,080 645 0,000 416
0,081 349 0,000 288 0,081 173 0,000 112
0,080 764 0,000 307 0,081 016 0,000 045

0,081 081 0,000 020
Si une fraction continue telle que(2) ou tous les a;, b; sont posi-

tifs est convergente pour z = p > 0, alors elle est toujours con-
vergente tant que z > 0. Mais je dois réfléchir encore beau-
coups sur la question diffieile que j'ai indiquée tout & ’heure.

Votre tout dévoué.

98



A.2 Series to Continued Fractions

Stieltjes (1918) in his collected works (Vol II) on ’Sur une Applications des Fractions

Continues’ (p394) considers the series
co—clz+02zz—03z3+-'-

and expresses it as the continued fraction

bo blz bgz bgz bo

mI-1-1- . bz
1_b22b
4
1= _1A_52

where
Co €1 ' Cpa

Ch-1 Cn ** Copn-2

Cn Cptl " C2pl
bo=Ar=c, A=B=1,
An—l Bn — An+1 Bn—l

) ) 2n — : .

An Bn—l An Bn
In connection with the problem of moments, Stieltjes preferred the form
1 1 1 1 1
apz+ o1+ apz+ azt+ gz 4

bon-1 =

in which ag,aq, - > 0 and ¥ a = oo for the moment problem to have a unique
solution (see Shohat and Tamarkin, 1948). The moment problem referred to here is
a mechanical problem and at the time had little to do with statistics or probability.

In the application to the series for the random variate b* /b the form preferred is

(‘IO P @ P2 @ )
N+ 1+ N+ 1+ N+---/~
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For this case N is a sample size and positive; if in addition gq, p1, q1, - - - are positive,
then the odd convergents form a decreasing set of upper bounds, where-as the even
convergents form a set of increasing lower bounds; if there is convergence these limiting
bounds will be equal. However, this theoretical case rarely happens in practice. In
general the partial numerators are of a much lower order of magnitude than the
series coefficients, and it is this characteristic which makes the approach useful and

powerful. Note:

e Series may be truncated in an orderly pattern and continued fractions set up

for the truncated components.
e Similarly, the same holds for the inverted series.

e The above constitute the Padé table of approximation sequences.

A.3 The Baker-Gammel Conjecture

There is an interesting conjecture given in Baker (1975). It is called the Baker-
Gammel-Wills-conjecture (1961). Briefly, under certain conditions for a regular power
series, there is a sequence of approximants in the Padé table which converges (Baker,

ppl188-189). There are other possibilities. For example, there is the surprising formula
(n —1)T(3n) ( 1) 2 1 1 1
=(1-=),]1+ >0
VorT(n + 1) n moir By Ermy >0

and in fact the left hand side is E(,/mz) for the normal density N(0,1) when n =
1,2,3,---.

There are further examples which do not seem to fit into the Padé scheme. For

example (Rogers, 1907a, 1907b) gives

2

ox /°° sinhte_t/z AR 1 z 3z?
P\l T2 T l-z+2(l-z)+ 2(1-x)+ -

dt =1
cosh 2¢ t + 1+ 1+ 1+

(see Rogers 1907a and 1907b; also Bowman and Shenton, 1989, p157).

oo ~t/z a2\ (32 — g2\02 (52 _ g2),2
exp [/ (1 __ cosh 2at)] e 2(1 — a?)z® (32 —a®)z? (5% —a?)x
0
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Applications of continued fractions in physics are many; see ‘The Padé Approxi-
mation and its Physical applications’ by J.L. Basdevant (1971).

For computer extensions of series in applied mathematics there are interesting
examples and comments in Van Dyke (1975). He quotes the case of the 19th century
French astronomer Delaunay who spent a lifetime in extending a series in five variables

up to and including the ninth order.

Further information on the Padé table is given in Brezinski (1980), which includes
programs for various algorithms related to continued fractions. A useful algorithm is
also given in Wall (1948, Chapter IX). A classical treatise on continued fractions is

given in Oskar Perron (1957).
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