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PREFACE 

. 
This report was originally written as a lesson to be provided to members of the criticality safety 
community and to be made available by the Department of Energy (DOE) Nuclear Criticality Safety 
Program (NCSP). The purpose of the lesson is to present a fundamental summary description of the 
252Cf-Source-Driven Noise Analysis (CSDNA) method. Two appendices are included. Appendix A 
provides a mathematics background for Fourier analysis and signal processing, which may be skipped by 
the knowledgeable reader, and Appendix B is a brief general review of established subcritical 
measurement methods, including the CSDNA method, and presents comparisons between them. 
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ABSTRACT 

This report is intended primarily as a summary lesson about the 252Cf-Source-Driven Noise Analysis 
(CSDNA) method. The CSDNA method is a noise-analysis-based measurement technique that provides 
measured quantities, which when combined with similar calculated values, can be used to infer the 
effective neutron multiplication factor (kef) for subcritical fissile nuclear assemblies. The required 
measured quantities are fiequency-domain correlations of detector signals. These same quantities are 
directly calculated using a specially modified Monte Carlo transport code and, together with the measured 
values and the results from an eigenvalue calculation using a standard Monte Carlo transport code, are 
used to determine the value of k g .  Within the International Criticality Safety Benchmark Evaluation 
Project (ICSBEP), the CSDNA method has been used for international benchmarking of subcritical 
nuclear configurations, thereby permitting examination of calculation methods, cross section data sets, 
and the support of computational predictions of margins of subcriticality. 

The CSDNA method is multidisciplinary in scope and a complete understanding of the method requires 
grounding in nuclear criticality and kinetics theory, statistics, and digital signal processing based on 
Fourier analysis. Also, application in the field requires the use of specialized computer software and 
hardware as well as detector systems and electronics. Consequently, an individual well versed in certain 
required areas (e.g., nuclear physics, nuclear criticality safety, neutron transport theory) may lack 
adequate training in other key areas (e.g., digital signal processing or nuclear detector electronics) and as 
a result may have difficulty grasping the overall methodology. In response to this concern, the intent of 
this summary lesson is to provide a basic understanding ,of the methodology. The lesson includes a 
summary of CSDNA systems and experiments conducted from 1974 to 2002. Appendices are also 
included. Appendix A presents a mathematical basis for Fourier-based signal processing, and 
Appendix B provides an overview of methodologies used for subcriticality measurements. 

... 
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1. INTRODUCTION 

This report is intended primarily as a summary lesson about the 252Cf-Source-Driven Noise Analysis 
(CSDNA) method, which is a noise-analysis-based measurement technique that provides measured 
quantities that are related to the reactivity of subcritical fissile nuclear assemblies. Thus, the method is of 
interest to nuclear criticality safety engineers because it can be used to infer subcritical k-effective from 
measurements. 

Quantities measured by the CSDNA method, when combined with similar calculated values, can be used 
to infer the effective neutron multiplication factor (k& for subcritical fissile nuclear assemblies. The 
required measured quantities are frequency-domain correlations of detector signals. These same 
quantities are directly calculated using a specially modified Monte Carlo transport code and, together with 
the measured values and the results from an eigenvalue calculation using a standard Monte Carlo 
transport code, are used to determine the value of k e f .  A feature of the CSDNA method is that it is 
multidisciplinary in scope. A full understanding of the CSDNA method requires an adequate grounding 
in nuclear criticality and kinetics theory, statistics, and digital signal processing based on Fourier analysis. 
Application in the field requires the use of specialized computer software and hardware as well as 
detector systems and electronics, all of which must be understood by experimentalists. Sufficient 
understanding to acquire, process, and interpret data may be obtained with a minimum of training. 
However, because of the broad scope of the methodology, a full understanding of the underlying science 
required for research and innovation will likely require a concerted effort within any area in which the 
“pra~titioner~~ is not knowledgeable. For example, an individual well versed in certain required areas 
(e.g., nuclear physics, nuclear criticality safety, neutron transport theory) may lack adequate training in 
other key areas (e.g., digital signal processing or nuclear detector electronics) and, as a result, may have 
difficulty grasping the overall methodology. As a response to this concern, the intent of this lesson is to 
provide a “starting point” (i.e., information required for a basic understanding of the methodology) while 
omitting details that would only be required for an in-depth understanding. The interested reader may 
consult the references” for a better understanding of specific technical issues. To a significant degree this 
lesson parallels the discussion in Reference 1 , which contains an excellent discussion of the CSDNA 
method, including theoretical development, and a summary of subcritical measurements using the method 
through 1998 (summary is enhanced and extended to 2008 in this report). 

Nuclear system electronics, a broad field in itself, is not discussed here. With the exception of a specially 
built capsule containing a 252Cf-source/detector combination, the CSDNA ‘method utilizes standard 
off-the-shelf detectors and detector electronic components. Moreover, a well-grounded knowledge of this 
field, which is usually acquired through practical experience and is not readily obtained by reading a 
lesson, is invaluable to the experimentalist but is not required for a basic understanding of the CSDNA 
method. 

In addition to published references that are listed at the end, this lesson also borrows from unpublished, 
handwritten notes, circa 1990, by V. K. Pare’ (retired from ORNL). 
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2. METHODOLOGY 

2.1 OVERVIEW OF APPROACH 

The CSDNA measurement requires the use of two neutron and/or gamma ray detectors and a 252Cf source 
in an ionization chamber capsule. The combined source/detector capsule is placed within or adjacent to 
the fissile assembly to initiate the fission chain multiplication in the assembly. The two additional 
detectors are also placed near the assembly and are usually separated as much as reasonably possible from 
each other and from the source to obtain the best signal-to-noise response. (One possible arrangement is 
with detectors on opposite sides of the assembly separated by 180” and with the source/detector capsule 
in the center of the assembly. Another possible arrangement is with the source/detector capsule on one 
side of the assembly and with the detectors on the opposite side of the assembly and separated by 60”. A 
number of options are possible and depend to an extent on the assembly geometry.) Spontaneous fission 
events are observed using the source detector, and the emission of neutrons and/or gamma rays’ that 
result from additional fission events within the assembly is observed using the detectors. The time- 
dependent counts in these two detectors, though themselves random, are nevertheless correlated to each 
other and to the source detector. These correlations depend upon the neutron multiplicity in the assembly 
and can be combined in a way that produces a quantity directly related to the subcritical reactivity (and 
therefore related to kef) of the assembly. This quantity, referred to as the “spectral ratio,” which will be 
defined and discussed in this section, is in fact approximately proportional to the subcritical reactivity of 
the assembly. As a result, a large value for the spectral ratio indicates that the assembly is highly 
subcritical and has a low k,@ Conversely, in the other extreme, a spectral ratio approaching zero indicates 
that the assembly is approaching critical. 

Figure 1 depicts a basic schematic for implementation of the CSDNA method. The top section of Fig. 1 
shows a fissile assembly with the 252Cf source/detector at the “top” and two neutronlgamma detectors at 
the “bottom” of the assembly. The data acquisition and processing is shown in the boxes at the bottom of 
the diagram and will be explained in Section 2.1.5. It suffices to say at this point that the quantities at the 
bottom of the figure (GI G12, etc.) are accumulated measurements of the frequency-domain correlations 
that are ultimately combined to produce the spectral ratio value and are discussed below. 

Figure 2 shows a schematic of a 252Cf source/detector assembly. The 252Cf is plated on an electrode 
within the detector. The detector is designed such that a count is registered whenever a fission event 
occurs. 

In the CSDNA method, the source ionization chamber is designated as detector 1 , and the radiation 
detectors are designated as 2 and 3, as shown in Fig. 1 .6 The pulses from the source and detectors are 
acquired over time into N time bins (typically 5 12 or 1024) and are processed to obtain time and 
frequency analysis parameters. The values obtained from the described measurement configuration 
involve all two-channel combinations (Le., 1 &2, 1 &3,2&3) including values that are correlations 
between an individual signal with itself (i.e., 1&1,2&2,3&3). In the time domain the correlations 
between different signals are termed cross-correlations and those correlations involving a single signal are 
termed auto-correlations. Likewise, in the frequency domain (which is obtained by performing a Fourier 

a Gamma rays produced by induced fission are also correlated like the neutrons. ’ In practice, as many as four neutrodgamma detectors are used but are combined in pairs with the 
source/detector. For example, if the source/detector is designated detector 1 and four neutrodgamma detectors are 
designated 2 through 5, the detector combinations would be 123,124,125,134,135,145. In this case the data would 
yield six separate measurements, the results of which could be averaged. 
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Fig. 1. Schematic of =*Cf Source-Driven Method data acquisition and processing. 
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Transform on each block of time-sequenced data), the correlation signatures between different signals are 
termed cross-spectra, while those involving the same signal twice are termed auto-spectra.' 

The mathematical definitions of the correlations and spectra are provided and discussed in detail in 
Appendix A. As a necessary precursor to explaining auto- and cross-spectra, the Fourier Transform is 
defined and examples are given. Next, the time-domain auto- and cross-correlation functions are 
explained along with their conversion to the frequency-domain quantities, the auto- and cross-spectra 
functions. The reader is shown through simple examples that through application of the cross-correlation 
process, the data obtained from a system driven by a random spontaneous fission neutron source is made 
similar to that obtained from a non-random, accelerator-driven source. 

It suffices to say here that in the frequency domain, once the Fourier Transforms of sampled data blocks 
for two detectors have been calculated, the auto- or cross-spectrum is obtained by multiplying the 
complex conjugate of the Fourier spectrum of one signal block by the spectrum of the other signal block 
for each of the frequency values. This process is depicted in the bottom section of Fig. 1. As shown, 
time-sequenced data blocks are repeatedly acquired using digital sampling. Each data block is Fourier 
analyzed to convert the data from the time- to the frequency-domain, and the resulting data blocks are 
combined in pairs to produce the various auto- and cross-spectra. These spectra are accumulated and 
averaged for a selected total number of data blocks. 

Note also in Fig. 1 that the signals must first be amplified and discriminated, and then analog filtered 
prior to digital sampling. Discussion of these requirements is given in Section 2.1.5. Filtering is also 
discussed in Appendix A. 

The correlation signatures and frequency signatures have the following properties. The auto-correlation 
functions are denoted as Cii where the subscript i refers to the detector number; hence, they are CII ,  C22, 
C33. The auto correlation of the source, C I I ,  is proportional to the source strength while the detector 
auto-correlation functions C22 and C33, etc., are equivalent to the single detector Rossi-a measurement 
(see Sect. 2.1.1). Detector auto-correlation functions are dependent on source-induced and inherent fission 
events and background radiation. As stated earlier and as shown in Appendix A, the source-detector 
cross-correlation functions C12, C13, etc., are equivalent to the pulsed neutron measurement and are mainly 
dependent on the induced fission rate in the system. The between-detector cross-correlation function (i.e., 
C23), indicates the amount of correlated information between the two detectors. The between-detector 
correlation function depends on both source-induced and inherent fission occurring in the system. The 
detector auto-correlation functions, the source-detector cross-correlation functions, and the between- 
detector cross-correlation function are all exponential die-away measurements that are used to determine 
the exponential decay of prompt neutron fission chains in the system. The source auto-spectrum G I /  is 
simply a measure of the fission source strength. The detector auto-spectra G22, G33, etc., are a measure of 
the source-induced and inherent fission rates of the system and the background rate and are proportional 
to the detector count rate. 

The source-detector cross-spectra G12, G13, are measures of counting events in the detectors correlated 
with fission events in the source. Consequently, the source-detector cross-spectrum indicates the amount 
of source-induced fission occurring in the system. The detector cross-spectrum G23 is a measure of the 

The auto- and cross-spectra are often alternately referred to as the auto- and cross-power spectral densities. 
These names, which are somewhat lengthy, are usually abbreviated by APSD and CPSD. It is simpler here to use 
the auto- and cross-spectra designation. 
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events in one detector correlated with events in another detector, so their magnitudes” indicate the amount 
of both source-induced and inherent fission occumng in the system analyzed. 

Define the spectral ratio at frequency w, [i.e., R(w)], by 

where o is the angular frequency in radiansh and G,(w) is the cross-spectrum between detectors i and j at 
frequency o. If i=j then Gii(w) is the auto-spectrum for detector i at frequency o. (The symbol “*” 
denotes complex conjugation of the source-detector cross-power spectra.) R( w) is independent of 
detection efficiency and, as shown in Section 2.1.1, is approximately proportional to reactivity. 

Although the spectral ratio is obtained from the frequency-dependent auto- and cross-spectra, the spectral 
ratio is approximately constant over the low-frequency range. Consequently, the magnitude of the 
spectral ratio computed from the frequency spectra is typically averaged over the low-frequency range 
over which the spectral ratio, R(w), is essentially constant (see discussion of frequency dependence in the 
following section). Unless multiple measurements are performed, the uncertainty of R( w) reported from 
the measurements may be estimated as the standard deviation of the mean of R(w) averaged over the 
selected low-frequency range. This may produce an underestimate of the true uncertainty for values of 
R(w) that are essentially constant over a large frequency range because averaging more data points can 
reduce the standard deviation of the mean. A better estimate of the measured uncertainty is to determine 
the standard deviation of the mean of multiple repeated measurements of a given configuration if such 
measurements have been performed. 

2.1.1 Theoretical Development 

A full derivation of the CSDNA methodology and development of the necessary equations can be found 
in Reference 1. Although it is not deemed necessary or appropriate to repeat the derivation here, several 
intermediate steps are presented to provide an intuitive understanding about the physics of the method. 
We assume the same physical setup as in Fig. 1 (Le., a source/detector combination and two additional 
detectors-a11 adjacent to a fissile assembly). The detectors are numbered 1 (source detector), 2, and 3.‘ 
Subscripts “5’” and “f’ on nuclear parameters refer to the 252Cf source and the inherent source, 
respectively. No subscript on a nuclear parameter indicates reference to the fissile assembly. 

Complex quantities are described by “amplitude” and “phase” in typical calculus texts. However, the term 
“magnitude” has been used consistently in the CSDNA publications and in noise analysis texts. It is synonymous 
with “amplitude” and will be used here. 

calculated for the source and for different combinations of the other detectors. In this case, a more general version 
In actual application, a source and multiple detectors are usually used. In this case, the spectral ratio is 

of Eq. (1) is given by R,(w) = G”(w)G1’(o) , where i andj refer to the detectors other than the source detector. 
GI I (Wq ( w )  

- I  

Thus, for a five-detector (source detector and four other detectors) measurement, there would be six possible values 

‘ This convention is consistent with this write-up but is slightly different from Reference 1, which uses ‘‘2’ and 
for Rg(w): R~~(W),R~~(W).R~S(W),RJ~(W),RJS(W), and R~s(w). 

‘‘y” for the two detectors and “s” for the source detector. 
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The time-domain covarianceu function between a spontaneous-fission source and detector 2 is given by 

where el and e2 are the efficiencies of the source detector (detector 1) and detector 2, respectively, and 7 
and are the average number of neutrons emitted per fission from the source and the average number of 
non-source neutrons from induced fission, respectively. Also, a is the prompt neutron decay constant 
(also called the Rossi-alpha), A is the neutron generation time, and F, is the fission rate of the 252Cf 

source. (A well-known reciprocal relationship between a and A is given by a = - ’-’, wherepis 

reactivity and p i s  the effective delayed-neutron fraction.) An equation similar to Equation 2 can also be 
written for detector combination 1 and 3. 

A 

Equation (2) follows from the point kinetics equation, omitting delayed neutrons and assuming a random 
pulsed neutron source. As shown in Appendix A, the correlation function for a random source is 
equivalent to the detector response for a pulse consisting of a burst of neutrons at time zero. If  a burst of 
neutrons occurs within a subcritical fissile configuration, the detector signal will die away with a decay 
constant equal to the Rossi-alpha value above. If the configuration is close to critical, many neutron 
chains will be produced and the die-away time will be relatively long. Conversely, if the configuration is 
far subcritical, there will be few chains and the signal will die away rapidly. 

Similarly, a covariance function between detectors 2 and 3 can be developed, based on the summed 
probabilities of detection in one detector following detection in the other detector, both following a source 
event. The resulting function, also derived in Reference 1, is given by 

exp(-altl) 1 2a(ia>’ . 

- 
+ v,(v, - 1)F, + v( v - 1)- VIF, + v, (v, - 1)F, 

cu2 (3) 

In Eq. (3) the time parameter, t, is the time difference between detection events in the two detectors and 
can be positive or negative depending on the order in which the events occur. The absolute value of the 
time difference is used because the covariance function value does not depend on the order of detection 
events. Also in Eq. (3), F, is the fission rate of the inherent source, which is from neutron emissions from 
isotopes such as 240Pu or possibly from (a ,n )  reactions. In a 235U/ 238U system, the inherent source is 
usually very small and may be ignored altogether. In this case the two right-hand terms within the 
brackets (“[ 3”) of Eq. (3) vanish since Fl is zero. The value v(v - 1) and similar values using the 

. subscripts “S’ and ‘T’ are referred to as the “reduced second moment of the neutron distribution from 

The covariance function is the same as the correlation function (see Appendix A) but with the product of the 
averages of the two signals subtracted, i.e., C,, = R,,(t) - d,d, , where “d” refers to the count rate from either of the 
two detectors and is averaged over time. (The use of the symbol “R’ for the correlation function, which is standard 
practice, should not be confused with the use of the same symbol for the spectral ratio elsewhere in this section. 
Also, in some equations in this section the term “C” is used to represent constant values and should not be confused 
with the standard use of the symbol for the covariance function.) The frequency domain equivalent of the 
correlation and covariance functions is the same except that an additional constant value at zero frequency does not 
appear if the covariance function is used. 

- 
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252 v (v -1 )  fission” for the assembly, 

is referred to as the Diven Factor for the assembly, source, or inherent source, depending on the 
subscripts. 

Cf source, and inherent source, respectively. A related parameter, --2 , 
V 

The spectral ratio, R( w), defined by Eq. ( l ) ,  combines ratios of the above equations. However, it requires 
transformation of equations from the time- to the frequency-domain. This is accomplished in Eq. (2) by 

, and in 
1 simply replacing the exp(-at) term with the frequency-domain-equivalent complex value, - 

a +  jw 

. Since there is the product of two terms 
1 

Eq. (3) the term exp(-aItl) is replaced by the real value‘ ~ 

a2 +w2 
from the frequency-domain-equivalent of Eq. (2) (detector combinations 1 and 2, and 1 and 3 )  in the 
numerator of R(w), and the complex-conjugate of one is used, the complex value terms in the numerator 

. This term cancels the same term from the frequency-domain 
1 multiply to produce the real value, - 

a’ + w2 
equivalent of Eq. (3) which appears in the denominator of R(w). The final value required in the 
denominator of R(w) is the auto-spectrum of the source, which is given by simply GI,(@) = e,& since the 
source is comprised of random pulses and has equal components at all frequencies (see Appendix A). 

After combining the above expressions, the resulting equation for the spectral ratio is 

R=- e1 vs 
v ( v - I )  v s ( v s - l )  V ( V - l ) F ,  v r ( v r - l ) 5  

VIP1 VS VIP1 F, v, Fs 
- + -  +-- + -  (4) 

The spectral ratio, R, is dependent on the reactivity and a number of constants. It is also independent of 
frequency (assuming w >  0) and, accordingly, has been simplified here from R(w) to R . [We emphasize, 
however, that the above equation is based on a point-kinetics approximation. In actual practice, R(w) is 
not independent of frequency but is relatively constant over a low-frequency range and is averaged over 
that range.] Note that if there is no inherent source, the last two terms in the denominator of Eq. (4) 
vanish. 

Equation (4) can be represented by the following form: 

-P 

and if we solve for the reactivity, p, 

where it is assumed that the reactivity is subcritical (i.e., p < 0). 
Positive constants C1 and C, are given by 

Consult any Fourier Transform table. 

8 



The source detector efficiency, el -1.0, and the “Diven-factor-like” terms are all values close.to unity. 
Thus, if the inherent source, F!, is small, the constants Cl and Cr are close to 1 .O. As a result, for an 
assembly with a small inherent source and close to critical (e.g., kef > 0.95, -p < 0.053), C,p - C, = 4, 
and, from Eq. (5) above, p = -C,R = -R . Thus, for assemblies close to critical, the spectral ratio is 
approximately proportional to the subcritical reactivity. Furthermore, ifthe inherent source is small, 
the constant of proportionality is close to unity and the spectral ratio and the subcritical reactivity are 
approximately equal. 

The reactivity and multiplication factor kgare related by p = - , so that 
k, -1 

k, 

1 - l-C,R k, = - - 
1 - p  1+(C, -C,)R (9) 

2.1.2 Experimental Determination of k,/rOriginal Method“ 

The equations from the previous section appear to indicate that the determination of the reactivity and 
multiplication factor is a straightforward process, provided the values of the constants can be calculated or 
estimated. These equations, however, are derived from a point-kinetics approach and do not take into 
account effects related to modal, spatial, and relative particle importance considerations. In the “original” 
CSDNA methodology, equations similar to, but slightly different from, those above were used to obtain 
the reactivity and keffvalue. These equations are not repeated here but are provided in a number of 
references discussed in Section 4. With this original methodology, in order to determine the reactivity 
from experimental data, it is necessary to modify the equation constants and the spectral ratio in 
Equations 8,9, and 10 above, by additional factors which are the importances of the fission, 252Cf-fission, 
and inherent source neutrons (I, Is, and I!).’ The relative importances, Id. and II/I, are obtained from 
transport calculations which use the fission density obtained from fixed-source forward calculations to 
spatially weight the neutron importance obtained from adjoint k-eigenvalue calculations. These 
parameters are used to correct for the spatial location of the sources as well as for their energy spectra. 
Another required calculated parameter is an additional factor that corrects point kinetics for global spatial 
effects. 

a This method is no longer used and has been replaced by the “updated method” discussed in the next section. 
However, as it is valuable from an insightful and historical point of view, a brief discussion is provided here. The 
reader is directed to the references for a fuller understanding. 

the inherent source importances. They are changed to “5”’ and ‘T’ here to be consistent with the previous section. 
In CSDNA publications, the term “R’ has been used to refer to the global spatial factor. The spectral ratio in 

these publications is not represented by a single letter but by the explicit ratios of spectra [i.e., the right side of 
Eq. (l)]. In hindsight, this was perhaps a poor choice of terminology and hopefklly will not cause further confusion. 

’ The original subscripts in earlier publications were “cy’ for the *”Cf spontaneous fission importances and “i” for 
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The above factors have been calculated for various experiments. Determination of these factors required 
modeling the system and performing both forward and adjoint flux calculations. In general it is necessary 
that averaging be perfofmed over space and energy such that a discrete-ordinates transport or diffusion 
code is required. 

A final factor is a modal correction factor, M,, which multiplies the spectral ratio. M, is the ratio of 
spectral densities obtained from the fundamental mode to that obtained with all the modes present and is 
needed if spatial modes are significant. This factor can be calculated using methods and a special code 
developed by Verdu-Martin et a1.2 but is limited to unreflected cylindrical geometries. An alternate 
approach is to fit the spectral data to sums of modes and extract the fundamental mode directly from the 
experimental data.3*4 Both methods have been utilized with varying degrees of success. 

2.1.3 Experimental Determination of k,,--Updated Method 

An alternate, updated method for evaluating the reactivity and multiplication factor has been developed in 
which a Monte Carlo code, that directly simulates the measurements, is used in conjunction with 
measured values. This approach eliminates the use of the various correction factors discussed in the 
previous section; however, there still remains a strong dependence on the analytical modeling for 
production of the ‘‘measured’’a value of kefi The Monte Carlo code MCNP-DSP’ simulates source-driven 
measurements and is a modification of the MCNP4A6 code (a later, preferred version based on MCNP4C 
is not yet publicly availableb), which uses continuous-energy cross sections for neutrons and gamma rays. 
This code does not impose limitations on the spatial dependence of the simulation except for the accuracy 
of representing physical systems. The only limitation on the energy dependence is that imposed by the 
cross section data files, whether continuous or group averaged, and that imposed by the representation of 
the energy of neutrons andor gamma rays from fission. 

The Monte Carlo calculation implemented by MCNP-DSP follows the natural chain of events in the 
measurements. The number of source fission events is randomly sampled from a Poisson distribution 
given a specified number of events per data block. The data block is the period of time over which the 
source and detector responses are measured and calculated. The time of the individual source fission is 
randomly selected over the period of the data block. The source neutrons are tracked until they either 
interact within or escape from the system as modeled in the Monte Carlo geometry. The progeny of the 
source neutrons are also tracked in the same manner. If a neutron interacted within the detector, a count 
would occur if the neutron interaction could produce a count. The detector counts are placed into time 
bins. These time-dependent detector responses are used to calculate the various time and frequency 
analysis parameters obtained in the measurements. 

The Monte Carlo code is also used to interpret the measurement by performing a calculation of the 
measured quantities and a separate eigenvalue (Le., ke8) calculation (currently using a standard version of 
MCNP employing the KCODE source input option). A comparison of measured and calculated values of 
the spectral ratio can be used to obtain the “measured” kefi If the measured and calculated values of the 
spectral ratio are in agreement, then the “bias” in the spectral ratio is zero, and the “measured” kefvalue is 
equivalent to the calculated value. The bias in the spectral ratio is defined as the difference between 

The “measured” ke8is also sometimes referred to as the “experimental” kef Quotes are retained throughout 
this report to emphasize that the value is not actually measured but is derived from measured and 
calculated quantities. 

emphasized that MCNP-DSP perfoms only an analog Monte Carlo calculations and cannot use any of the various 
convergence-acceleration methods (variance reduction) and therefore will not benefit from improvements in these 
capabilities in newer versions of MCNP. 

It is anticipated that a hture version will be based on the latest version of MCNP (Le., MCNPS). It is 
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. 
measured and calculated values of the spectral ratio (R, - R,), where R, and R, are the measured and 
calculated values, respectively. However, if there is a non-zero bias in the spectral ratio, first-order 
perturbation theory can be used to obtain an expression that can be used to determine the “measured” ken: 
Assuming linear dependence of the spectral ratio with a small change in kefi the bias in the spectral ratio 
varies linearly as the “bias” in keff, (i.e., k,- k,, where k, and k, are the “measured” and calculated values 
of kefi respectively). To determine k,, the Monte Carlo model is slightly perturbed and new resulting 
values of the spectral ratio (R,) and keff (k,) are obtained to examine the validity of the linear dependence. 
If the linear dependence is valid, then the perturbation calculations can be used to obtain k, using the 
following linear relationship: 

This methodology simply uses a linear interpolation or extrapolation between the base-case and perturbed 
values of the spectral ratio and kef to determine k,,,. Equation 10 can be rearranged to give the value of k, 
by 

Figure 3 shows a diagram of the above methodology. 

Propagation of error’is used to obtain the uncertainty in k, and its bias; for example, 

Although the bias in k, depends on the perturbation, ideally the value of k, should not depend on the 
method of perturbation. In practice, perturbations are made independently to several parameters and the 
results and uncertainties are averaged. 

The work of Perez et ai.’ has shown that the above methodology, based on Eq. (lo), is valid. The linearity 
of the low-frequency value of the spectral ratio with kN over a small range of k g  and the overall validity 
of the above updated CSDNA methodology have been demonstrated by assessments of subcritical 
experiments. To date, five such assessments have been published8- l 2  in the International Criticality 
Safety Benchmark Evaluation Project (ICSBEP) handbook. l 3  An additional assessment14 has also been 
performed and is currently under review for inclusion into the ICSBEP handbook. 

2.1.4 Determination of Prompt Neutron Decay Constant 

An alternate use of data obtained from CSDNA measurements is the determination of the prompt neutron 
decay constant, a, where the reactivity can be found from the equation 

a=- P - P  
A (13 

provided that p and A are known or estimated. 

11 



Experiment 

Measurements 

R m  

Monte Carlo Model 
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value) j value) 

I I  I I  

k m  
Fig. 3. Diagram of methodology for calculation of the “measured” keHvalue. 

From Eq. (2) a simple equation for the covariance function between detectors 1 and 2 is given by 

(14) C,,(t) = Fexp(-at) , 

where, for simplicity, we have combined the terms that are not dependent on time, t ,  into the variable F. 
The covariance function between the source and one of the other detectors is seen to be a simple 
exponential decay. If a Fourier Transform of the above equation is taken, the result is 

With some manipulation, the above equation becomes 

where GIZR (u) and G12,, (u) are the real and imaginary parts of the spectral density G12( u) and the 

equation has been simplified by the substitution F = 

Equating real and imaginary parts, we have 

F 

IGI,(4IZ . 

u = FG,,,, (u) and 
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Dividing these equations we obtain 

. 

Thus, for each frequency value, the prompt neutron-decay constant can be calculated from the ratio of the 
real and imaginary parts of the cross spectra between the source and any one of the other detectors. An 
average value of a can be determined for a selected number of data points and for each source/detector 
combination. 

2.1.5 Data Acquisition 

Data acquisition includes all the steps going from detector pulses to digitized blocks of data. Because the 
field of data acquisition is a separate and complex area of study, it is beyond the scope of this lesson to 
discuss the process in detail. In Fig. 1, it is shown that two steps must be first implemented prior to 
digitization of the signals. The detector ion chamber produces pulses not only for spontaneous fission 
events but also for alpha events, both of which occur in 252Cf. Thus, the first step in the data acquisition 
process is to discriminate against the alpha pulses and appropriately amplify the desired signal. Next, the 
data is low-pass filtered to remove signal frequencies that are greater than the NyquistJi-equency,f,,, 
defined as one-half of the digital sampling rate. Frequencies in this range will be interpreted as lower 
frequencies due to a process called aliasing and, if not removed, lead to “contaminated” data. 
Appendix A describes this phenomenon in more detail. Low-pass filtering must be performedprior to 
any sampling and is therefore performed on the analog string of detector pulses for each channel.“ 

Essentially the individual data pulses are smoothed with an exponential tail added to each pulse. The 
resulting effect is that adjacent pulses add and create a signal that is a count rate, which is then digitally 
sampled in a commercial analog-to-digital (AD) converter system. Figure 4 shows a schematic of 
detector pulse low-pass smoothing (filtering) prior to digital sampling. 

time 
Fig. 4. Schematic of detector pulse low-pass smoothing (filtering) prior to digital sampling. 

“ It is possible to perform the filtering in the digital domain, and there are many aspects to the design and 
application of digital filters that are well beyond this discussion. Indeed the design of digital filters is an extensive 
area of study and application within the vast field of electrical engineering. The data in this case would still have to 
be initially sampled at a rate to exclude the highest frequencies to avoid aliasing (referred to as “oversampling”). 
The oversampled data would be digitally filtered and values produced at the desired effective sampling rate. 
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3. CSDNA SYSTEMS 

A number of systems have been developed and utilized to perform CSDNA measurements. These 
systems have ranged in size from small portable systems to a system large enough to occupy a 
semi-tractor trailer. The primary limitations of a system are the upper limits of the sampling rate 
capability and the data processing capability. A summary listing and brief description of ORNL systems, 
listed in chronological order, is given in Table 1. The two PC systems are the smallest and most portable 
systems and consist of a computer and no more than one rack of electronics equipment. The earlier 
(1988) system was able to sample data at a relatively high rate (80,000 samples/s) but was severely 
limited to only 2000-samples/s processing. A higher sampling rate enables the analysis of configurations 
with a higher frequency response (e.g., far subcritical and fast, metal configurations). Also, the advantage 
of sampling the data rapidly is that more data can be obtained and analyzed in a short time period. 
However, this advantage is lost if the system cannot also process the data rapidly. The newer 
World-Class Analyzer (WCA) PC-based system, which is the only system in Table 1 remaining in 
operation, can process the data as quickly as it is obtained. This was also true of the other, non-PC-based 
systems in Table 1. The HP-545 1 system and the Compact Noise Analysis System (CONAS) represented 
semi-portable systems that occupied no more than two racks of electronics bins. The HP-545 1 system 
incorporated a commercially available Fourier Analyzer system (circa 1970) from Hewlett-Packard, Inc. 
The CONAS system was a custom-designed system incorporating a workstation computer from Sun, Inc. 
(The CONAS system, although configured for subcriticality analysis, was used primarily for an alternate 
application of nuclear component identification.) The Mobile Noise Analysis System (MONAS) was a 
large system that occupied a tractor trailer and included a cabinet-based VAX-750 computer and a 
commercial array processor (model SPS- 1000) from Signal Processing Systems, Inc. More detailed 
descriptions of the HP-5451 and MONAS (SPS-1000) systems are provided in Reference 15. The 1988 
PC-based system is described in Reference 16. The WCA processor is briefly described in Reference 1. 

Table 1. Summary listing of O W L  Fourier-processor-based systems for subcriticality analysis 

Dig. rate 
(io3 samples/s) Description System 

HP-545 1 Fourier analyzer Rack-based 4-channel commercial system 1 00 

Portable PC system Early (1 988) 3-channel system consisting of portable PC 
with digitization cards included 

Digital Equipment Corp. VAX-750 computer and 
5-channel commercial array processor 

and multiple digital system processor (DSP) chips 

80 (2)" 

200 Mobile Noise Analysis 5-channel system occupying tractor trailer; consisting of 
System (MONAS) 

Compact Noise Analysis Rack-based system consisting of work-station computer 100 

World-Class Anal zer Portable 8-channel PC-based system 100 

System (CONAS) 

(WCA) Processor l 
Value in parentheses is data processing rate, which is lower than data sampling rate. 
The WCA system is the only currently operating system in this listing. 
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4. SUMMARY OF CSDNA MEASUREMENTS 

Table 4.1 of Reference 1 provides a comprehensive listing of subcriticality measurements performed in 
the United States from 1974 to 1998. This table is updated and presented here with moderate changes as 
Table 2. Also, the particular CSDNA system utilized for each experiment is shown in Column 5 .  

Table 2. Summary of CSDNA experiments 1974-2008 

No. Experiment Facility Year System Description 
FFTF Reactor Mockup17 ZPR-9 Argonne 1974 HP-545 1 1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 
12 

13 

14 

15 

' 16 

17 

18 

19 

20 
21 

22 

23 

Uranium metal sphere 
and cylindersI7 
Water-moderated 
research reactor'' 
Fuel solution 
cylinder'9y20 
Fuel solution cylinder" 

HFIR fuel element" 

Fuel solution cylinder" 
LWR fuel pins" 

Uranium metal 
cylinders" 
Interacting uranium 
metal cylinders24 
HEU safe" 
Interacting solution 

Interacting solution 
storage bottles26 
Fuel solution cylinder" 

Annular tank2' 

tanks25 

Slab tank" 

Reactor mockup" 

Interacting slab tanks3' 

Uranium hydride 
cylinders" 
Plutonium annuli3' 
HEU storage vault3' 

Research reactor fuel 

Plutonium sphere' 

Y-12 critical 
facility 
ORNL pool 
crit. facility 
LANL 
TA- 18 
PNL critical 
facility 
ORNL 

ORNL 
B& W critical 
facility 
ORNL 

ORNL 

Y-12 
ORNL 

ORNL 

ORNL 

PNL 

PNL 

ANL-West 

TA- 18 LANL 

TA- 18 LANL 

TA-55 LANL 
Y-12 

University of 
Missouri 
LANL 

1975 HP-5451 

1978 HP-5451 

1980 HP-5451 

1981 HP-5451 

1982- HP-545 1 
1984 
1983 HP-5451 
1983 HP-5451 

1984 HP-5451 

1984 HP-5451 

1984 HP-5451 
1985 HP-5451 

MONAS 
1985 MONAS 

1985 MONAS 

1985 MONAS 

1985 MONAS 

1989 MONAS 

1989 MONAS 

989 MONAS 

993 CONAS 
993. CONAS 

998 WCA 

2002 WCA 

2008 WCA 

Fast-breeder-reactor mockup with 540 kg Pu metal 
Unmoderated and unreflected highly enriched 
uranium (HEU) metal 
Plate-type water-moderated and reflected research 
reactor 
4.95 wt% 235U uranyl fluoride solution 

Unreflected mixed plutonium-uranyl nitrate 

Annular fuel plates moderated and reflected with 
water 
Unreflected uranyl nitrate solution 
300-5000 LWR fuel pins with 1500-4000 ppm boron 

HEU metal cylinders 7-in. OD., 2-4 in. thick 

Two unreflected HEU cylinders separated by air and 
boroplaster 
HEU metal slabs in storage safe 
Two 7.5-in.-OD, 35-h-tall cylinders with uranyl 
nitrate solution 
Interacting "safe" storage bottles with 140 g U/L of 
uranyl nitrate solution 
Static/dynamic measurements with HEU uranyl 
nitrate solution in a IO-in.-OD tank 
Unreflected, plutonium-uranyl nitrate solution with 
varying height and thickness 
Unreflected, plutonium-uranyl nitrate solution with 
varying height and thickness 
SP-100 reactor mockup for various core loadings 

Interacting slab tanks with HEU uranyl nitrate 
solution 
HEU-hydride cylinders with varying heights 

"'Pu and 242Pu annuli with polyethylene moderators 
Array of HEU metal castings in concrete storage 
vault 
Array of water-moderated HEU research reactor fuel 
elements with various absorbers 
Plutonium metal sphere with 7.59-cm-OD 
polyethylene reflectors . .  - 

24 Plutonium sphereI4 LANL Plutonium metal sphere with nickel reflectors 
"Unpublished results. 
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5. ADVANCED MEASUREMENT METHODOLOGIES AND SYSTEMS 

A similar approach to the CSDNA methodology has been pursued in parallel in recent years, primarily for 
the identification of fissile material components containing highly enriched uranium This 
methodology, however, has broadened in application to include overall nuclear material control and 
accountability, and the current system has accordingly been named the Nuclear Materials Identification 
System (NMIS). This system is similar to previous CSDNA systems but is designed for sampling and 
processing data at a much higher rate than would ordinarily be required for typical subcriticality 
measurement applications. The exponential decay rate of certain configurations, such as highly 
subcritical metal systems; is extremely fast.” Thus, time-domain correlation signals from these systems 
exhibit a rapid die-away (see Appendix A). Consequently, auto- and cross-spectra from these systems 
have a high-frequency range and it is advantageous to acquire this data at a high rate (i.e., with sampling 
rates as high as 1 GHz). Such systems require state-of-the-art fast electronics instrumentation to 
implement the fast sampling and pulse conditioning required. At these high sampling rates, no more than 
one source or detector event occurs within individual time bins. Thus, source and detector events can be 
registered by single-bit representation. This situation is depicted in Fig. 5 ,  which shows a “standard” 
“slow” system at the top and a “fast” system at the bottom. Data from the fast system would be 
represented as a stream of “ones” and “zeros.” Thus, a sampled data block for the fast system as shown in 
Fig. 5 could be represented as follows: 

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0  

where for simplicity a sampling block size of 16 is assumed. The two pulses occurring within the data 
block are represented by “1” in two of the sampling bins, and the absence of any signal in the remaining 
sampling bins by “0”. 

Typically, the data is so sparse that entire data blocks have only a few or even no detector events. In a 
typical CSDNA system, it is advantageous to transform the time-domain (correlation) data to 
frequency-domain (auto- and cross-spectra) data as soon as it is acquired (each sampling block) and 
spectra are accumulated as sums of the transformed data blocks. This is performed instead of the 
alternate, time-domain approach, which is to accumulate the average correlations (Le., time-domain data 
and then Fourier Transform the averaged correlation to the frequency-domain as a final step). The first 
approach, in which each block of sampled data is transformed, is generally preferable since the number of 
operations required to perform the Fourier Transform via the Fast Fourier Transform (FFT) algorithm is 
much less than that required to perform a time-domain auto- or cross-correlation. However, in a 
sparse-data system with single-bit data, this is not the case. Methods have been developed to take 
advantage of the simple binary-data format to perform the time-domain correlations much faster than the 
FFT. Thus, the data is collected, processed, and averaged in the time-domain. The frequency-domain 
values, if desired, can then be calculated as a final step after data collection has been completed. 

The fundamental mode decay constant is given by a, = - -’ , where p, P, and A are the reactivity, average 
A 

delayed neutron fraction, and neutron generation time, respectively. Subcritical, metal systems have a large value 
for p and a small value for A, thus giving to a high value for the decay constant, G. 
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“Slow” System 
a a 
3 
c, .- - 
E a 

time 

“Fast” System 

/ a 

time 

Fig. 5. Graphical comparison of data sampling and representation for a typical “slow” CSDNA 
system (top) with that for an advanced system with “fast” singlebit sampling (bottom). 
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6.  SUMMARY 

A summary lesson about the 252Cf-Source-Driven Noise Analysis (CSDNA) subcriticality-measurement 
method has been presented. This lesson was motivated in part by the fact that the CSDNA method is 
multidisciplinary in scope and a complete understanding of the method requires grounding in several 
diverse areas. Therefore, the primary intent of the lesson was to provide a basic understanding while 
omitting excess detail. 

The CSDNA method uses a source/detector combination in conjunction with two additional detectors all 
located adjacent to a nuclear assembly. A value referred to as the “spectral ratio” is calculated from 
many blocks of sampled and Fourier-analyzed data. The numerator of the spectral ratio is the product of 
the cross-spectra between the source detector and each of the other two detectors. The denominator is the 
product of the auto-spectra of the source/detector and the cross-spectra between the two detectors. The 
spectral ratio is averaged over a low frequency range over which it is approximately constant, and is 
approximately proportional to the subcritical reactivity. If the subcriticality equations as based on point 
kinetics are used, determination of kgrequires pre-calculation of several nuclear parameters to correct for 
point kinetics and address spatial and modal effects. The current approach, however, is to utilize a special 
Monte Carlo code and model that (1) simulates the experimental process to calculate the spectral ratio for 
a particular configuration and (2) also calculates k e ~  through a standard approach. The experimental value 
of keH is based on the calculated value but which has been increased or decreased by an amount 
proportional to the difference between the calculated and measured spectral ratio values. 

The CSDNA method requires specialized computing and data acquisition hardware is required and is seen 
by some to be mathematically complicated and difficult to understand. However, a significant advantage 
of the method is that reference measurements at delayed critical or other known reactivity levels are not 
required for interpretation. Also, a characteristic of the spectral ratio is that it cancels out effects caused 
by measurement system uncertainties (i.e., detector efficiency and instrumentation’drifs). 

Included in the lesson is a summary of CSDNA systems and experiments conducted from 1974 to 2008. 
Also appendices have been included to provide a mathematical basis for Fourier-based signal processing 
and to provide an overview of methodologies used for subcriticality measurements. 

It was noted that the CSDNA method has been used for international benchmarking of subcritical nuclear 
configurations and results have been published in the ICSBEP handbook. This effort has permitted the 
examination of calculation methods, cross section data sets, and the support of computational predictions 
of margins of subcriticality. 
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APPENDIX A 

FUNDAMENTAL MATHEMATICAL DEVELOPMENT 

/ 





A.l FOURIER TRANSFORMS 

The Fourier forward and inverse transforms of a function x(t) are given by 

m 

X ( f )  = Ix( t )e - j2@dt  and 
-m 

m 

x( t )  = X(f)e j2@df  , 
-m 

where j = J - l ,  

Equations (A. 1) and (A.2) are referred to as a Fourier Transform pair and exist if the function x( t )  is 
continuous and integrable and if Xy) is integrable. For most applications, it is assumed that x(t)  is real. 
However, in general, Xy) has both real and imaginary parts. 

The Fourier Transform separates a function into its frequency components. We can say that it transforms 
from the time domain to thefi-equency domain. A very simple example is a single cosine function [i.e., 

x ( t )  = Acos(2xat) for which the Fourier Transform is X( f )  = --6( f - a )  (assume f > O)]. That is, the 

Fourier transform is a single frequency “line” (represented by deltafinction) at frequency “a”. This is 
appropriate since the function is of a single frequency. 

A 
2 

The Fourier Transform, however, is valid for non-periodic, infinite functions. An example is shown in 
Fig. A. 1 for the decaying exponential function x ( t )  = e-“’ [ t  > 0 (else x(t)=O), a > 01. Figure A.2 shows 
the magnitude (amplitude) and phase of the Fourier Transform. The Fourier Transform is the complex 

and #( w) = tan-’ (:) , a -  j w  1 
a’ + m2 JZ7 value X (  f )  = - , for which magnitude and phase are / X (  w)l = 

respectively. (For this example and for simplicity of representation, we have used the frequency value 
w = 2?r f with units radians/s rather than f with units Hz (cycles/s).) 

This simple exponential function is of interest because it is the functional form of the fundamental mode 
prompt neutron decay in a subcritical system. The asymptotic values are given by the function 

IX(O)l= - and IX(w)l= - for large w (w >> a).  The point at which these functions intersect is referred 
1 1 

a W 

a 
2?r 

to as the “breakfi-eguency” and occurs at w,, = a (or f,, = -). At this point the phase 

is #(qmk) = tan-’(-l) = -45” = -%(radians). 

Note that for the decaying exponential function discussed above and shown in Fig. A. 1, as the parameter 
a increases, x(t) decays more rapidly with increasing values of t .  

However, the corresponding breakfieguency, @re& as shown in Fig. A.2 (left), increases, since 
wbreuk = a . Understanding the general concept of this inverse relationship is important with regard to the 
analysis of subcritical systems. A highly subcritical assembly will exhibit a “steeper” exponential 
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die-away (larger value of a) than a similar, less-subcritical assembly. Consequently, the frequency range 
of the sampled data from the more-subcritical assembly will be higher and the data should be acquired at 
a higher sampling rate, especially if data beyond the break frequency is to be included. 
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Fig. A.1. Plot of a simple exponential decay function. 
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Fig. A.2. Magnitude (left) and phase (right) of Fourier Transform of a simple exponential function. 
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A.2 DISCRETE FOURIER TRANSFORMS 

The Discrete Fourier Transform (DFT) for a sampled time-domain data set consisting of N values is given 
by 

N-1 -i[ $I,, 
F ( k ) =  C x(n)e < j = J - 1 >  , 

n=O 

and the inverse DFT, which restores the original time-domain data, is given by 

N-1 j [  $1.” 
k=O 

x ( n ) =  F(k)e 9 

where x(n) is the sampled signal at sample point n, N is the number of samples (“block size”), and F(k) is 
the DFT at frequency point k. - 

In the above DFT equations we have used n and k to represent the time and frequency parameters. But 
the equations do not explicitly include values for time and frequency. If we assume, however, a time At 

1 
between successive samples, then we can define a sample rate, Rmq, where Rsamp = - . In this case, the 

and time domain data block of Npoints (n=O, ... N - 2 )  is obtained over a time T, where T = NAt = - 

a discrete time t,, is given by t,, = nAt . 

At 
N 

R s a m p  

For a real x(n), the DFT has complex values at N/2+1 frequency points (values of k). The maximum 
frequency,f,,, is referred to as the Nyquist frequency, and for frequencies higher thanf,,, F(k) is 
cyclical [i.e., F(k+ N/2+2) = F(k)]. Values forf,, and for the increment, LIJ between successive . .  

‘sump 1 . It also andAf =--- 
2 2At N NAt 

R s a m p  -- 1 - frequency values (values of k)  are given by fnYy = - - 

N 
2 

follows that fnyq = - Af and any discrete frequencyfk is given by f ,  = kAf . All frequency values are in 

these cases expressed as Hz. Multiplication by 2n, as is often done, converts to radiansh. 

The DFT requires -N2 multiplications and divisions (operations). However, an algorithm that exploits 
symmetries in the exponential term can compute the DFT with - N log, N operations. This algorithm is 
called the Fast Fourier Transform (FFT). The FFT algorithm is almost always used to calculate the 
DFT in computer applications and provides the primary impetus for performing frequency-domain 
calculations. With typical block sizes of -1000, the FFT provides a reduction factor of -100 in the time 
required to calculate the DFT. Note that the DFT is a discrete version of the standard Fourier Transform 
which can be found in a typical calculus book. 

A thorough study of the DFT and FFT can be found in numerous texts. References A. 1 and A.2 are given 
as examples. Issues which will not be covered here include derivation of the FFT algorithm, derivation of 
the DFT from the continuous Fourier Transform, and various identities and symmetry features associated 
with the DFT. 
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An example of a DFT performed by the FFT algorithm is shown in Fig. A.3. The time-domain signal is 
the sum of three sine functions and is given by the equation 

n n 
8 

+ sin(2x-) + 

(where A = 128 for normalization purpose). Values for the signal are shown in the top of Fig. A.3 for 
values of n from 0 to 255. The bottom of Fig. A.3 shows the magnitude of the resulting DFT and clearly 
shows the three frequency components with their relative values. For the first sine function, we see that 

1 k  
- [see Eq. (A.3)] where in this case the block size N is 256. Therefore, the frequency corresponds 

16 N 

to a value of k given by k = - = - = 16, which corresponds to the first non-zero value on the 

frequency-domain plot. The other two sine functions have frequencies that are 2 and 4 times higher, as 
can also be seen on the plot. 

N 256 
16 16 

Another, and somewhat more relevant, example is shown in Fig. A.4. The plot at the top of the figure 
shows a sampled version of the function y = eeU where a = 0.1 for this example. The bottom plot shows 
the magnitude of the corresponding DFT. In this case the sample block size N is 5 12. It can be shown 

that the frequency point corresponding to the break frequencyfbreak is given by N,, = ~ _ 8 . ~ o r  - 

this example we have assumed the sample rate Rsomp = 1, N = 5 12, and a = 0.1. This value agrees with 
observation of the data. 

2nRsq 
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A.3 CORRELATION FUNCTIONS AND SPECTRAL DENSITIES-THEORY 

. 

The cross-correlation function between two functions x(t) and y(t) is given by 

R (5) =Em L f x ( t ) y ( t  + z)dt . 
TO 

R,(.r) =T+m lim ~f x(t)x(t  + r)dt 
T o  

ry 

Similarly, if the two functions are equal ( ~ ( t ) ) ,  then the above expression becomes 

and is referred to as the auto-correlation of function x(t) .  Whereas the cross-correlation function 
describes the general commonality of the two functions, the auto-correlation function describes the 
general commonality of values within the same data set at different values oft. 

We now define the cross-spectrum, G,V), as the Fourier Transform of the cross-correlation function, that 
is, 

Gw(f) = ~ R , y ( s ) e - j 2 K f s d s  , and it can be shown that 
0 

G,(f) = X (  f ) * Y ( f )  ,where “*” represents the complex conjugate. 

The magnitude of the cross-spectrum is the relative signal strength common to the two signal sources, in 
which case the expected (average) value of the noise component is zero. The cross-spectrum is complex 
- its phase is the phase difference between the two versions of the common signal component. 

Similarly, if the two signals are identical, the above becomes the auto-spectrum“ given by 

The auto-spectrum is the total “power” in signal x(t) at each frequency, including noise sources. Note that 
the auto-spectrum is always a real value. 

The coherence function is another frequency-domain value that is often used and is defined 
mathematically as 

The coherence function is a convenient “normalized” form of the cross-spectrum magnitude which at any 
given frequency varies between the values of 0 (if the two signals have no correlation) and 1 [if the two 
signals are exactly correlated (i.e., identical)]. 

Reference A.3 is a text that discusses auto- and cross-spectra and their application to the analysis of 
statistical data. 

“ The cross-spectrum is also referred to as the cross power spectral density (CPSD). Similarly, the auto-spectrum 
is also referred to as the auto power spectral density (APSD). 
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A.4 CORRELATION FUNCTIONS AND SPECTRAL DENSITIES-EXAMPLES 

As an interesting and appropriate example, let us consider functions x(t) and y(t) such that x(t)  is a random 
series of pulses and y(t) is a series of simple exponential decay functions that are initiated at the same 
time as each pulse in the x(t) series. We can represent x(t) and y(t) by the following equations: 

x ( t ) = C A , S ( t - t , )  and y ( t )=CB,G( t - tJ )  
I 

6 is the standard delta function and is defined by the following properties: 

i) 6 ( t ) = m  ( t = O )  

S(t)=O ( t # O )  

ii) j lS(t)dt  = 1 

iii) C6(t - r ) f ( t )d t  = f ( r )  

The third property (iii) above shows that the delta function in the integral “selects” the value offlt) for 
which the value o f t  is r. All other values of qt - rHt) are zero (since b(t - r)=O) and do not contribute to 
the integral. 

The cross-correlation function between the two functions x(t )  and y(t), is given by 

Because of the properties of the delta function, the above equation yields (after some manipulation) the 
following result: 

R v ( r )  = (C AJ,)exp(-ar) + “uncorrelated values” . 

The “uncorrelated values” result from exponential decay terms of the type, exp[-a(ti - t j  - r)] , where 
i f j . These terms represent overlaps of the exponential functions and, in practical applications, tend to 
contribute to a constant background value to the correlation function which, as is discussed in this section, 
contributes to a frequency response value only at zero frequency (referred to as a “dc” component). Thus, 
the correlation function in this case is, like the function y(t), also an exponential function (with an added 
background, zero-frequency value). 

Let’s assume the cross-correlation function from the previous example is simplified somewhat to the 
following equation: 

Rv(r) = Cexp(-at) , 
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where the uncorrelated values are removed and the terms in parentheses are represented as “C‘. If a 
Fourier Transform is performed to obtain the cross-spectrum, the result is readily shown to be 

where ( j  = f i )  and w = 2nf is the frequency in units of radians/s rather thanfwith units Hz (cycles/s). 

The magnitude is given by 

Examples of the above cross-correlation and corresponding cross-spectrum pairs are shown in Fig. AS.  
Comparison between the top and bottom rows of plots in Fig. A S  shows the inverse relationship between 
the time-domain (correlation) and frequency-domain (cross-spectrum) curves. The correlation function 
shown in the bottom time-domain plot has a longer decay rate than that shown in the top time-domain 
plot. However, it has a greater frequency response as indicated by the larger plateau region, in the 
right-hand frequency-domain plot. This effect has implications for nuclear systems. Neutron detector 
correlations resulting from pulsed or random sources have a rapid decay since there is little neutron 
multiplication and, thus, a broad frequency response. Similarly, systems near critical have a longer decay 
time and, thus, a narrower frequency response. 

Additional instructive examples of extreme cases are shown in Fig. A.6, which includes a rapidly 
decaying case (top) and a slowly decaying case (bottom). Note that if the decay rate is increased such that 
the correlation curve approximates a narrow pulse (top), the cross-spectrum curve approaches a constant 
value with infinite frequency response. This is simply to say that an impulse function is comprised of all 
frequencies with equal amplitudes. Similarly, if the decay rate is made so long that the correlation 
function approaches a flat line (bottom), the cross-spectrum curve will become narrow and the limit will 
only have value at zero frequency (i.e., a constant value with no frequency content). Both of these results 
are expected and are consistent with well-known phenomena. 
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Fig. AS .  Exponential signal cross-correlation plots with corresponding cross-spectrum 
(amplitude) plots. The top plots show results for base case [Le., R_(r)  = exp(-ar) , where a= 11. The 
bottom plots show results for the case in which the exponential decay rate is twice that for the top pairs 
(a= 2). Note that the frequency “roll-off’ for the bottom signal occurs at a higher frequency than for the 
top signal, indicating a greater frequency response. (All plots are normalized to a value of 1 for either zero 
time or frequency.) 
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- 1  

From the discussion earlier about the cross-correlation function, it can be concluded that ifeach random 
pulse in a signal initiates an exponential decay response in a second signal, correlation of these signals 
makes this process equivalent to a single exponential function initiated by a single pulse at time t = 0. 
This observation is the basis for concluding that a random-source-driven measurement of a neutron 
multiplying assembly can be made equivalent to a non-random, pulsed-source-driven measurement. This 
is shown graphically in Fig. A.7, which depicts a nuclear array “interrogated” by a non-random, pulsed- 
accelerator source and by random isotopic sources and indicates that the output signal is equivalent if the 
correlation function is calculated for the random-source case. 

. 
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A.5 DISCRETE SPECTRAL DENSITIES 

The discrete cross-spectrum between two frequency-domain signals, X(k) and Y(k), is given by 

where the superscript "*" indicates that the complex conjugate is used and the brackets " (*) " indicate 

that G&) at any value of k is an average (expectation value) over many samples, each a set of N/2+1 
frequency-domain values. 

Similarly the discrete auto-spectrum is given by 

As in the continuous case, mathematically, the discrete auto-spectrum is a real valued function. 

. 
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A.6 FILTERING AND SAMPLING 

A concern that arises with sampled data is that if the data contains frequency components greater than the 
Nyquistfiequency (1/2 x sample rate),fnyq, these higher frequency components will appear in the sampled 
data, “masked” as lower frequency values. This phenomenon is called aliasing and will result in 
incorrect sample values if these higher frequency values are not eliminated. A simple demonstration of 
this effect is shown in Fig. A.8. The solid, black-line curve is a single frequency signal, sin(2nft), where 
the frequencyJ is 1/24 s-’ and t is sampled at 8-second intervals (i.e. 0, 8, 16,24 s. ..) as shown by the 
black triangles, and is adequate for reproduction of the signal. The dashed red sin-curve line, however, is 
a similar fit to every 2nd data point (i.e. 8,24,40, 56 s . . .) separated by 16 s, as shown by the red circles. 
Reconstruction of the signal from these sampled values will reproduce not the actual signal but the dashed 
red sine curve which is one-half the actual signal frequency, i.e., 1/48 s-I. This example in effect says that 
if the data is sampled too infrequently (i.e. “under-sampled”) high-frequency components will be 
interpreted as lower-frequency @e., “aliased”) components. In this case, for the lower sampling rate of 
one sample every 16 s, f,,=1/2 x 1/16 s-l = 1/32 s-’, which is lower than the actual signal frequency and 
results in the observed aliasing effect. If we now assume that the total signal contains multiple frequency 
components, all of the components of interest are at frequencies below 1/32 s-’, and the sampling rate is 
the lower above rate, i.e. 1/16 s-’, then the original signal at 1/24 s-l becomes an undesirable higher- 
frequency component that “contaminates” the sampled data. 

These higher-frequency components must therefore be removed from the signal data prior to sampling by 
a process known as’low-pass or anti-aliasing filtering. This process is graphically depicted in 
Figures A.9 and A. 10. A low-pass filter (curved line) is shown in the top section of Fig. A.9 and the 
sample rate adjusted sohyq is greater than the maximum frequency in the filtered data. Although the 
unfiltered data contains higher frequency information (assumed up toymar), no aliasing will occur since it 
has been removed. The actual range of data used has also been limited to some value belowhyq, as can be 
seen by the “analysis frequencies” block. This is done since the filter, which cannot in reality have the 
“ideal)’ shape, has roll-off characteristics and it is desirable to only perform analysis in the range that the 
filter is “flat” (i.e., gain is approximately constant with frequency). A practice that has been adopted for 
the subcriticality analysis is to limit the frequency range to -8O%f,,. If, for example, data were acquired 
at a sample rate of 1 kHz, thenf,, would be 500 Hz (1/2 x sample rate), and the maximum analysis 
frequency would be -400 Hz. If the sampled data block contained 1024 points, which would yield 
frequency increments of -1 Hz, then -400 of the frequency points produced by the Fourier-transformed 
data would be used. If the “ideal” filter, shown in the top part of Fig. A.9, could be realized in practice, 
then all the frequency values up tof,, would be “un-aliased” and could be used. 

The bottom section of Fig. A.9 shows what happens in the same situation if no filtering is performed and 
as a result, aliasing occurs. It can be shown that the aliased frequencies “fold” about the Nyquist 
frequency such that data in the frequency range is only valid for frequencies less 
than fnyq - (f,,, - f,,) = 2fnyq - f,,, . We see that if the maximum signal frequency is equal to or 
greater than twice the Nyquist frequency, the entire frequency range consists of aliased data! 

Figure A. 10 is a demonstration of the “folding” process of aliasing with a triangular signal. For this 
example, f,, < fmax and the aliased data values are added to the actual data values in the aliased region as 
shown. For this example the sampled data in the “aliased frequencies” range would incorrectly appear 
flat instead of linearly decreasing. 

If we now return to the simple example discussed at the beginning of this section and shown in Fig. A.8, if 
f,, is the lower sampling frequency (f,,=1/32 s-I, which we know will result in aliasing), then the actual 
signal frequency,f= 1/24 s-’, will “fold” into the frequency range belowf,, such that it will appear as 
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Fig. A.8. Simple demonstration of aliasing from an umier-sampled singlefrequency signal. 
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APPENDIX B 

BRIEF REVIEW OF SUBCRITICAL MEASUREMENT METHODOLOGIES 





. 

Currently a number of methods have been developed for measuring subcriticality. Although it is well 
beyond the scope of this lesson to describe each of these, the principal features as well as the 
advantages/disadvantages of the most common methods will be summarized. Several references have 
provided the main source of information. These include the widely used introductory text by 
Duderstadt,B.' the treatment of random noise techniques for nuclear reactor systems by Uhrig,B.2 the 
classic text on nuclear kinetics physics by K e e ~ i n , ~ . ~  and the proceedings of a w ~ r k s h o p . ~ . ~  held in 1985 
to discuss the various applied methodologies. Within each of these references, which will be referred to 
simply by name (ie., Duderstadt, Keepin, Uhrig, 1985 workshop), are numerous references to other 
contributors, which for sake of simplicity, and with apologies, will not in general be given here. 

Duderstadt divides the experimental determination of reactivity and other kinetics parameters into three 
groupings. These include (a) static techniques, (b) dynamic techniques, and (c) techniques based on noise 
analysis. However, Duderstadt describes the use of noise analysis only within the context of measuring 
parameters other than reactivity. Also, his discussion is based on reactors rather than on general nuclear 
assemblies. Uhrig discusses the best-known methods for measuring reactivity using noise analysis 
techniques. 
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B.l STATIC METHODS 
. 

Static subcritical reactivity measurement methods include ( I )  Source Multiplication (SM) and 
(2) Modified Source Multiplication (MSM) methods. In the SM method, the flux resulting from a source 
(SO) in a subcritical assembly is measured as fuel is added to the assembly. Amplification of the source is 
given by 

1 s  
where M = - = - . Close to critical S becomes quite large and the reciprocal multiplication, MI 

1-ke so 
approaches zero. Critical mass is estimated by extrapolation of M '  to zero. In practice, the method is 
effective at predicting critical mass but is ineffective at determining the reactivity at subcritical conditions 
due to uncertainties resulting from a host of factors (Le., spatial effects, detector and source location, 
detector calibration, geometry and type of nuclear configuration, nuclear and non-nuclear materials 
present, etc.). 

In the MSM method, detector counts are measured at two subcritical levels, pI and p2, where pI is a 
known reference level. A relation between the two reactivity levels is given by 

where Rm,, and Rm,2 are measured count rates in detectors 1 and 2 and F is a correction factor given by 

where all the reactivities and count rates are calculated values. The MSM method is thus better able than 
the SM method to measure reactivity values at subcritical states. However, a clear disadvantage is that a 
reference known subcritical state is required. Note also' that calculated values obtained from some type of 
model must be used. 

An advantage of both methods is their relative simplicity. A general disadvantage is their dependence on 
detector calibration and the effects of detector drift. 
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B.2 DYNAMIC METHODS 

Duderstadt further briefly describes five dynamic reactivity measurement methods: (1) Asymptotic 
Period, ( 2 )  Rod Drop, ( 3 )  Source Jerk, (4) Rod Oscillator, and ( 5 )  Pulsed Neutron methods. Of these, 
only the Source Jerk and Pulsed Neutron methods appear to be applicable to subcritical assemblies. The 
others are applied to reactors operating at critical. The Asymptotic Period method has the added 
disadvantage of applicability only to positive periods. 

The discussion of Spriggs (from the 1985 workshop) will be used for a review of the Source Jerk method. 
In this method a source, So, maintains a subcritical system in equilibrium with a detector count rate of NO. 
A transient occurs after the source is suddenly removed which results in a detector count rate of Nl 
immediately following the prompt jump and before long-term delayed neutron decay to a background 
level Nb. Spriggs describes three methods for obtaining the reactivity. In the Prompt-drop approximation 
method, the subcritical reactivity p (in $) is given by 

where the value of N, is determined by extrapolating the transient delay neutron curve to time zero when 
the source was removed. This method is simple but is susceptible to spatial effects, counting statistics, 
and source removal time. An improved approach is the Integral-Flux method in which the reactivity can 
be shown to be given by the following equation: 

where Ah is a delayed neutron decay parameter which can be determined provided the delayed neutron 
data is known. The integral in the denominator is recognized as the area under the delayed neutron 
transient decay curve, omitting the background. This method is considered an improvement since the 
entire delayed neutron curve is used rather than only the instantaneous value. Thus counting statistics 
should be vastly improved. The method, however, still suffers from the spatial effects and the source 
removal time. Furthermore, the effective delayed neutron fraction, P, is required. A third approach is the 
Inverse-Kinetic Technique in which the point kinetics equations are solved to give the count rate as a sum 
of exponentially decaying terms including the reactivity and roots of the inhour equation. The reactivity 
is subsequently determined by an iterative nonlinear curve-fitting process. Improvements are considered 
to be twofold: (1)  the method is less dependent on source removal time and (2) the least-squares fit 
provides a transient analysis of the delayed neutrons from beginning to end. This gives a better check on 
the delayed neutron parameters and overall a more accurate determination of the reactivity. The method, 
however, still suffers from spatial effects. 

In the Pulsed Neutron method (see Keepin and the 1985 workshop for discussion), the transient behavior 
is measured following a burst of neutrons into the system from a pulsed neutron source. If it is assumed 
that the pulse and measurement time is short compared to the delayed neutron time constants, the system 
is governed by prompt neutron decay and it can be shown that the fundamental mode decay constant is 

given by a. = - - . At delayed critical, p = 0 and ax = - (adopting the notation of Keepin). As a -P 
h A 

result a,, = a,(l --) P P  or - = 1 -- 9 . Thus, the decay constant is linearly related to the reactivity (in $) 
P P a,, 

and the reactivity can be determined in the most basic application if the decay constant at delayed critical 
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is known and the decay constant at the subcritical state is measured. Note that the more subcritical the 
system becomes, the larger the subcritical decay constant becomes and the faster the pulse will die away. 

The above procedure requires that the decay constant be determined at a known reactivity state (delayed 
critical). Also, the value of the effective delayed neutron fraction, P, must be known or estimated and it is 
assumed that Pand the neutron generation time, A, do not change between reactivity states. This 
assumption appears to limit the procedure to small reactivity changes from the known state. However, 
several improved methodologies incorporate the delayed neutron die-away information with the prompt 
neutron data (specifically the area under the prompt and delayed decay curves) and are able to eliminate 
altogether the need to have measurements at a known reactivity. In the simplest of these approaches, the 
reactivity is given by 

where Tis the time of pulse repetition andp,d refer to prompt and delayed decay curves. This method is 
still subject to spatial modal effects. However, a version used by Yamane et al. (1985 workshop) uses an 
integration of responses from multiple detectors to eliminate spatial effects and reports measurement of 
reactivities of > 50 dollars subcritical. 

Another approach more recently has been reported by G ~ r i n ~ . ~  that relies on calculation via MCNP of 
certain parameters required to obtain keffrom measured data. From the above equations it is easily shown 

that k, = . In his method MCNP is used to calculate the generation time A and a constant 
1 t aoA - P 

value is assumed for /?. Results at “profoundly” subcritical states (Le., kef= 0.14) have been reported. 
He reports reasonable agreement between calculations and experiment, but it must be noted that the two 
are interrelated. 
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B.3 NOISE ANALYSIS METHODS 

There are three primary noise-analysis methods that will be briefly discussed here. They include the 
Rossi-alpha, the Feynman Variance-to-mean, and the 252Cf-Source-Driven Noise Analysis methods. 
Uhrig describes the first two methods and makes the general statement (page 163) that “reactivity in a 
nuclear system cannot be measured directly; rather, the quantity obtained is usually p/p, p/l, or some 
quantity that _ _  involves a combination of p, kefi p and 1. The quantity most commonly measured in 

1 - k,(l- P )  attempting to measure reactivity is the Rossi-alpha.” The Rossi-alpha is given by a = 
1 

9 

where pis the effective delayed neutron fraction and I is the neutron lifetime. The Rossi-alpha method is 
based on the probability of detecting a second neutron event from a fission chain following the detection 
of a 1” event using coincidence counting techniques. Ifp(t) is equal to the probability of a chain-related 
count at time t following an initial count at time 0, it can be shown that p ( t )  = A + Be-“‘ where A = FE 

and B=- . In these equations F is the average fission rate of the system, k,, is the multiplication 

factor contributed by the prompt neutrons and is equal to kedl  - p) ,  and E is the detector efficiency. Also, 

D, E- (Diven Factor). 

The experimental approach is to use least-squares fitting of experimental data to obtain values for A, B, 
and a. Uhrig states that if any three of the five quantities F,  E, D,, kp, or 1 are known, the other two can be 
obtained. Thus, kp (and r )  can be determined if F, E, D, are known. It is still necessary to know p from 
calculations or experiment to determine kef 

’ ~ D k i  
2a.l’ 

v(v - 1) 
V 

The Feynman Variance-to-Mean method, which is similar to the Rossi-alpha method, is based on the 
relationship between the variance and the number of counts obtained during a fixed counting period. If c 
represents the number of counts obtained in an interval T, it can be shown that 

--I - 
c l - c  -=1+Y where Y =- 

c f P  

The left-hand side of the first equation above is the variance-to-mean ratio (reduced variance) for a 
repeated number of measurements of counts collected for a fixed interval. Parameters in the equation for 
Yare the same as defined earlier. The additional parameter pp is the “prompt reactivity” defined by 

k, -1 
f ,= - .  

k, 

The quantity Y can be interpreted as the difference between the relative variances of the chain-related 
counts and those that would be obtained from a purely random process. 

The experimental approach used to implement the above method is to collect counts for a large number of 
intervals T and calculate the reduced variance values for that interval. The process is repeated for 
different values of Y and the value of a is calculated from a least-squares fit of a plot of the reduced 
variance vs. Y. Provided that &and D,are known, k,, can then be evaluated. Again, p i s  required to obtain 
ke8 
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The 2S2Cf-Source-Driven Noise Analysis (CSDNA) method is discussed in earlier sections and is briefly 
summarized here. The method uses a source/detector combination in conjunction with two additional 
detectors all located adjacent to a nuclear assembly. A value, the “spectral ratio”, is calculated from 
many blocks of sampled and Fourier-analyzed data and has been shown to be approximately proportional 
to the subcritical reactivity. By combining these measured results with similar values calculated by a 
special Monte Carlo code and with results from a standard kefcalculation, a “measured” value of kef can 
be produced. 

The CSDNA method combines the statistical elements of the Rossi-alpha method and the Pulsed Neutron 
method in which the initiating source is random instead of at a single instant. It offers the advantage that 
reference measurements at delayed critical or other known reactivity levels are not required for 
interpretation. Also, a characteristic of the spectral ratio is that it cancels out measurement system 
uncertainties caused by detector efficiency and instrumentation drifts, which are typically an issue with 
virtually all detector-based measurement systems. A disadvantage of the method is that it is 
computationally intensive and is perceived by many to be mathematically complicated and difficult to 
understand. Although special computing and data acquisition hardware is required, in practice, once 
operating, the data acquisition process is straightforward and passive from a mechanical standpoint 
(although an external source is required, there is no source movement or odoff operation as in the Source 
Jerk or Pulsed Neutron methods). The experimental determination of kefcontains a strong dependence on 
the calculation component as described earlier. This feature has been considered undesirable by some, 
but it should be apparent from the survey of the subcritical methods, that kef is never measured directly 
and other parameters must be known or calculated. Furthermore, subcriticality methods in general are 
based on point kinetics assumptions and must be adjusted for departures from these assumptions (i.e., 
spatial modal effects). This typically requires modeling of the measured configuration (as is done with 
the CSDNA method) which assumes that details and geometry of the system are known apriori. Also, 
for CSDNA measurements in which an inherent source is present, the ratio of external to inherent source 
neutrons must also be known. However, it should be evident from the earlier discussion that for 
subcritical measurement methods in general, as soon as there is a departure from point kinetics 
assumptions, additional system configuration information, up to and including neutronics modeling, must 
be employed. 

i 

c 
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B.4 SUMMARY OF METHODS 

A summary of the subcriticality methods discussed in this section including a brief description, 
advantages, and disadvantages is presented in Table B. 1. 
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Table B.1. Summary of Subcritical Methodologies 

General 

Feynman Noise 
Variance-to- Analysis 
mean 

252Cf-Source- Noise 
Driven Noise Analysis 
Analysis 

Description 

Uses source multiplication 
during approach to critical 

Similar to SM but compares 
count rate at reference state 
to desired state to determine 
subcriticality 
Transient behavior measured 

- 
following sudden removal of 
source from configuration in 
equilibrium 
Transient behavior measured 
following a burst of neutrons 
into the system from a pulsed 
neutron source. 

Rossi-alpha (a) parameter, 
related to kc@ determined by 
probability relationships 
between sequential fission- 
chain neutron detections. 
Rossi-alpha (a) parameter, 
related to ke8, determined by 
relationship between the 
variance and counts obtained 
during a fixed period. 
Frequency-domain 
correlations between source 
and two detectors used to 
determine spectral ratio 
value, related to kefl 

-__L- 

Advantages 

Simple to implement and evaluate 

Simple to implement and evaluate 

- 
Relatively straightforward with modest 
mathematical complexity 

Relatively straightforward. A number 
of different approaches may be used. 
Far subcritical measurements reported. 

Relatively simple. Requires detector 
and coincidence-detection electronics. 
Reference measurements at known 
reactivity levels not required 

Relatively simple. Similar to Rossi- 
alpha. Reference measurements at 
known reactivity levels not required 

No mechanical or active components 
required.' Eliminates inaccuracies from 
detector/electronics drift. No reference 
measurements at known reactivity 
levels required. Relatively unaffected 

Disadvantages 

Predicts critical mass but ineffective at measuring 
subcriticality 

- 

Requires known reference reactivity state and 
some additional modeling for parameters. 

Some mechanical complexity. Results may be 
influenced by source removal time, spatial modal 
effects, counting statistics, and accuracy of 
delayed neutron parameters, 
Requires neutron generator. Depending on 
approach, may be affected by modal effects. 
Basic approach requires effective delayed neutron 
fraction, p, and assumes pand generation time, 
A, do not change between measured and required 
known states. Alternate approaches do not 
require values at known state but require 
calculated values of p and A. 
Relationship of a to k,frequires additional 
parameters including effective delayed neutron 
fraction, p. Subject to modal effects. 

- 

Relationship of a to kcJrequires additional 
parameters including effective delayed neutron 
fraction, p. Subject to modal effects: 

Mathematically complex and computationally 
intensive. Requires specialized electronics and 
computer system. Strong dependence on 
modeling and calculation results for most up-to- 
date method. 
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