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COEFFICIENT ADAPTIVE TRIANGULATION FOR STRONGLY

ANISOTROPIC PROBLEMS

E.F. D'Azevedo

C.H. Romine

J.M. Donato

Abstract

Second order elliptic partial di�erential equations arise in many impor-

tant applications, including ow through porous media, heat conduction,

and the distribution of electrical or magnetic potential. The prototype is

the Laplace problem, which in discrete form produces a coe�cient matrix

that is relatively easy to solve in a regular domain. However, the presence

of anisotropy produces a matrix whose condition number is increased, mak-

ing the resulting linear system more di�cult to solve.

In this work, we take the anisotropy into account in the discretization

by mapping each anisotropic region into a \stretched" coordinate space in

which the anisotropy is removed. The region is then uniformly triangu-

lated, and the resulting triangulation mapped back to the original space.

The e�ect is to generate long slender triangles that are oriented in the

direction of \preferred ow." Slender triangles are generally regarded as

numerically undesirable since they tend to cause poor conditioning; how-

ever, our triangulation has the e�ect of producing e�ective isotropy, thus

improving the condition number of the resulting coe�cient matrix.
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1. Introduction

Second order elliptic partial di�erential equations arise in many important ap-

plications, including ow through porous media, heat conduction, and the dis-

tribution of electrical potential. A simple prototype is the piecewise constant

coe�cient equation,
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which reduces to the Laplace problem for Kx = Ky = 1. The discretization

of the Laplace problem over a regular grid produces a coe�cient matrix that is

relatively easy to solve. However, the presence of strong anisotropy (Kx � Ky)

produces a poorly conditioned matrix, making the resulting linear system more

di�cult to solve.

In this report, we take the anisotropy into account in the discretization by

mapping each anisotropic region into a \stretched" coordinate space in which

the anisotropy is removed. The region is then uniformly triangulated, and the

resulting triangulation mapped back to the original space. The e�ect is to gen-

erate long slender triangles that are oriented in the direction of \preferred ow."

Slender triangles are generally regarded as numerically undesirable; however, our

triangulation has the e�ect of producing e�ective isotropy, thus producing a coef-

�cient matrix with a smaller condition number. Furthermore, our initial experi-

ments suggest such \coe�cient-adaptive" triangulation su�ers no degradation in

approximation accuracy.

The idea of using special approximation basis functions that depend on the

rough coe�cients has also been proposed by Falk and Osborn [3] in the analysis of

mixed �nite element methods for problems with rough coe�cients. A technique

of using Delaunay triangulation under an anisotropic transformation has been

examined by Letniowski [9] and Forsyth [4]. The idea in their work is to ensure

that the coe�cient matrix resulting from the standard Galerkin �nite element

approximation of the second-order di�usion operator is an M-matrix. Our work
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di�ers in that our focus is on improving the conditioning of the linear system.

In Section 2, we describe the motivation for coe�cient-adaptive mesh gen-

eration, using a simple example for illustration. In Section 3, we describe in

more detail the approach that we have taken to discretizing anisotropic prob-

lems. Section 4 presents our sequence of test problems, based on Stone's third

problem. citeStone68 Section 5 presents the results of our empirical studies, com-

paring our coe�cient-adaptive discretization to the standard 5-point Laplacian

discretization on the test problems. Finally, in Section 6, we summarize our

conclusions and discuss how the results can be expanded.

2. Fourier Analysis of Anisotropic Problem

In this section, we use a Fourier analysis technique to analyze the condition of

the coe�cient matrix arising from the 5-point �nite di�erence discretization of a

model anisotropic problem. The analysis we present here follows the technique

described by Chan and Elman [1] and Donato and Chan [2].

The problem we analyze is

@

@x

 
Kx

@P

@x

!
+

@

@y

 
Ky

@P

@y

!
= �q

on the unit square with Neumann boundary conditions, where Kx and Ky are

constant. Clearly, the di�erential equation with pure Neumann boundary condi-

tions is not well-posed, and the resulting coe�cient matrix will be rank-de�cient.

Rather than imposing an additional constraint, we de�ne the modi�ed condition

number of the coe�cient matrix to be

~� =
�max

~�min

; (2:1)

where ~�min is the smallest nonzero eigenvalue of the matrix.

Let hx, hy be the grid spacing in x and y, so that nx = h�1x and ny = h�1y

are the number of grid points in x and y, respectively. We wish to compute the
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modi�ed condition number as a function of Kx, Ky , hx and hy. More accurately,

we will compute the modi�ed condition number as a function of the degree of

anisotropy � = Ky=Kx and the grid aspect ratio � = hy=hx. The corresponding

�nite di�erence equations are:

Kx
�Pi�1;j + 2Pij � Pi+1;j

hx
2

+Ky
�Pi;j�1 + 2Pij � Pi;j+1

hy
2

= qij: (2:2)

On the boundary of the square, the Neumann boundary conditions can be im-

posed using centered di�erences, yielding

Pi;j+1 = Pi;j�1 for i = 0 and i = nx;

Pi+1;j = Pi�1;j for j = 0 and j = ny:

If we scale (2.2) symmetrically so that the coe�cient of Pij is 1, we have

Pij + b(Pi�1;j + Pi+1;j) + c(Pi;j�1 + Pi;j+1) = ~qij (2:3)

where b = �1

2
(1 + �=�2)�1 and c = �1

2
(1 + �2=�)�1 = �1

2
� b. A straightfor-

ward analysis of the spectrum of the di�erence operator leads to the following

expression for the eigenvalues:

�ij = 1 + 2b cos �i + 2c cos �j; (2:4)

where �i = i�hx for i = 0; : : : ; nx � 1 and �j = j�hy for j = 0; : : : ; ny � 1.

The pure Neumann boundary conditions mean that (1; 1; : : : ; 1)T is an eigen-

vector, with corresponding eigenvalue �00 = 0. Furthermore, since b and c are

both negative, �max occurs at i = nx � 1 and j = ny � 1, yielding �max = 2.

By inspection, ~�min = minf�10; �01g. To determine which of these eigenvalues is

smaller, we use the Taylor approximation cos � = 1 � �2=2 +O(�4). This yields

�10 =
1

2
(1 + �=�2)�1(�2h2x) +O(h4x)
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�01 =
1

2
(1 + �2=�)�1(�2h2y) +O(h4y):

If we ignore the fourth-order terms, simple algebraic manipulation veri�es that

�01 = ��10. Hence, if Kx > Ky so that � < 1, then ~�min = �01. Conversely, if

Kx < Ky, ~�min = �10.

We now have an expression for the modi�ed condition number, ~� = �max=~�min

as a function of � and �. If Ky > Kx, then

~�(�; �) � 4(1 + �=�2)

�2h2x
:

If Ky < Kx, then

~�(�; �) � 4(1 + �2=�)

�2h2y
:

Now we have the machinery in place to answer our primary question concern-

ing the construction of a discretization grid: For a given degree of anisotropy

(�xed �) and a given number of unknowns N , what is the grid aspect ratio

(�) that minimizes the (modi�ed) condition number of the resulting coe�cient

matrix? If we assume that � > 1, then we seek to minimize

~� � 4(1 + �=�2)

�2h2x
:

Using the fact that N = nxny = h�1x h�1y we can rewrite this as

~� = 4�2N(� + �=�)

for which the minimum occurs at � =
p
�. The same result is obtained for � < 1.

We use this result in de�ning the mapping described in Section 3. The smallest

condition number is obtained when � = 1, indicating that the isotropic case

produces the best conditioned matrix.

To summarize, for � =
p
�, we have

~� � 8N

�2
(maxfKy=Kx;Kx=Kyg)1=2:
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We used a series of MATLAB tests to verify the conclusions of the analysis

described above. Table 2.1 is in three sections. The �rst four rows display the

close agreement between the condition number ~�FDM of the coe�cient matrix and

the theoretical condition number ~�, both computed byMATLAB. Two digits of

agreement are obtained even for very small problems.

The second section of the table veri�es that as the degree of anisotropy (�)

is multiplied (or divided) by 100, the optimal condition number ~� increases by
p
100 = 10, as predicted. The second and third sections of the table together

illustrate that choosing the correct aspect ratio � can signi�cantly improve the

condition number of the resulting coe�cient matrix.

� nx ny nx � ny # unknowns ~� ~�FDM

1 12 12 144 169 1.1672e+02 1.1739e+02
2 14 10 140 165 1.6049e+02 1.6117e+02
4 16 8 128 153 2.0751e+02 2.0817e+02
10 21 6 126 154 3.2463e+02 3.2524e+02

5 5,981 2,674 15,993,194 16,001,850 2.8987e+07 {
500 18,914 845 15,982,330 16,002,090 2.8968e+08 {

1/500 845 18,914 15,982,330 16,002,090 2.8968e+08 {

5 4,000 4,000 16,000,000 16,008,001 3.8907e+07 {
500 4,000 4,000 16,000,000 16,008,001 3.2488e+09 {

1/500 4,000 4,000 16,000,000 16,008,001 3.2488e+09 {

Table 2.1: MATLAB results verifying the analysis.

3. Coe�cient Adaptive Triangulation

We modi�ed an existing triangular mesh generation package, GEOMPACK [7],

to generate coe�cient adaptive triangulations. GEOMPACK is a mathematical

software package written in Fortran 77 for the generation of convex polygon

decompositions and triangular meshes in two-dimensional polygonal regions.

GEOMPACK generates a triangular mesh by �rst decomposing the polygonal

domain into simpler convex polygons [6]. The decomposition can be further
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controlled by equidistribution of a user supplied density function. We chose to

use (KxKy)1=2 as the density function, to allocate proportionally more triangles

in regions where Kx or Ky is small. GEOMPACK then generates a uniform

triangulation within the interior of each convex subdomain [5]. A �nal step

handles the mesh connection between neighboring subdomains [8] to generate a

Delaunay triangulation.

GEOMPACK was modi�ed to perform a rescaling by K�1=2
x and K�1=2

y in the

x and y directions before the generation of a uniform mesh within each convex

subdomain. The node coordinates of this triangulation are then mapped back

into the original space.

4. Stone's problem

We tested the technique for coe�cient adaptive triangulation on a variant of

Stone's third problem [10] in solving
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on the [0; 30]�[0; 30] with Neumann boundary conditions. Locations and strengths

of point sources and sinks are

q1(3; 3) = 1:0; q2(3; 37) = 0:5; q3(23; 4) = 0:6; (4.1)

q4(14; 15) = �1:83; q5(27; 27) = �0:27 :

The distribution of material properties, Kx, Ky were (see Figure 4.1)

(Kx;Ky) =

8>>>>>>><
>>>>>>>:

(1; ) if (xi; yj) 2 B; 14 � i � 30; 0 � j � 16,

(; 1) if (xi; yj) 2 C; 5 � i � 12; 5 � j � 12,

(0; 0) if (xi; yj) 2 D; 12 � i � 19; 21 � j � 28,

(1; 1) if (xi; yj) 2 A:

(4:2)

A 31 � 31 regular grid with  = 100 was used in the original problem. Note
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Figure 4.1: Stone's third problem.

Figure 4.2: Coe�cient adaptive triangulation of Stone's Third Problem,  = 100.
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that region D with Kx = Ky = 0 was modeled as a hole in the plate. We

chose a consistent discretization scheme based on linear triangular elements in

a Galerkin Finite Element formulation. Even on a regular rectangular grid, we

generate a triangulation by consistently splitting each rectangle into two right-

angle triangles. For the regular rectangular grid, this yields the identical standard

5-point �nite di�erence stencil, with the exception of the nodes at interfaces

between di�erent materials.

5. Results

We chose MATLAB to perform the numerical experiments and visualization.

We used linear triangular elements in a Galerkin Finite Element formulation to

perform the matrix assembly. Initially, we imposed a Dirichlet condition at the

origin (0; 0) to avoid exact rank de�ciency. However, subsequent testing revealed

that the CG iteration applied to the original semi-de�nite problem converged

more rapidly than CG iteration on the problem with a Dirichlet condition im-

posed. We have reported the times for both problems in the interest of complete-

ness. To simplify visualization, all solutions were interpolated and compared on

a 31 � 31 regular rectangular mesh. Since region D is modeled as a hole, nodes

within region D were set to zero for simplicity. We used the solution obtained

from a 121 � 121 grid as an accurate solution. Note that the sources and sinks

introduce point singularities; thus in comparing solution accuracies we ignore the

errors within one mesh block of the point singularities.

Figure 4.2 displays the coe�cient adaptive unstructured triangular mesh for

 = 100. Note the orientation of slender triangles within regions B and C.

Figure 5.1 displays the accurate solution obtained with the 121 � 121 mesh for

 = 100. Notice the at solution pro�les in regions C and D (see also Figure 4.1).

The linear systems resulting from the discretization were �rst scaled to unit

diagonal, before they were solved using the conjugate gradient (CG) method with

no further preconditioning. We used a relative reduction in the initial residual as
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Figure 5.1: Accurate solution on 121 � 121 grid with  = 100.

our termination criterion:

krkk2 � 10�10kr0k2 ;

where rk is the residual vector on the k-th iteration. Tables 5.1 and 5.2 show the

number of CG iterations, maximum discretization error and condition number.1

We also tested the problems using CG with SSOR preconditioning. If matrix

A = I� (L+LT ) represents the global assembled matrix with unit diagonal, and

L is strictly lower triangular, then the SSOR factorization used is

Q = (I � !L)(I � !LT ) : (5.1)

A few preliminary runs on various problem show the optimal ! to be between

1For the semide�nite case, we report the `modi�ed' condition number (2.1).
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Regular Grid Adaptive Triangulation
 iters erra ~� iters erra ~� neltsb N c

1 180 3.7e-2 8.9e+2 170 8.6e-3 8.5e+2 1653 900
10 210 6.7e-2 1.8e+3 168 4.9e-2 9.3e+2 1635 894
100 367 8.4e-2 1.3e+4 202 3.2e-2 1.7e+3 1589 870
1000 629 7.7e-2 1.2e+5 278 1.7e-2 8.9e+3 1579 865

Table 5.1: Diagonally Scaled PCG on Stone's Third Problem, No Dirichlet
Boundary Condition Imposed

Regular Grid Adaptive Triangulation
 iters � iters � neltsb N c

1 207 1.9e+4 195 1.8e+4 1653 900
10 243 5.0e+4 190 2.1e+4 1635 894
100 418 3.6e+5 227 4.5e+4 1589 870
1000 665 3.4e+6 305 2.2e+5 1579 865

Table 5.2: Diagonally Scaled PCG on Stone's Third Problem, Dirichlet Bound-
ary Condition Imposed

aMaximum discretization error, estimated by comparing a highly accurate solution of
the resulting linear system to the `exact' solution.

bNumber of triangular elements in the discretization.
cTotal number of unknowns in the resulting linear system.
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1:4 and 1:6. A value of ! = 1:5 was consistently used for all runs for simplicity.

All matrices were also consistently reordered using the bandwidth reducing RCM

(Reverse Cuthill-McKee) ordering to minimize the e�ect of matrix ordering on

convergence. The results are summarized in Table 5.3.

Regular Grid Adaptive Triangulation
 iters iters
1 47 51
10 56 53
100 104 70
1000 207 111

Table 5.3: Results of SSOR PCG on Stone's Third Problem

The results from Tables 5.1 and 5.3 show coe�cient adaptive triangulations

generate better conditioned matrices with no loss of approximation accuracy even

using slender triangles.

6. Summary

We have explored the use of coe�cient adaptive mesh generation techniques on

strongly anisotropic problems. The initial results on Stone's problem suggest

there is no loss in approximation accuracy even with slender triangles and the

resulting discretization produces better conditioned matrices.

More extensive testing with more realistic problems is required. It is straight-

forward to extend this approach to generating tetrahedral meshes in three-dimensions.
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