Production of Alpha-emitting Radionuclides for Cancer Therapy

Saed Mirzadeh
Medical Radioisotope Program
Nuclear Material Processing Group
Nuclear Security and Isotope Technology Division

Knoxville-Oak Ridge Section of the American Institute of Chemical Engineers,
Thursday, November 10, 2016
Outline

• Background
• Availability of $^{225}\text{Ac}/^{213}\text{Bi}$ and $^{224}\text{Ra}/^{212}\text{Pb}$ generator systems through natural decay of ^{229}Th and ^{228}Th
• New Initiatives to Enhance Production of Ac-225
 a. Direct production of ^{225}Ac in a high energy proton accelerator
 b. Reactor Production of ^{229}Th at ORNL High Flux Isotope Reactor (Nuclear Data)
 c. Production of ^{229}Th via low energy protons (Nuclear Data)

• Xofigo, 1st approved “targeted” alpha therapy (TAT) for treatment of advanced prostate cancer

• ^{227}Ac production: larger scale pilot demonstration
Isotope production, enrichment and distribution began at Oak Ridge just after WWII.
ORNL’s unique combination of radioisotope research and production assets

• High Flux Isotope Reactor (HFIR)
 – LWR, flux trap; 85 MW full power; peak thermal neutron flux of $2.1 \times 10^{15} \text{n.cm}^{-2}.\text{s}^{-1}$

• Hot Cell and Processing Facilities
 – Five active nuclear facilities including REDC and one radiological facility

• On path to reestablishing enrichment capabilities
Alpha-Emitting and Other Novel Therapeutic Medical Radioisotopes Available from ORNL

Alpha emitters:
- Actinium-225/Bismuth-213
- Radium-224/Lead-212
- Actinium-227/Thorium-227/Radium-223

High-energy Beta emitter:
- Tungsten-188/Rhenium-188

Low-energy Beta emitter:
- Strontium-89

Sample of Ac-225 in glovebox at REDC. Ac-225 has medical applications in the treatment of leukemia and many other cancers.
Therapeutic Nuclear Medicine

• Targeted therapy
 – α, β, γ emitters delivered to diseased tissue

• Strategies
 – Molecular targeting: Monoclonal antibodies, peptides, etc; \(^{90}\)Y, \(^{177}\)Lu, \(^{213}\)Bi
 – Natural targeting: Thyroid (\(^{131}\)I), Bone(\(^{89}\)SrCl\(_2\), \(^{223}\)RaCl\(_2\), \(^{153}\)Sm & \(^{188}\)Re Phosphate complexes, \(^{117m}\)Sn-DTPA), Liver (\(^{90}\)Y & \(^{166}\)Ho particles)
 – Brachytherapy: Prostate cancer (\(^{103}\)Pd, \(^{125}\)I, \(^{131}\)Cs), others

“Xofigo, 1st α-emitting radioisotope (\(^{223}\)RaCl\(_2\)), for treatment of bone cancer, received approval from FDA and European Commission in 2013”

“Zevalin”, 1st β-emitting radioisotope (\(^{90}\)Y-Ibritumomab tiuxetan) for treatment B cell non-Hodgkin's lymphoma

Prostate Cancer Seed
Alpha-Emitters for Therapeutic Applications

• Important attributes
 – High linear energy transfer
 – Half-life compatible with therapy
 – Versatile Chemistry
 – Availability

• Alpha-emitters of interest
 – 212Bi (60 m) and 213Bi (46 m)
 – 212Pb (10 h)/212Bi
 – 225Ac (10 d)/213Bi
 – 211At (7 h, accelerator produced)
 – 223Ra (11 d)
 – 227Th (19 d)/223Ra

Radioimmunotherapy

ORNL 225Ac/213Bi Generator
Availability of $^{225}\text{Ac}/^{213}\text{Bi}$ and $^{224}\text{Ra}/^{212}\text{Pb}$ generator systems through natural decay of ^{229}Th and ^{228}Th

- Radiochemical extraction from ^{229}Th and ^{228}Th sources

$^{233}\text{U}/^{229}\text{Th}$

- ^{209}Bi (stable)
- ^{209}Pb (3.3 h)
- ^{208}Pb (stable)
- ^{217}Rn (0.5 ms)
- ^{213}Po (3.7 μs)
- ^{212}Po (0.3 μs)
- ^{212}Bi (60.6 m)
- ^{212}Pb (10.6 h)
- ^{208}Tl (3.1 m)
- Radioactive halflives: 0.3 μs, 64%, 3.1 m, 36%...

$^{232}\text{U}/^{228}\text{Th}$

- ^{228}Th (1.91 y)
- ^{224}Ra (3.66 d)
- ^{220}Rn (55.6 s)
- ^{226}Ra (14.9 d)
- ^{217}Rn (0.5 ms)
- ^{213}Po (3.7 μs)
- ^{213}Bi (45.6 m)
- ^{212}Bi (60.6 m)
- ^{212}Pb (10.6 h)
- ^{208}Tl (3.1 m)
- Radioactive halflives: 0.3 μs, 64%, 3.1 m, 36%...
Radioimmunotherapy (RIT) Concept

- **Radionuclide**
- **Chelator (or fullerene?)**
- **Linker**
- Typical attachment to amine group on Lysine
- **Method for Targeting Cancer Cell Epitopes:** Antibody or Fragment, Peptide
Polyaminocarboxylate (PAC) Chelators and Fullerenes
Radioimmunotherapy treated control

Day 0

Day 1

Day 3

Day 5

Kennel and Mirzadeh, 2000
225Ac - A Promising Isotope for α-Therapy

Treatment of Acute Myelogenous Leukemia (AML) with Bismuth-213

Posterior 60-Minute Summation

Rate/Minute

Dose 1

Dose 4

Patient No. 4

Courtesy of Actinium Pharmaceutical Inc. and Sloan Kettering Cancer Center, NY
Peptide receptor α-therapy of glioblastoma with Bi-213

Courtesy of Alfred Morgenstern at ITU

Before treatment

7 weeks post 3rd treatment

5 weeks post 1st treatment

9 weeks post 4th treatment

5 weeks post 2nd treatment

treatment continued to date : 5 cycles)

Overall survival: >23 months

Patient 6 – Glioblastoma grade IV (male, 59 y)
Nanoparticles Platform for in-vivo Delivery of Radionuclides
LaPO₄ Nanoparticles Platform for in-vivo Delivery of Actinium-225

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life</th>
<th>α-Energy (MeV)</th>
<th>α-Recoil Energy (keV)</th>
<th>Recoil Range (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225Ac</td>
<td>10 d</td>
<td>5.829</td>
<td>107</td>
<td>20</td>
</tr>
<tr>
<td>221Fr</td>
<td>4.9 m</td>
<td>6.341</td>
<td>116</td>
<td>22</td>
</tr>
<tr>
<td>217At</td>
<td>32.3 ms</td>
<td>7.067</td>
<td>130</td>
<td>24</td>
</tr>
<tr>
<td>213Bi</td>
<td>46 m</td>
<td>8.376</td>
<td>154</td>
<td>29</td>
</tr>
</tbody>
</table>

In-vitro Release of 225Ac, 221Fr and 213Bi from La(225Ac)PO₄ NPs
Core/Shell Design of LaGd\(^{\text{225}}\)Ac nanoparticles

\[\text{La}^{3+} \text{(TPP}^5\text{)}_2 \rightarrow \text{La}^{3+} \text{(TPP}^5\text{)}_2 \rightarrow \text{GdPO}_4 \text{ Shells} \]

\[\text{LaGd}^{(225}\text{Ac}) \text{PO}_4 \text{ Core} \]

LaGd\(^{225}\)Ac nanoparticles are synthesized by a core-shell approach. The core is composed of LaGdPO\(_4\) nanoparticles, and the shell is made of GdPO\(_4\). The reaction involves the formation of LaGd\(^{\text{225}}\)Ac complex in the core, followed by the formation of GdPO\(_4\) shell at 90 °C for 3 h.
SPECT/CT of 225AcLaPO$_4$ Targeted Nanoparticles

MAb 201B-NP

MAb 201B-NP & cold MAb

MAb 14-NP control
Background of Actinium-225 Production at ORNL

- ORNL has been the main supplier of ^{225}Ac (via decay of existing ^{229}Th stock) since 1997, with an annual budget of 1.8 M.

- 700-900 mCi of ^{225}Ac is harvested annually from 130–900 mCi ^{229}Th stock at ORNL.

- 6-12 campaigns are performed per year, and campaign 126 is currently underway.

Rationale for R&D related to production of ^{225}Ac

- The present supply of ^{225}Ac is insufficient for current medical and research demands of ~6 Ci/year.

Annual Production of Ac-225

![Graph showing annual production of Ac-225](image-url)
Production 225Ac from Decay of 229Th

Theoretical Ac-225 Yield from Ra-225 Decay
(At t=0, Ra activity = 60 mCi)

Growth and Decay of 225Ra and 225Ac Separated from 229Th at 60 d
($N_0 = 1$ Ci 229Th)

Radioactivity, mCi

Ac-225 separated and shipped at time-interval shown below

At t=0, Ra activity = 60 mCi

Production 225Ac from Decay of 229Th
New Initiatives to Enhance Production of Ac-225

- Direct production of 225Ac in a high energy proton accelerator
- Reactor Production of 229Th at ORNL High Flux Isotope Reactor (Nuclear Data)
- Production of 229Th via low energy protons (Nuclear Data)
Direct production of 225Ac in a proton accelerator

The new collaboration between ORNL, BNL and LANL aims at developing a plan for full-scale production and stable supply of 225Ac by irradiating 232Th targets in the BNL BLIP and LANL IPF, and target processing at ORNL.

ORN2L Contributions:

- Develop the processing chemistry

- Evaluate yields and impurities

- Construct and evaluate 225Ac/213Bi Generator

- Provide Ac and generator to selected customers for in vivo evaluation

1st publication of tri-lab efforts: Griswold et al, Large Scale Accelerator Production of 225Ac: Effective Cross Sections for 78-192 MeV Protons Incident on 232Th Targets (in print, App. Rad. Isot., 2016)
Challenges Associated with Accelerator-Based Production of 225Ac -- Complex Chemistry

Thorium Target Mass:
1-10 g – initial mass, 50-100 g – anticipated for Ci-level targets

Production of Radiolanthanides:
Significant challenge to separate trivalent Ln-isotopes from 225Ac (specifically 140La and 141Ce)

Production of large quantities of fission products:
In the 100-200 MeV proton energy range, for every mCi of 225Ac, 12.5 mCi of fission products are produced

Timing: The 227Ac/225Ac ratio (~0.2% at EOB) gets worse with time

Toxicity: Biological toxicity of minute amount of 0.2% 227Ac in 225Ac is not evaluated
Accelerator Production of 225Ac (cont.)
Chemical Process for Accelerator-Produced ^{225}Ac

Proposed Ac-225 Processing Flow Sheet

LANL
BNL
ORNL
For a 10 day irradiation of a 5 g cm$^{-2}$ 232Th target at IPF or BLIP, yield of 225Ac is ~1.5 Ci at EOB with ~0.2% contamination from 227Ac

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Yield at EOB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPF: 250 µA, 90 MeV</td>
</tr>
<tr>
<td></td>
<td>(Ci)</td>
</tr>
<tr>
<td>225Ac</td>
<td>1.5</td>
</tr>
<tr>
<td>226Ac</td>
<td>N/M</td>
</tr>
<tr>
<td>227Ac</td>
<td>2.7×10^{-3}</td>
</tr>
<tr>
<td>227Th</td>
<td>6.3</td>
</tr>
<tr>
<td>228Th</td>
<td>2.2×10^{-1}</td>
</tr>
<tr>
<td>99Mo</td>
<td>1.8×10^1</td>
</tr>
<tr>
<td>140Ba</td>
<td>3.1</td>
</tr>
<tr>
<td>139Ce</td>
<td>1.1×10^{-2}</td>
</tr>
<tr>
<td>141Ce</td>
<td>1.4</td>
</tr>
<tr>
<td>143Ce</td>
<td>1.4</td>
</tr>
<tr>
<td>144Ce</td>
<td>9.0×10^{-2}</td>
</tr>
</tbody>
</table>
HPLC Separation of ^{225}Ac from ^{140}La and other radiolanthanides, showing only major radioactive species.
Second HPLC Separation of 225Ac From 140La – Gradient and Chromatogram
Reactor production of Th-229

1st term of cross-section refers to thermal and 2nd term to resonance integrals. The values in parenthesis are fission cross-sections at thermal and epi-thermal neutrons, respectively.
Reactor Production of Thorium-229

- Projected ^{229}Th yield for 6 cycle irradiations: 18-23 mCi per g of ^{226}Ra, with ^{228}Th and ^{227}Ac contaminations of 3000 and 50 times larger.

- 20 mCi of ^{229}Th will generate ~140 mCi of ^{225}Ac per year

Production of 229Th via Proton-induced Reactions on 232Th

Thorium Proton Bombardment Reaction Block Diagram

Various Excitation Functions for Proton Bombardment of 232Th

γ-Ray Spectrum of Purified Pa Fraction
(Th230-2, PaPPT-T5, 6/15/2011)
Production of 229Th via Proton-induced Reactions on 232Th

Summary

- Excitation function for the 232Th[$p,4n$]229Pa reaction has been measured with good precision; excitation function peaks at 28 MeV, 150 mb.

- Measurements of thick target production show cross section is dominated by the following two reactions:

 232Th[$p,4n$]229Pa(1.5 d, EC229Th
 232Th[$p,α$225Ac(63 m, $β$)229Th

- Irradiating 1 gram of 232Th (~0.5 mm) for 1 year at 100 µA of 35 MeV protons and exiting at 25 MeV would yield ~28 mg of 229Th (5.6 mCi).

Future Work

- Additional nuclear data for short-lived 229Ac is necessary to determine cross section of 232Th[$p,α$229Ac reaction
- The thick target yield from 230Th target expected to be 3-5 times greater than from 232Th target
^{227}Ac production: larger scale pilot demonstration

- ^{227}Ac is made via irradiation of ^{226}Ra targets at HFIR

- ORNL entered into a production R&D phase shortly after hosting the 2013 International TAT conference
 Preliminary feasibility R&D was followed by two years of

1st HFIR Rabbit containing 2 Ra pellets

1st 50-mg ^{226}Ra pellet
Xofigo, 1st approved “targeted” alpha therapy (TAT) for treatment of advanced prostate cancer

- Prostate cancer is the second leading cause of cancer death in American men, behind lung cancer
- ^{223}Ra targets new bone growth, like Ca
- ^{223}Ra is derived from an ^{227}Ac generator

$^{225}\text{Ra Biodistribution}$

Kennel and Mirzadeh, 2005

α (5.7 MeV)

β
Ra-226 target design

- Up to 13 pellets can be stacked in a welded-aluminum rabbit for irradiation at HFIR
- Total RaCO$_3$/Al volume: \sim1.3 cm3
- Total Ra-226 mass: 0.7 g (0.749 g of RaCO$_3$)
- aluminum mass: 2.748 g
- Ra-226 mass limit based on heat calculations and the target temperature during irradiation (dose rates will limit Ra-226 mass per target to about 600 mg)

Figure 5. Configuration of 13 RaO/Al pellets for irradiation at HFIR. Some of the components include; 1) finned aluminum rabbit, 2) rabbit end caps (aluminum), 3) fill material – aluminum foil or quartz wool, and 4) radium oxide pellets (13) – 0.250” diameter and 0.125” thick.
New HFIR-HT rabbit design

- Changes were made to the rabbit design to facilitate the in-cell welding process
- The bottom cap will be EB-welded outside of the hot cell
- The circumference of the top cap will be welded first — under a helium cover gas
- The plug will be welded after evacuating the chamber and backfilling with high-purity helium (twice)

Body is aluminum alloy 6061
End caps are 4047 aluminum (required for welding)
TEAM

Rose Boll
Roy Copping
Sandra Davern
David Denton
Kevin Gaddis
Greg Groover
Justin Griswold
Suzanne Hogle
Karen Murphy
Allison Owen
Shelly Van Cleve
Lance Wyant
Dominic Giuliano (Design and Manufacturing)
Richard Howard (Heat Calculations)
Steve Owens (Thermodynamic Measurements)

Students:

Joseph Wright
David O’Neil
Mark Moore

Dan Stracener (Project Manager, accelerator produced Ac-225 and Ac-227)
John Krueger (Oversight)