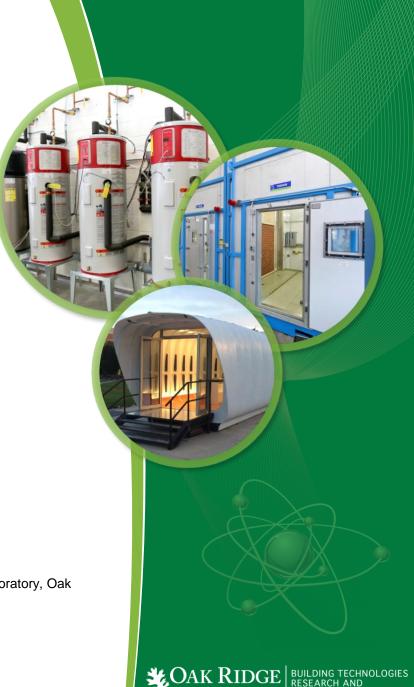
Evaluating the Moisture Durability of Energy-Efficient Walls

Philip Boudreaux¹

Simon Pallin¹

Diana Hun¹

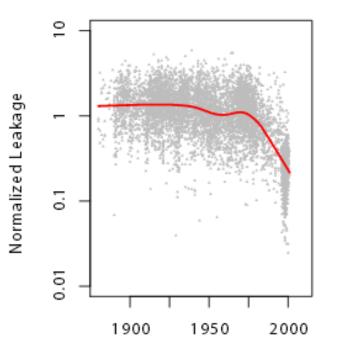
Manfred Kehrer²


Roderick Jackson¹

Andre Desjarlais¹

¹Building Technologies Research and Integration Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA

²SmartSolutions, LLC, Oak Ridge, TN


ORNL is managed by UT-Battelle for the US Department of Energy

National Laboratory

Why evaluate the moisture durability of walls?

- Energy loss through walls in homes:
 - 1.8 quads/yr.
- To decrease this energy loss we can:
 - Increase R-value of walls
 - Increase air-tightness of walls

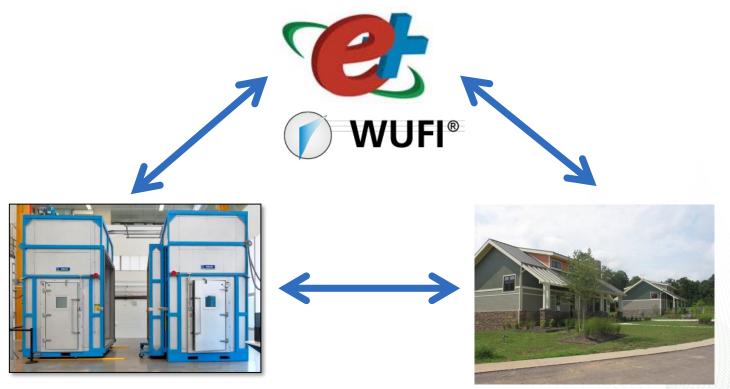
House Year Built

 Both of these solutions require care so that the moisture durability of high performance walls is maintained.

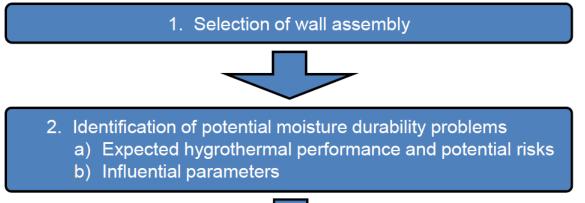
Why do we care about moisture and walls?

- Material degradation, structural stability
- Avoid cost associated with repairs, lawsuits, etc.
- Health/Comfort
- Air Quality (mold)
- Adoption rates:

Top Challenges in Energy Efficiency Moisture performance of energy efficient walls Moisture performance of energy efficient attics System/whole-house integration when transition' to more energy effic homes Long-term effectiveness of insulation materials & systems Window installation solutions in walls w/more insulation Details for integration of exterior insulation w/other materials

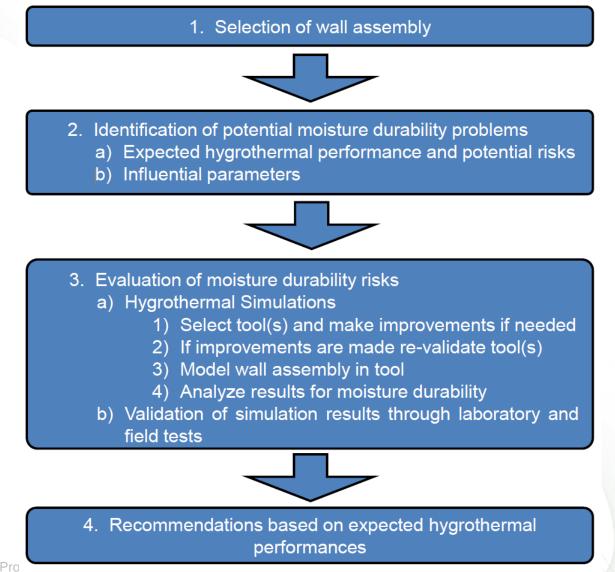

Why do we care about moisture and walls?

Adoption rates:

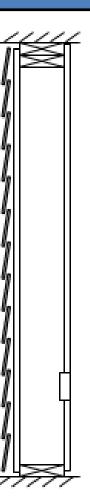

ome Innovation

Evaluating walls for moisture durability

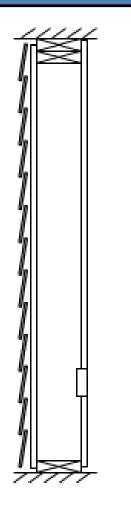
- We want to provide guidance so builders can easily construct energy efficient moisture durable walls.
- So we need a way to quickly and reliably determine the moisture performance (MC of wood, MGI) of wall designs across different climates, occupancy habits and building construction.



Protocol for evaluating walls for moisture durability

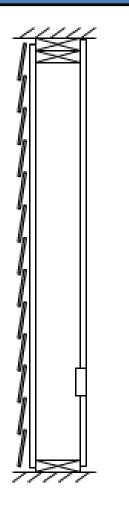

Protocol for evaluating walls for moisture durability

7 Building Technologies Pro


Identifying walls, potential risks, and key influencing parameters

- 2. Identification of potential moisture durability problems
 - a) Expected hygrothermal performance and potential risks
 - b) Influential parameters
- Outdoor Climate
 - AMY (5 years) x 15
 CZ

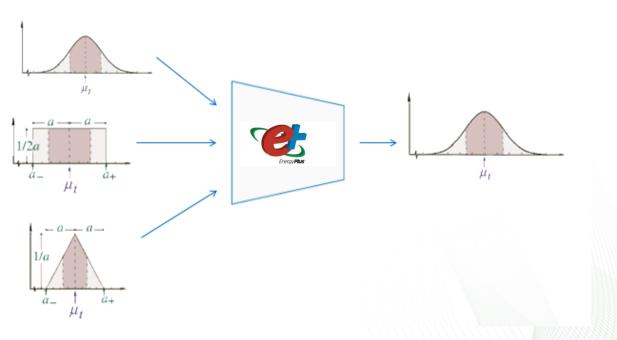
Identifying walls, potential risks, and key influencing parameters


- 2. Identification of potential moisture durability problems
 - a) Expected hygrothermal performance and potential risks
 - b) Influential parameters
- Outdoor Climate
 - AMY (5 years) x 15
 CZ

- Indoor Climate (T, RH)
 - Heat and Moisture Generation
 - Thermostat Set
 Point
 - Airtightness
 - Outdoor Climate
 - House
 Characteristics

Identifying walls, potential risks, and key influencing parameters

- 2. Identification of potential moisture durability problems
 - a) Expected hygrothermal performance and potential risks
 - b) Influential parameters
- Outdoor Climate
 - AMY (5 years) x 15
 CZ

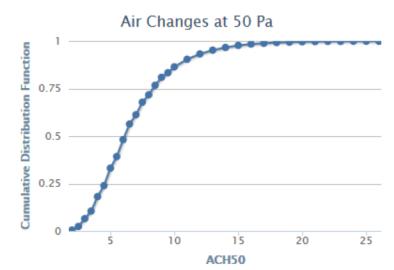

- Indoor Climate (T, RH)
 - Heat and Moisture Generation
 - Thermostat Set Point
 - Airtightness
 - Outdoor Climate
 - House
 Characteristics

Evaluation of the wall assembly – Indoor Climate

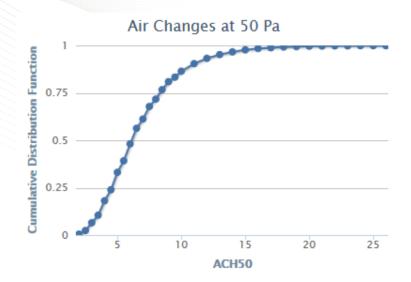
- 3. Evaluation of moisture durability risks
 - a) Hygrothermal Simulations
 - 1) Select tool(s) and make improvements if needed
 - 2) If improvements are made re-validate tool(s)
 - 3) Model wall assembly in tool
 - 4) Analyze results for moisture durability
 - b) Validation of simulation results through laboratory and field tests

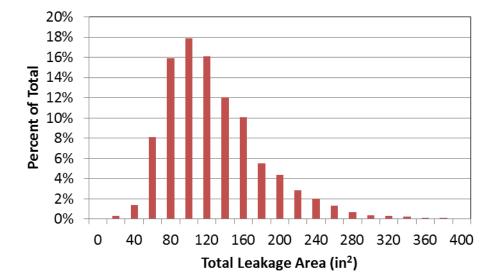
Input Variables

Output Variable

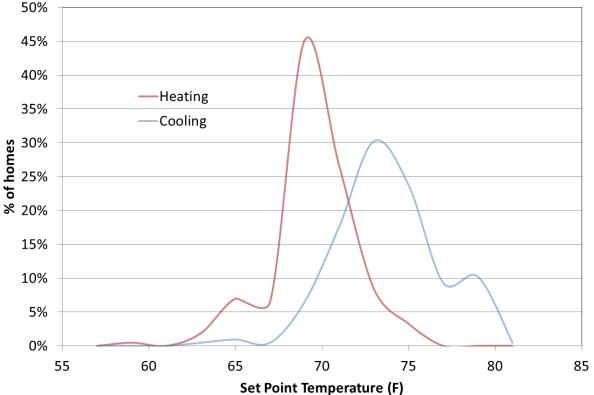


Evaluation of the wall assembly – Indoor Climate - Airtightness


- Used LBNL Envelope Leakage Calculator from Residential Diagnostics Database
 - Inputs:
 - Floor Area: 2376 ft²
 - Ceiling Height: 16 ft
 - Year Built: After 2000
 - WAP? No
 - ENERGY STAR certified? Yes
 - Region: CZ specific
 - Foundation type: CZ specific
 - Duct System Location: inside the condition space

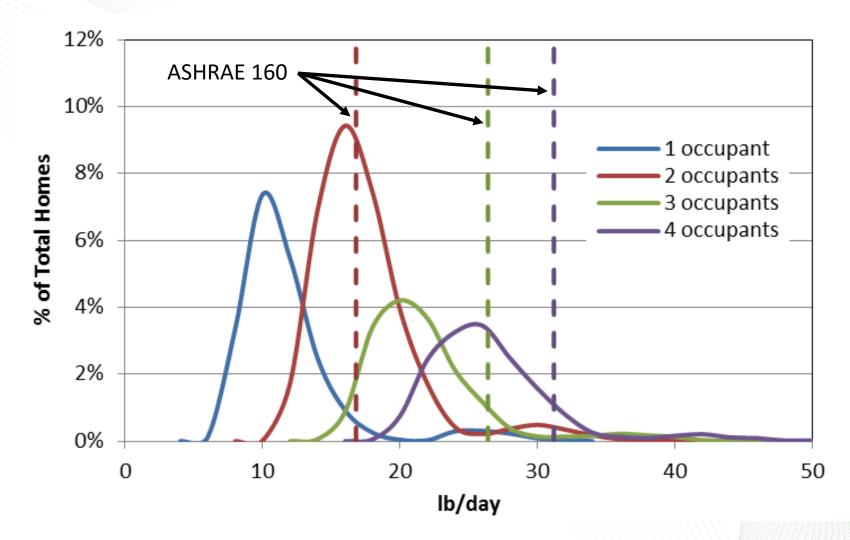

Evaluation of the wall assembly – Indoor Climate - Airtightness

- Used LBNL Envelope Leakage Calculator from Residential Diagnostics Database
 - Inputs:
 - Floor Area: 2376 ft²
 - Ceiling Height: 16 ft
 - Year Built: After 2000
 - WAP? No
 - ENERGY STAR certified? Yes
 - Region: CZ specific
 - Foundation type: CZ specific
 - Duct System Location: inside the condition space

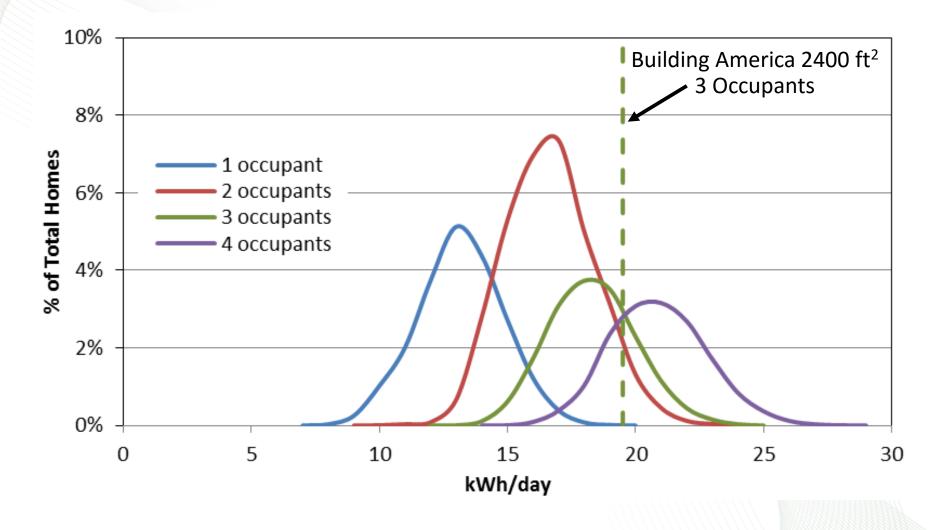

Evaluation of the wall assembly – Indoor Climate - Airtightness

Evaluation of the wall assembly – Indoor Climate – Thermostat Setpoint

- Used RECS 2009 microdata
 - Created probability curves for each AIA CZ (250 1850 homes per CZ)



Evaluation of the wall assembly – Indoor Climate – Indoor Heat and Moisture Generation


- Used ORNL developed GIHM tool
 - Yields hourly heat and moisture rates for an entire year
 - Probabilistic in nature

Moisture	Heat		
	Lighting		
	Refrigerator		
Ironing, Aquarium, Humdifier, Dehumidifier	MELs		
Humans	Humans		
Pets	Pets		
Bath	Bath		
Shower	Shower		
Jaccuzi Bath	Jaccuzi Bath		
Breakfast	Oven, Stove		
Lunch	Oven, Stove		
Dinner	Oven, Stove		
Hand Washing Dishes			
Dishwasher	Dishwasher		
Laundry	Clothes Washer, Clothes Dryer		
Mopping			
Plants			
Toilets			
Faucets			

Evaluation of the wall assembly – Indoor Climate – Indoor Heat and Moisture Generation

Evaluation of the wall assembly – Indoor Climate – Indoor Heat and Moisture Generation

Evaluation of the wall assembly – Hygrothermal Analysis

- Outdoor Climate Boundary Condition from AMY file
- Indoor Climate (Energy Plus)

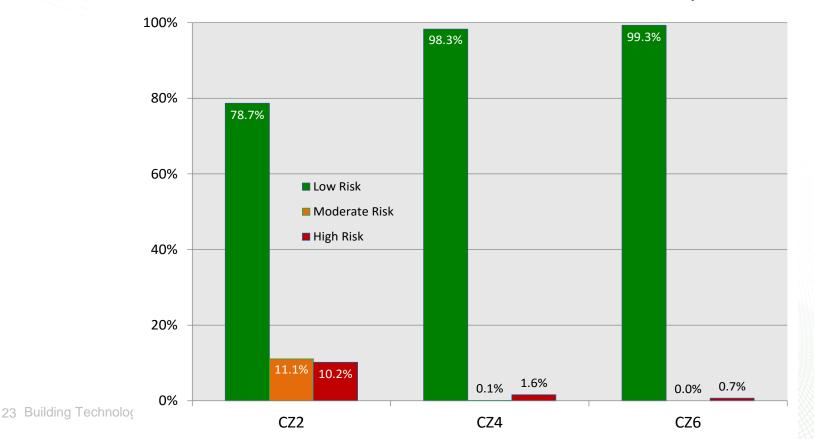
19 E

- WUFI® to evaluate moisture durability of wall
 - Eta method to help WUFI® handle air flow in 1-D
 - Used Mold Growth Index (MGI) as performance indicator

Index	Description of Growth Rate	Risk Level
0	No growth	Low
1	Small amounts of mold on surface (microscopic), initial stages of local growth	Low
2	Several local mold growth colonies on surface (microscopic)	Low
3	Visual findings of mold on surface, <10% coverage or <50% coverage of mold (microscopic)	Moderate
4	Visual findings of mold on surface, 10% to 50% coverage or >50% coverage of mold (microscopic)	High
5	Plenty of growth on surface, >50% coverage (visual)	High
6	Heavy and tight growth, coverage approximately 100%	High

Mold Growth Index (Hukka and Viitanen 1999; Ojanen et al. 2011; Viitanen et al. 2015)

	valuation of moisture durability risks
a)	Hygrothermal Simulations
	1) Select tool(s) and make improvements if needed
	If improvements are made re-validate tool(s)
	Model wall assembly in tool
	Analyze results for moisture durability
b)	Validation of simulation results through laboratory and field tests


Wall Assembly	Houston, TX CZ2	New York, NY CZ4	Minneapolis, MN CZ6
Siding		Vinyl	
WRB	Mechanically fastened membrane	R3.75 XPS	R11.25 XPS
Ext. continuous	None	R3.75 XPS	R11.25 XPS
insulation		(same as air/water	(same as air/water
		barrier)	barrier)
Ext. sheathing		7/16" OSB	
Framing		2×6 studs	
Cavity insulation		R20 fiberglass batts	
Int. sheathing		¹ /2" drywall	
Vapor retarder		Latex paint	

20 Building Technologies Program

- Indoor climate simulated using Energy Plus (x 1000/CZ)
- Output from Energy Plus (Indoor T/RH, air exchange rate), Outdoor Climate (AMY) and wall construction are input into WUFI® (x1000/CZ)
- The MGI is evaluated at one critical point along the airflow path in the wall.
- Each of the simulations was run for 5 consecutive years of actual weather.

- CZ2 Wall orientation to maximize air infiltration
- CZ4 Orientation to investigate infiltration and exfiltration
- CZ6 Wall orientation to maximize air exfiltration

- CZ2 Wall orientation to maximize air infiltration
- CZ4 Orientation to investigate infiltration and exfiltration
- CZ6 Wall orientation to maximize air exfiltration

Mold Growth Index at 3 Climate Locations - Wall Assembly #1

 To understand why the wall in CZ2 has a potential for mold growth, a sensitivity analysis is helpful.

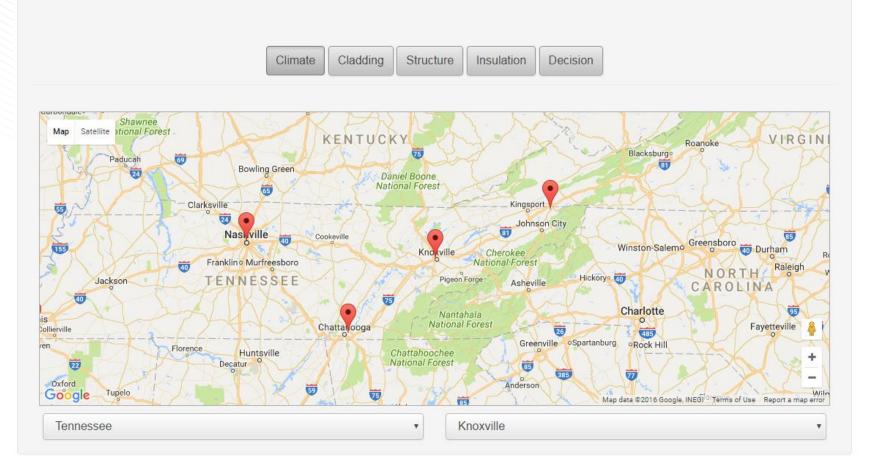
4. Recommendations based on expected hygrothermal performances

Welcome to

Building America Building Science Advisor

Building America Building Science Advisor (BSA) is a website that provides expert advice on building envelope system performance from industry's best researchers and building scientists. This knowledge tool promotes better-informed decisions regarding energy efficient and moisture durable building envelope solutions. BSA communicates uncertainty associated with moisture durability in a simplified manner.

About BSA


Start BSA

© 2016 Oak Ridge National Laboratory Managed by UT-Battelle for the US Department of Energy Security & Privacy Notice

To report issues with the site please contact site administrator.

CAK RIDGE BSA VO.0.1-SNAPSHOT

Account -

© 2016 Oak Ridge National Laboratory

Managed by UT-Battelle for the US Department of Energy

Security & Privacy Notice

To report issues with the site please contact site administrator.

South Contract BSA VO.0.1-SNAPSHOT

Account-

	Climate	tructure Insulation Decision	
is your cladding?			
000			
er Cement Siding			
Siding			
			Ē
Wood Clapboard			
d Wood Shakes			
ed Wood Clapboard			
ed Wood Shakes			
siding			

© 2016 Oak Ridge National Laboratory

Managed by UT-Battelle for the US Department of Energy

Security & Privacy Notice

To report issues with the site please contact site administrator.

Soak RIDGE BSA VO.0.1-SNAPSHOT

Account-

Climate Cladding Insulation Decision What is your structure? 2 x 4 16" o.c. 2 x 4 24" o.c. 2 x 6 16" o.c. 2 x 6 24" o.c. Structural Insulated Panels Insulated Concrete Form System Masonry Block (Interior Insulated) Masonry Block (Exterior Insulated)

South Ridge BSA VO.0.1-SNAPSHOT

Account-

Climate Cladding Structure Insulation Decision Cavity Insulation and Type Fiberglass Batt Fiberglass Loose Fill Cellulose Loose Fill Open Cell Spray Foam Closed Cell Spray Foam Flash and Batt (with 3/4-in. CCSPF) SIPS - Expanded Polystyrene (EPS)

Continuous Insulation and Thickness

None Expanded Polystyrene (EPS) Extruded Polystyrene (XPS) Polyisocyanurate Foam Mineral Fiber Board

SAK RIDGE BSA VO.0.1-SNAPSHOT

	Climate Cladding Structure Insulation Decision
What do you want to do for the next step? View recommended walls This option provides you with wall assemblie Go to advanced analysis	es that are moisture durable under the chosen climate and materials selections.
Specify all materials of the wall assembly fo performance if needed.	or moisture durability assessment of the chosen wall design. This option will also provide guidance for best

Account-

A Home

COAK RIDGE BSA VO.0.1-SNAPSHOT

Account-

Air Gap Water/Air Barrier Sheathing Vapor Retarder Interior Finish Air Tightness Results Back/Decision Air gap between sheathing & cladding? None Vented Air Space Ventilated Air Space

Soak Ridge BSA v0.0.1-SNAPSHOT

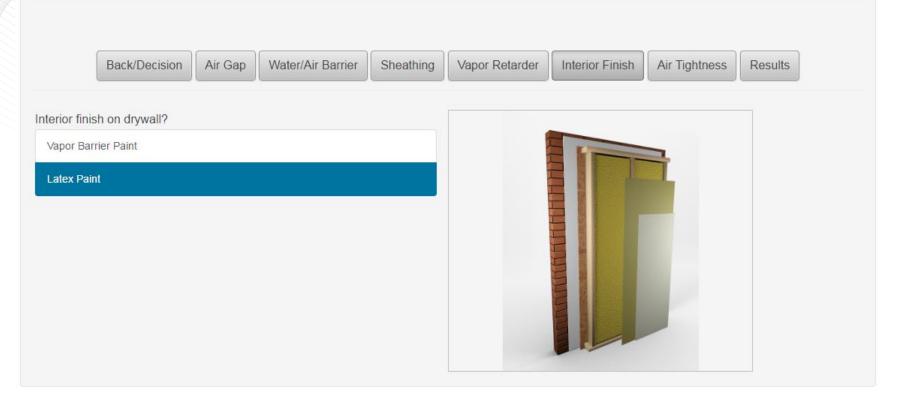
Account -

Back/Decision	Air Gap	Water/Air Barrier	Sheathing	Vapor Retarder	Interior Finish	Air Tightness	Results
Type of resistive & air barrier?							
Housewrap				1			
Building Paper							
Liquid-Applied Coating							
Permeable Fully-Adhered Memb	orane				Ē		
Impermeable Fully-Adhered Mer	mbrane						
Insulated Sheathing							
Uninsulated Sheathing							
Spray Foam							

SAK RIDGE BSA VO.D.1-SNAPSHOT

Account -

Back/Decision Air Gap Water/Air Barrier Sheathing Vapor Retarder Interior Finish Air Tightness Results Exterior sheathing? Plywood **Oriented Strand Board** Fiberboard Expanded Polystyrene (EPS) Extruded Polystyrene (XPS) Polyisocyanurate Foam Mineral Fiber Board


COAK RIDGE BSA VO.0.1-SNAPSHOT

Account-

Back/Decision Water/Air Barrier Vapor Retarder Air Tightness Air Gap Sheathing Interior Finish Results Type of vapor retarder? None Polyethylene Sheet Kraft Paper Aluminum Foil Smart Vapor Retarder

CAK RIDGE BSA VO.0.1-SNAPSHOT

Account-

SAK RIDGE BSA VO.0.1-SNAPSHOT

A Home

Account-

Back/Decision Air Gap Water/Air Barrier Sheathing Vapor Retarder Interior Finish Air Tightness Results Expected air tightness of your building? 1 ACH50 3 ACH50 5 ACH50 7 ACH50

Sational Laboratory BSA v0.0.1-SNAPSHOT

👤 Account -A Home

Back/Decision	Air Gap	Water/Air Barrier	Sheathing	Vapor Retarder	Interior Finish	Air Tightness	Results
Bacili Bocision			Chounny				Trobuito

Summary of your wall

Map Location	Knox
Exterior Cladding	Brick
Continuous Insulation	None
Structure	2 x 4
Cavity Insulation	Fiberg
Air Space	None
Water/Air Barrier	House
Exterior Sheathing	Orien
Vapor Retarder	Kraft
Interior Finish	Latex
Air Tightness	3 ACI

ville, TN 16" o.c. ralass Batt ewrap nted Strand Board Paper Paint H50

Predicted moisture durability performance

For "yellow" and "green" please use guidance table for optimized performance.

Guidance

• The selected wall cladding can absorb water. If there is no ventilation behind the cladding water could infiltrate the wall assembly. To ensure moisture durability add at least a 1/4" (2" for brick or stone cladding to avoid mortar contacting sheething) ventilation cavity behind cladding.

> © 2016 Oak Ridge National Laboratory Managed by UT-Battelle for the US Department of Energy Security & Privacy Notice

SAK RIDGE BSA v0.0.1-SNAPSHOT

Account-A Home

Back/Decision	Air Gap	Water/Air Barrier	Sheathing	Vapor Retarder	Interior Finish	Air Tightness	Results
---------------	---------	-------------------	-----------	----------------	-----------------	---------------	---------

Summary of your wall

Map Location
Exterior Cladding
Continuous Insulation
Structure
Cavity Insulation
Air Space
Water/Air Barrier
Exterior Sheathing
Vapor Retarder
Interior Finish
Air Tightness

Knoxville, TN Brick None 2 x 4 16" o.c. Fiberglass Batt Vented Air Space Housewrap Oriented Strand Board Kraft Paper Latex Paint 3 ACH50

Predicted moisture durability performance

For "yellow" and "green" please use guidance table for optimized performance.

Guidance

- Methodology for evaluation of moisture durability of walls
 - Use simulations, validate with selected field studies and chamber tests
 - Use probabilistic modeling to capture range of environments the wall will "see" in the field.
 - Use MGI as performance indicator (red, yellow, green)
 - Use BSA to communicate evaluation results and offer guidance to builders and other stakeholders

Discussion

Philip Boudreaux boudreauxpr@ornl.gov

Visit our website: www.ornl.gov/buildings

Follow us on Twitter: @ORNLbuildings