Potential and limitations of

infrared thermography on unventilated walls

Katrien Maroy Nathan Van Den Bossche, PhD Marijke Steeman, PhD

FACULTY OF ENGINEERING

Solution?

75% of all renovation projects

Practice?

Inspection tools

- Destruction
- Endoscopy
- Thermography?

Overview

The accuracy of thermography Emissivity and reflected temperature Camera use Boundary conditions

Infrared inspection of cavity filling Dynamic simulations Case studies

Overview

The accuracy of thermography Emissivity and reflected temperature Camera use Boundary conditions

Infrared inspection of cavity filling Dynamic simulations Case studies

$W_{tot} = \varepsilon W_{obj} + \rho W_{amb} + (1 - \tau_{atm}) W_{atm} \quad [W/m^2]$

$$W_{tot} = \varepsilon W_{obj} + \rho W_{amb} + (1 - \tau_{atm}) W_{atm} \quad [W/m^2]$$

$$\tau_{atm} = 1 \text{ in}$$

 λ = 3-5 μ m and 8-14 μ m

\rightarrow Spectrum of IR-camera

$W_{tot} = \varepsilon W_{obj} + \rho W_{amb}$

Reflection $\rho = 1 - \epsilon$

Example: Brick $\rightarrow \varepsilon = 0,90$

Reflection $\rho = 1 - \varepsilon$ $W_{tot} \sim 10\% \theta_{refl}$

Use correct values!

Example: measurements in clear sky

Accuracy difference : 1,2°C (2,16 °F)

In-situ determination

Determine ε ASTM E1993-99a Determine θ_{refl} ASTM C1060-11a

Overview

The accuracy of thermography Emissivity and reflected temperature Camera use Boundary conditions

Infrared inspection of cavity filling Dynamic simulations Case studies

Different FOV's of the lens

25°x19°

45°x33,8°

Resolution

640 X 480

320 X 240

Standard deviation: ± 2°C (3,6°F) Noise Equivalent Temperature Difference (NETD)

Imaging Specifications

FEATURES	FLIR E40	FLIR E50	FLIR E60
Temperature range	-4 to 1202°F (-20 to 650°C)	-4 to 1202°F (-20 to 650°C)	-4 to 1202°E (-20 to 650°C)
Thermal sensitivity (N.E.T.D)	<0.07°C at 30°C	<0.05°C at 30°C	<0.05°C at 30°C
Detector Type - Focal plane array; (FPA) uncooled microbolometer	тьо х тео pixeis	240 x 180 pixeis	320 x 240 pixeis
MSX [®] Thermal Image Enhancement	Yes	Yes	Yes
Picture-in-Picture (P-i-P)	Fixed P-i-P	Scalable P-i-P	Scalable P-i-P
MPEG 4 Video Recording	Yes	Yes	Yes
Video Camera w/Lamp & Laser	3.1MP/LED Lamp/Laser pointer	3.1MP/LED Lamp/Laser pointer	3.1MP/LED Lamp/Laser pointer
Digital Zoom	2X Continuous	4X Continuous	4X Continuous
Image annotation	Voice (60s)/Text Comments	Voice (60s)/Text Comments	Voice (60s)/Text Comments
Moveable Spot	3 Spotmeters	3 Spotmeters	3 Spotmeters
Area Box	3 Area Boxes (full image with min/max/avg)	3 Area Boxes (full image with min/max/avg)	3 Area Boxes (full image with min/max/avg)
Delta T	Yes	Yes	Yes
Data Communication Interface	USB-mini, USB-A, Composite Video, Bluetooth, Wi-Fi	USB-mini, USB-A, Composite Video, Bluetooth, Wi-Fi	USB-mini, USB-A, Composite Video, Bluetooth, Wi-Fi

Overview

The accuracy of thermography

Emissivity and reflected temperature Camera use Boundary conditions

Infrared inspection of cavity filling Dynamic simulations Case studies

θ_i - **θ**_e > 10°C (18 °F)

Weather conditions

No sun, no clear sky, no wind

 \rightarrow How long does the influence remain?

U = 0,22 W/m²K E = 531,21 J/m²K√s

U = 0,22 W/m²K E = 531,21 J/m²K√s

U = 1,00 W/m²K E = 531,21 J/m²KVs

U = 0,22 W/m²K E = 32,40 J/m²K√s

U = 0,22 W/m²K E = 2500 J/m²K√s

 $U = 0,22 \text{ W/m}^{2}\text{K}$ E = 32,40 J/m²KVs

Maximum external surface temperature difference with respect to the steady state condition

4 hours waiting in heavy clouded windless weather

17 hours waiting in heavy clouded windless weather

Overview

The accuracy of thermography Emissivity and reflected temperature Camera use Boundary conditions

Infrared inspection of cavity filling Dynamic simulations Case studies

Maximal sun radiation, Clear sky, No wind

Maximal sun radiation, Clear sky, No wind

No sun, Clear sky vs. fully clouded, No wind

No sun, Fully clouded and Wind (4 m/s) vs. No Wind

Only waiting times after sun radiation necessary

	Timber frame	Filled cavity	Non-filled cavity wall	Partially filled cavity wall
		wall		
11400 kJ/m²	0 – 1,5h	3,5 – 7h	2 – 6,5h	3,5 – 7h
8400 kJ/m²	0-1h	2 – 6h	0,2 –5h	2 – 6h
5600 kJ/m²	0h	0–4,5h	0 – 3,5h	0–4,5h
2750 kJ/m²	0h	0 – 2h	0–0,5h	0 – 2h
0 kJ/m²	0-0,2h	0-1h	0–0,2h	0 – 1h

+ Temperature difference > 10°C (18°F) across the wall

In practice:

Go measure in wintertime, before sunrise

Overview

The accuracy of thermography Emissivity and reflected temperature Camera use Boundary conditions

Infrared inspection of cavity filling

Dynamic simulations Case studies

(Beulque, 2014)

Common flaws

- Poor or lacking measurement data of the cavity width
- Ignorance towards the minimum cavity width (< 5 cm or 1,96")
- Insufficient number of bore holes
- Incorrect glue flow rate of the EPS pearls
- Incomplete filling at corners and cavity interruptions
- Missing bore holes due to vegetation or cables
- Open parpens at the top
- Parpens and openings in the inner cavity leaf during cavity filling

Which of these flaws are detectable with thermography?

Know what you can expect \rightarrow Execution report

Vegetation during cavity filling work
→ no bore holes
→ insufficient filling locally

Know what you can expect \rightarrow Execution report

Filling with EPS-pearls Glue stacked at the corners

Know what you can expect \rightarrow Execution report

Chimney effect?

EPS pearls escaped through openings in the inner cavity wall $U_{measured} = 0,476 \text{ W/m}^2\text{K} (+26\%)$ $U_{calc} = 0,377 \text{ W/m}^2\text{K}$

Conclusion

Yes, thermography has potential General overview Thermal bridges are clearly visible

- Avoid sun and $\theta_i \theta_e > 10^{\circ}C (18^{\circ}F)$
- Predictable locations and shape (above windows, at floors,...)

However, do not draw direct conclusions

The ease by which thermal deficiencies are recognized depends on: Type, shape, geometry of the building, condition of the surface, location of the pattern, prior weather conditions......

Conclusion

Yes, thermography has potential General overview

- Thermal bridges are clearly visible
- Avoid sun and $\theta_i \theta_e > 10^{\circ}C (18^{\circ}F)$
- Predictable locations and shape (above windows, at floors,...)

To indicate the location for further research with

- An endoscopy
- Destructive research

Potential and limitations of

infrared thermography on unventilated walls

Katrien Maroy Nathan Van Den Bossche, PhD Marijke Steeman, PhD

FACULTY OF ENGINEERING