Alternative core materials for vacuum insulation

Mufit Akinc, Pl

Boyce Chang, Grad Asst. Materials Science & Engineering, College of Engineering, Iowa State University

Thermal Performance of the Exterior Envelopes of Whole Buildings XIII International Conference

IOWA STATE UNIVERSITY

NextiGenerationidnsulation

IOWA STATE UNIVERSITY

ADVANCED INSULATION MATERIALS

Vacuum Insulation Panel (VIP): Highly porous core material is evacuated and then sealed by the barrier laminate

Core material Barrier laminate

Insulation	R-value
Fiberglass & Cellulose	3-4
Expanded Polystyrene	4-5
Urethane Foams	5-8
VIP	30-50

IOWA STATE UNIVERSITY

THEN WHY NOT?

Insulation	Cost (\$/sq.ft)	Cost (\$/sq.ft/R)
Fiberglass & Cellulose	0.4	0.13-0.1
Expanded Polystyrene	1.5	0.38-0.3
Urethane Foam	1.5	0.3-0.19
VIP	5	0.17-0.1

DOE target value for building applications is <\$3 /sq.ft

IOWA STATE UNIVERSITY

AVAILABLE CORE MATERIALS

 Fumed silica (FS) is the material of choice because of its low sensitivity to pressure

IOWA STATE UNIVERSITY

conductivity of vacuum insulation panels. Building

Research and Information 2004, 32 (4), 293-299.

THERMAL CONDUCTIVITY OF AIR

$$k = \frac{k_0}{1 + 2\beta\left(\frac{P_0 l_p}{PD}\right)}$$

 k_{gas} = effective gaseous thermal conductivity, written as a function of k_{\circ}

 k_0 = gaseous thermal conductivity at ambient pressure

 β = constant ranges from 1.5 to 2

- l_{P} = mean free path of gas particles
- at ambient pressure
- D = effective pore diameter
- P = pressure
- *P*_o = atmospheric pressure

Kaganer, M.G. 1969. Jerusalem: Israel Program for Scientific Translations Kennard, E.H. 1938. New York: McGraw-Hill Book

Company.

College of Engineering

IOWA STATE UNIVERSITY

PORE SIZE

Large pore size, D

Heat transfer across the gas phase occurs by molecule-molecule kinetic energy transfer

When pore size is smaller than the mean free path of the gas molecules theD scattering occurs at the boundary lower thermal conductivity

IOWA STATE UNIVERSITY

FUMED SILICA (FS)

 Produced from silicon tetrachloride (SiCl₄)

IOWA STATE UNIVERSITY

ALTERNATE CORE MATERIALS: GLASS BUBBLES (GB)

- Soda-lime borosilicate glass, Average particle size $\sim 60 \ \mu m$
- Particle density: 0.15 g/cm³ (K15), 0.20 g/cm³ (K20), 0.25 g/cm³ (K25)

IOWA STATE UNIVERSITY

ALTERNATE CORE MATERIALS: DIATOMACEOUS EARTH (DE)

 Skeletal remains of diatoms (algae)

IOWA STATE UNIVERSITY

POWDER CHARACTERIZATION

IOWA STATE UNIVERSITY

SAMPLE COMPACTION

IOWA STATE UNIVERSITY

EXPERIMENTAL SETUP

IOWA STATE UNIVERSITY

DIATOMITE/FUMED SILICA

 Diatomaceous earth has higher intrinsic thermal conductivity and large pore size

Chang, B.S., Zhong, L. and Akinc, M. 2016. Vacuum 131:120-26

IOWA STATE UNIVERSITY

THERMAL CONDUCTIVITY OF GLASS BUBBLES (GB)

IOWA STATE UNIVERSITY

GB/FS COMPOSITE

10-20% GB showed almost identical thermal conductivity with FS at low pressure (1000 Pa).

Further addition of GB, increased thermal conductivity.

IOWA STATE UNIVERSITY

MORPHOLOGY OF COMPACTS

IOWA STATE UNIVERSITY

CUT OFF AT 20% GB

- Packing factor of glass bubbles are ca. 60% (theoretical maximum)
- Compared to experiments, there is a 40% discrepancy!

Most likely stem from processing method (unidirectional compression), producing local inhomogeneity

IOWA STATE UNIVERSITY

SUMMARY

- Thermal conductivity of fumed silica/glass bubble mixtures was investigated as a function of volume fraction of GB and gas pressure from vacuum to atmospheric pressure
- Total porosity and pore size of the compact play a critical role in thermal conductivity, especially at higher gas pressures
- Up to 20 vol% FS could be replaced with GB with little change in thermal conductivity
- Increase in thermal conductivity with >20% GB was attributed to formation of larger pores due to inhomogeneous mixing
- A more uniform mixing and compaction may retain low thermal conductivity at higher GB contents.

This work was funded by Iowa Energy Center, Grant # 13-04

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY