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ADVANCED INSULATION MATERIALS

Vacuum Insulation Panel (VIP): Highly porous core material is
evacuated and then sealed by the barrier laminate

Core material Barrier laminate

Insulation R-value
Fiberglass & Cellulose 3-4
Expanded Polystyrene 4-5

Urethane Foams 5-8
VIP 30-50
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THEN WHY NOT?

Insulation Cost ($/sq.ft)| Cost ($/sq.ft/R)
Fiberglass & Cellulose 0.4 0.13-0.1
Expanded Polystyrene 1.5 0.38-0.3

Urethane Foam 1.5 0.3-0.19
VIP ) 0.17-0.1

DOE target value for building applications is <$3 /sq.ft
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AVAILABLE CORE MATERIALS
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because of its low sensitivity to pressure
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THERMAL CONDUCTIVITY OF AIR
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kgas = effective gaseous thermal

conductivity, written as a function of

Thermal conductivity, W/m.K (BTU/hr.ft.F)

k° L. 10 (1.45-10%) 10 (1.45-10%) 10% (1.45-10°") 10* (1.45-10% 10° (1.45-10")
ko = gaseous thermal conductivity at

ambient pressure Pressure, Pa (psi)

B = constant ranges from 1.5 to 2

lo= mean free path of gas particles

at ambient pressure

D = effective pore diameter

P = pressure

Po = atmospheric pressure Kaganer, M.G. 1969. Jerusalem: Israel Program for Scientific

E@ﬂ?&?&l?@ﬁ 1938. New York: McGraw-Hill Book
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PORE SIZE

Large pore size, D

O / Q 4 Q Y Heat transfer across
Q ' 4 Q | the gas phase occurs
O Q - O ' b by molecule-molecule

y = . Q ! kinetic energy transfer
Q OO :
v
Small pore size, D When pore size is smaller

= than the mean free path of
O . O y Q t  the gas molecules the
Q Q ! D scattering occurs at the
v boundary lower thermal

conductivity
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FUMED SILICA (FS)

v Produced from silicon
tetrachloride (SiCl,)
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ALTERNATE CORE MATERIALS:
GLASS BUBBLES (GB)

""""""""

* Soda-lime borosilicate glass, Average particle size ~ 60 um

* Particle density: 0.15 g/cm3 (K15), 0.20 g/cm?3 (K20), 0.25 g/cm?3 (K25)
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ALTERNATE CORE MATERIALS:
DIATOMACEOUS EARTH (DE)

i v Skeletal remains of diatoms
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POWDER CHARACTERIZATION
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SAMPLE COMPACTION
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EXPERIMENTAL SETUP
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DIATOMITE/FUMED SILICA
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v Diatomaceous earth has higher intrinsic thermal conductivity and large
pore size
Chang, B.S., Zhong, L. and Akinc, M. 2016. Vacuum 131:120-26
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THERMAL CONDUCTIVITY OF
GLASS BUBBLES (GB)
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GB/FS COMPOSITE
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MORPHOLOGY OF COMPACTS
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CUT OFF AT 20% GB

Packing factor of glass bubbles are ca. 60% (theoretical maximum)
Compared to experiments, there is a 40% discrepancy!

Most likely stem from processing
method (unidirectional compression),
producing local inhomogeneity
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SUMMARY

Thermal conductivity of fumed silica/glass bubble mixtures was
iInvestigated as a function of volume fraction of GB and gas
pressure from vacuum to atmospheric pressure

Total porosity and pore size of the compact play a critical role in
thermal conductivity, especially at higher gas pressures

Up to 20 vol% FS could be replaced with GB with little change in
thermal conductivity

Increase in thermal conductivity with >20% GB was attributed to
formation of larger pores due to inhomogeneous mixing

A more uniform mixing and compaction may retain low thermal
conductivity at higher GB contents.

This work was funded by lowa Energy Center, Grant # 13-04
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