Implementation and validation of a longwave heat exchange model

Matthias Winkler, Florian Antretter and Jan Radon

Buildings XIII – Clearwater Beach, FL – 2016-12-08

Building on knowledge

Agenda

- Current Approach in WUFI[®] Plus
- Inner Longwave Heat Exchange Model
- Validation
- Application
- Outlook
- Conclusion

Hygrothermal Building Simulation with WUFI® Plus

Hygrothermal Building Simulation with WUFI[®] Plus

Hygrothermal Building Simulation with WUFI[®] Plus

Calculation Method

View Factor Definition:

$$F_{ij} = \frac{1}{A_i} \iint_{A_i A_j} \frac{\cos \theta_i \cdot \cos \theta_j}{\pi \cdot r^2} \cdot dA_i \cdot dA_j$$

- Fraction of rays emitted from surface i with direct incidence on surface j to all rays emitted from surface i
- Geometric relationship
 - Solved before energetic calculations

Ai

Analytical solutions available, but

- limited number of shapes & positions
- Complicated / impossible analytical solutions for
 - more complex geometries
 - overshadowing

→ Solution: Triangulation

- Each surface divided into small triangles
- Calculation accuracy depends on triangle size
- All visualized components included

- Connecting lines for every pair of triangles
- Vector analysis to check possible crossings
- → Overshadowing from every visualized geometry

View Factor as fraction of connected triangles

$$F_{ij} = \frac{1}{A_i} \cdot \sum_{i=1}^n \sum_{j=1}^m \frac{\cos \theta_i \cdot \cos \theta_j}{\pi \cdot r^2} \cdot dA_i \cdot dA_j$$

- Area weighting:
 - Sum of view factors for each surface must be 1.00
 - No exact numerical solution
 - → Area-weighted distribution of remaining difference between numerical and exact solution

Calculation Method: Gebhart Factor

Gebhart Factor

- Fraction of energy emitted from one surface that is absorbed at another surface
- Considers all radiation paths, including multiple and own reflections
- Calculated from the View Factor
- Includes reflectivity and emissivity of all surfaces

$$G = (1 - F \cdot \rho)^{-1} \cdot F \cdot \varepsilon$$

Calculation Method: Longwave Radiation

Longwave Radiation absorbed on an interior surface:

$$I_{l,i} = \varepsilon_i \cdot \sum_{j=1}^N G_{ij} \cdot \sigma \cdot (T_i^4 - T_j^4)$$

- Emissivity
- Gebhart-Factor
- Stefan-Boltzmann constant
- Temperatures of interior surfaces

Validation

Validation: View Factors (Exemplary Room)

Rectangular room with interior wall

- Analytical solution (Howell, 2015)
- WUFI[®] Plus calculation:
 - Accuracy levels = density of triangulation network

Validation: Exemplary Room

		WUFI [®] Plus				
	Analytical	Low accuracy	Medium	Very high		
			accuracy	accuracy		
F _{1,ceiling}	0,2104	0,2172 (+3.23 %)	0,2127 (+1.09%)	0,2105 (+0.05%)		
F _{1,wall west}	0,0787	0,0795 (+1.02%)	0,0788 (+0.13%)	0,0786 (-0.13%)		
F _{1,floor}	0,2538	0,2619 (+3.19%)	0,2618 (+3.15%)	0,2549 (+0.43%)		
F _{1,wall north}	0,2308	0,2324 (+0.69%)	0,2312 (+0.17%)	0,2308 (±0.00 %)		
F _{1,wall east}	0,2262	0,2353 (+4.02%)	0,2285 (+1.02%)	0,2264 (+0.09 %)		
Sum	0,9999	1,0263 (+2.64 %)	1,0129 (+1.30 %)	1,0012 (+0.13%)		

Validation: Longwave radiation two parallel plates

- Analytic solution available
 - Includes emission, reflection & absorption
 - Neglects side-exchanges

$$q_{1,2} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \cdot \sigma \cdot \left(T_1^{4} - T_2^{4}\right)$$

- Variations in boundary conditions:
 - Surface temperatures
 - Surface emissivity's

Validation: Longwave radiation two parallel plates

		Test 1	Test 2	Test 3	Test 4
Surface Temperature 1	°C	50.00	50.00	30.00	30.00
Surface Temperature 2	°C	10.00	10.00	20.00	20.00
Emissivity surface 1	-	0.90	0.90	0.90	0.90
Emissivity surface 2	-	0.90	0.10	0.90	0.10
Longw. Heat Exchange: Analytical	W/m²	207.69	25.11	49.19	5.95
Longw. Heat Exchange: WUFI [®] Plus	W/m²	208.29	25.11	49.34	5.95
Deviation	%	+ 0.29 %	+ 0.04 %	+ 0.30 %	+ 0.03 %

Validation: DIN EN ISO 13791

DIN EN ISO 13791

- Validation procedures for thermal building simulation software
- Includes test cases for inner longwave heat exchange

Test cases

- 4 room-geometries with only opaque surfaces
- Fixed boundary conditions
- Validation criteria: Interior temperature

Validation: DIN EN ISO 13791

Validation: DIN EN ISO 13791

		Test 1	Test 2	Test 3	Test 4
DIN EN 13791	°C	34.4	30.4	38.5	25.5
WUFI [®] Plus	°C	34.3	30.1	38.3	25.0
Deviation	K	0.1 🗸	0.3 🗸	0.2 🗸	0.5 🗸

Validation criteria:

- Maximum allowed deviation: 0.5 K
- Validation according to DIN EN 13791 successful

Validation: ASHRAE 140 - Class I Test Procedures

Validation and Application Experiment

Impact of interior thermal insulation and intermittent heating on

- Interior climate conditions
- Energy savings
- Comfort
- Varying interior insulation systems and types
- Comparison of heating systems
- Influence of interior surface coatings
- Methods:
 - Measurements
 - Building and component simulation

Validation and Application Experiment

Validation and Application Experiment

Validation Experiment – Expected Range

Interior surface temperature

Experiment Instrumentation

Experiment Instrumentation

Application Experiments - Goals

Development of efficient strategies for intermittent building use, e.g.:

- Quick reacting panel heating systems
- Insulation of massive components (also interior)
- Coatings for inner surfaces (e.g. low-e)
- \rightarrow Assess options with experiment und simulation
- → Take restraints (e.g. humidity, comfort) into account

Current approach

- Unconditioned space
- Cold/Warm Air and Surfaces

- Blow in cold/warm air to condition the space
- → Surface conditions change slower
- \rightarrow Air temperature needs to fix it

Intermittent Heating/Cooling of a Space

- Unconditioned space
- Cold/Warm Air and Surfaces

- Condition the surfaces
 - Low-e surface treatment
 - Thin internal insulation of all surfaces
 - Panel heating/cooling on exterior wall surface

Where do we want to get?

Summary and Conclusion

Model for interior longwave heat exchange implemented in WUFI[®] Plus

- Model successfully validated:
 - Comparative calculations with analytical solutions
 - Validation tests from international standards (DIN, ASHRAE)
- Measurements will be used for further validations
- Validated model will be used for development of new and innovative demand responding space conditioning strategies

Implementation and validation of a longwave heat exchange model

Matthias Winkler, Florian Antretter and Jan Radon

Buildings XIII – Clearwater Beach, FL – 2016-12-08

Contact:

Florian Antretter

florian.antretter@ibp.fraunhofer.de

+49 8024 643-242

Building on knowledge

