
 Modeling Solutions for Grain Boundary Diffusion

Whipple's solution is a solution to coupled differential equations and boundary conditions
describing grain boundary diffusion. The solution provides concentration as a function of position
(x,y) in the geometric condition where the grain boundary is modeled as a slab of width 2a
centered at x=0. The solution has the condition that at y=0, c=c0 at all times, i.e. it is a constant

source solution. It accounts for diffusion from the surface directly into bulk from the surface, as
well as fast diffusion along the grain boundary, where it then diffuses out of the grain boundary
slab into the volume, laterally. The solution assumes the source is diffusing into a semi-infinite
grain bounday/material. [RTP Whipple, Philosophical Magazine, 45 (1954); 1225.]

The solution is a function of several dimensionless variables, which themselves are a function of
x,y,t, and several diffusion coefficients, which are functions of activation energy, the material's
melting temperature and the diffusion anneal temperature. It is easiest to obtain contour plots of
concentration if the final solution is of the form cg(x,y), which is best accomplished by defining

several values as constants at the beginning of the worksheet. Tm, D0, and Q0 are material

constants, and can be adjusted based on the system being modeled. T0 and t are the diffusion

time and temperature, and should be adjusted based on the expected diffusion anneal
time/temperature for which the solution is being modeled. In this particular worksheet I am

modeling magnesium self diffusion at diffusion temperature 250 oC for various times.

 Input Constants

Melting temp in oC Tm 650

Diffusion temp in oC T0 250

Diffusion time in sec t 60 5
 Volume Diffusion: Pre-Exponential and Activation Energy
 in nm^2/sec and J/K-mol

As determined by Arrhenius fit to Shewmon and
current SIMS data, obtained from ORNL
Diffusion Group internal website

D0 4.2 1013 Q0 127000

Defining the volume coefficient is based on a typical Arrhenius equation, with a
material-dependent activation energy and pre-exponential, as deinfed above. Temperature needs
to be in K for this equation, hence T0+273. The grain boundary diffusion coefficient has similar

relationships, yet the pre-exponent and activation energies are not accurately known. Thus, an
equation provided by Gjostein (assuming 0.5 nm grain boundary slab width) was used to
estimate Dgg. The grain boundary half width is also defined here for use in later calculations.

 Defining Diffusion Coefficients In nm2/sec
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It is most convenient to model grain boundary diffusion equations as functions of a set of
dimensionless variables, originally proposed by Whipple in 1954 (see reference above). These
definitions have been used to describe grain boundary diffusion ever since. In this model, the
grain boundary diffusion is modeled at a constant z (can be imagined as a cross-section).
The grain boundary is infinite in the y direction, which is also primary diffusion direction.

 Defining Dimensionless Variables

ratio of grain boundary to volume diffusion coefficient
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The Whipple solution for concentration as a function of position - cg(x,y) - defined assuming c0 =

1. For c0 other than one, the corresponding contour plot can be interpreted as contours of

constant cg/c0 as opposed to constant cg. Some example calculations are listed to the right, to

ensure the function works properly.
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 Example Calculations

cw 10 10( ) 0.985

cw 10 100( ) 0.88

cw 10 500( ) 0.749

cw 10 1000( ) 0.625

cw 10 2000( ) 0.431

cw 20 2000( ) 0.368

cw 100 2000( ) 0.062



Contours of constant concentration - cg(x,y)=C - Constant souce of diffusant at concentration

c0=1 at y=0 for t>0. Diffusion "into" the volume or grain boundary from the source occurs in the

+y direction, and diffusion out of the grain boundary into the volume occurs in the +x direction.
(would also occur in the -x direction, if it were plotted). The integral in Whipple's solution does
not converge for all values of x and y at a particular time and temperature, so the contour plot is
slightly limited in what portion of the volume it can show.

The constant source is at y=0 and the grain boundary is centered at x=0

Whipple's Solution Contours

cw



Suzuoka's solution is solved the exact same way as Whipple's, but is based on the boundary conditions of
an instantaneous source. The solution is of the same form as Whipple's, using the same dimensionless
variables as defined above for the Whipple solution. The Suzuoka solution can be obtained by a simple

transformation of Whipple's solution through the operator -(Dt)1/2(δ/δη) and replacing the value c0 with M, M

being the total amount of diffusant available through the instantaneous source (i.e. product of c0*tsource)

This solution is conventionally broken down into c1 and c2 where c1 accounts for direct volume diffusion from

the source, and c2 accounts for diffusion from the grain boundary into the volume.

 Defining M

tracer thickness (in nm) tM 20

for pure element (Mg) film as tracer: 
ρNA/(molar mass)

tracer concentration (in atoms/nm3) cM
1.738 6.02 102

24.305


M - amount of tracer per area

(atoms/nm2)
M tM cM

 Suzuoka's Solution
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 Example Calculations

cs 10 500( ) 0.23

cs 10 100( ) 0.651

cs 1 20( ) 0.357

cs 10 20( ) 1.247

cs 1 2( ) 0.36



Contour plot of Suzuoka's solution, showing contours of constant concentration. Absolute concentration (in

atoms/nm3) are the values shown. The source is at y=0, and there is a grain boundary of width 0.5 nm
centered at x=0. The diffusion occurs from the souce into the volume and into the grain boundary in the -y
direction, and diffusion occurs from the grain boundary into the volume in both the +x and -x directions.

Suzuoka's Solution Contours
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It is most practical to obtain curves based on a solution for the average concentration as a function of
depth, that is, cavg(y). To obtain this, the Suzuoka solution is integrated over x and divided by the area it

was integrated over. Essentially the standard method to determine the average value of a function.


