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Tracer correlation factors




Random walk of a atom on a lattice
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to the diffusion coefficient D and time t




The tracer correlation factor
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o in terms of the cosine of
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fis the tracer correlation factor 0<f<1




Do these correlations converge ?
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Tracer correlation factors depend on:

e the type of lattice.
e the diffusion mechanism.
e the type of diffusing atom in the matrix.

e the degree of local order of the atomic components.




Direct interstitial mechanism — for small solutes
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Matrix atom

® Interstitial solute

At low concentrations all jump directions
are equally probable — no correlation

(rr) =0
f =1

NOTE: f = 1 means no correlation

Octahedral siie

Tetrahedral site

. Octahedral site
Tetrahedral site

Small solutes such
asH,C,N,and Oin
bcc and fcc metals
are dissolved in
octahedral and/or
tetrahedral sites.
They diffuse via
direct interstitial
jumps




Vacancy mechanism -- dominates self- and solute diffusion in metals,
most disordered alloys and ionic crystals.
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For self-diffusion in cubic lattices, the correlation factors for vacancy-assisted
diffusion are just numbers, often called geometric correlation factors f,:

fcc: f,=0.781 bcc: f,=0.727
sc: f,=0.653 diamond: f,=0.5




Divacancy mechanism — contributes to self- and solute diffusion in

metals at high temperatures. In correlation terms, it is closely related to the
triple-defect mechanism in intermetallics.
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Correlation factors for divacancy-assisted diffusion are usually much smaller
than those for vacancy-assisted diffusion, e.g.:

fldivacancy in fcc) = 0.456
flvacancy in fcc) = 0.781




Tracer correlation factors for self-diffusion in various lattices and
for various diffusion mechanisms:

Lattice Mechanism Correlation factor
1d chain vacancy 0

honeycomb vacancy 1/3

2d-square vacancy 0.467

2d hexagonal vacancy 0.56006
diamond vacancy 1/2

simple cubic  vacancy 0.6531

bee cubic vacancy 0.7272, (0.72149)
fce cubic vacancy 0.7815

fce cubic divacancy 0.4579

bce cubic divacancy 0.335 to 0.469
fcc cubic (100) dumb-bell interstitial 0.4395

any lattice direct interstital 1

diamond colinear interstitialcy 0.727

CaF2(F) non-colinear interstitialcy 0.9855

CaF3(Ca) colinear interstitialcy 4/5

CaF2(Ca) non-colinear interstitialcy 1




For the hopping model (discrete jumps) the diffusion coefficient
can be seen as the product of correlated and uncorrelated parts:

D,*=<R?>/6t
=f, (Z c,w;a?)
/ "

correlated part urgcorrelated part

Z: coordination number

c,: vacancy concentration

w;: exchange frequency of an atom of type j with a vacancy
a: jump distance



Normal solute-diffusion in metals

Solute diffusivity: D =f _,.a*> w, C, exp(H®/kT)

oC aZexp [- (HF-HE+ HM__ )/KT]

solute
HF : Formation enthalpy of vacancy

H® : Binding enthalpy vacancy-solute pair

HM_ ... : Migration enthalpy vacancy-solute exchange
f . : Correlation factor for solute diffusion© © © O Q000
cCe0 -y OGO
Activation enthalpy for solute diffusion: 0000 0000
Q000 Q000
QZ - HF - HB'I' HMsqute- C (O Matrixatom
@ Traceratom
[] Vacancy

H® <0 repulsion or HE >0 attraction

HM barrier for exchange between solute and vacancy

solute

C contribution to the activation energy from the correlation factor




Where does the temperature dependence of the solute
correlation factor come from?

Example: the five-frequency model (Le Claire
and Lidiard 1956, Manning 1964)

fsorute = (W1H7TFW3/2) | (Wytw,+7Fw,/2)

where

7F=7 (10b%+180.5 b3+927 b2+1341b)/
(2b*+40.2b3+254b%+ 597b+436)

and

b= w,/w,

w, is the reverse of a w; type jump
W, is the frequency of a host jump far from the solute

Over a surprisingly wide temperature interval, £ . can be approximated by
an Arrhenius expression:

fsolute ~ f0solute exp ('C/ kT)



How big is this contribution of C to the overall activation
energy for diffusion?

Example: Solute diffusion in silver

Solute Q ,(expt.) C (calc.)
Zn 1.834 eV ~ -0.1eV
Sn 1.704 eV ~ -0.2 eV




Tracer diffusion in concentrated disordered alloys

The Random Alloy Model

This model was introduced by the late John Manning in 1968/1971 to deal
with diffusion in concentrated disordered alloys.

e Random mixing of N atomic components and isolated vacancies.

e w, — atom-vacancy exchange frequency depends on atom i
and not on its surroundings.

Note that each w; can be interpreted as an average or effective
frequency that can depend on alloy composition.




Tracer diffusion in the random alloy

Manning (1971)

H
fi =——
2w, + H

H: frequency of escape of the vacancy from a particular atom.

Moleko, Allnatt and Allnatt (1989)

Hi
2w, + H,

(Self-consistent treatment)

Seven (!) Monte Carlo studies showed that Manning’s original approach
provided the best agreement.



But all seven Monte Carlo studies were wrong because the jump sequences were
later found to be much too short !!

In some cases, long-time diffusion behavior is only reached after 500-1000 (!)
jumps per atom (Belova and Murch PM 2000).

Cautionary Note: This finding should be noted whenever correlation factors are
calculated in Kinetic Monte Carlo or Molecular Dynamics simulations.

The self-consistent treatment of Moleko, Allnatt and Allnatt is, in fact,
almost exact.
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Comments:

Differences in the atom-vacancy exchange
frequencies of a factor of 100 are common in
concentrated disordered alloys.

This can lead to differences in the correlation
factors of roughly a factor of 20.

The more mobile species will be more correlated:
i.e. smaller correlation factors

The less mobile species will be less correlated:
i.e. higher correlation factors

But correlation effects will not change the basic

relationship of the exchange frequencies with the
diffusivities but only weakens it:

i.e If w,>>wgthen D, > Dg



Tracer correlation factors in the ternary alloy Cu-Fe-Ni using
the MAA theory Belova et al. Acta Mat 2005.

Ce,=0.187, cy; = 0.686, cr, = 0.127

Cu 0.329
Fe 0.638
Ni 0.848

Cc,=0.093, c\; = 0.802, ¢, = 0.105
Cu 0.608
Fe 0.376
Ni 0.819



Tracer diffusion in intermetallics




Schematic representation of possible jumps in an intermetallic:

W AB_)B WBB_)B
B sublattice @ @ O @ @ @
WAB >0 WBa—>B WBB—m W, oa—p
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Intermetallics with antistructural disorder

will always have many jump reversals

O _A atom as atoms jump from the ‘right’ sublattice to
the wrong sublattice and then immediately

reverse that jump.

This immediately leads to very small

correlation factors for that type of

intermetallic.

-vacancy




Tracer correlation in an intermetallic can be described by

an adaptation of Manning’s diffusion kinetics formalism
for the random alloy (Belova and Murch Phil Mag 1999-

2003):
E.g. For the B2 structure

_ H1H2
- B—a o—p ?
HH,+w,""H +w, "H,

fA

H, and H, are the positive roots of the following equations:

o oa—p o, a—>f
1-1, C W CpWp

2 2weP4+H, 2weP4H,

B, Ba B ... Bpoa
1-1, C\W' . CWs

2 2whP*+H, 2wh*+H,

H, and H, are the so-called ‘vacancy escape’ frequencies
for the vacancy to be able to ‘escape’ from an atom on the a and 3 sublattices.



Predicted tracer correlation factors in CuZn from experimental knowledge
of the ratio of the tracer diffusion coefficients, the long range order
parameter and T,

DZn/DCu on fCu
Temperature (K) (expt. (predicted)  (predicted)

(Chipman and

Warren)
523 1.94 0.07 0.61
573 1.98 0.10 0.64
618 1.61 0.19 0.67
653 1.63 0.31 0.695
683 1.64 0.41 0.70

f,,, contributes 29% of the observed activation energy for tracer Zn diffusion.
fc, contributes 18% of the observed activation energy for tracer Cu diffusion.




Typical comparison of calculated tracer correlation factors
using Manning type arguments with Monte Carlo simulation:
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Note the loss of agreement at high levels of order:
this is a result of concatenated mechanisms (six-jump-cycle)



Another approach to tracer correlation in intermetallics

A theory based on the six-jump-cycle as the ‘diffusion unit’.
(the approach from the ordered state)

The six-jump-cycle (6JC) is a minimum energy penalty cycle
that provides for effective diffusion in a stoichiometric intermetallic
with perfect order.

O

O & @

The ‘pure’ 6JC

The 6JC is then taken as the basic diffusion ‘unit’. Extrinsic antistructural atoms (from
nonstoichiometry) and intrinsic antistructural atoms (from thermal activation) can
participate directly and indirectly (via interactions) in the 6JC. Belova and Murch (2002-
2004).
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Application of the 6JC-unit theory to interdiffusion and
tracer diffusion data in f-AgMg.

Fit to the interdiffusion coefficient data (Iijima, et al.
1995) provides values for the ordering energy E = 7.19
kJ mol! (T=1129°C) and Ey;\p, - Egp, = 10.7E .
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Corresponding tracer correlation factors in f-AgMg predicted from

the 6JC-unit theory (Belova and Murch J Phys C 2005):
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fag contributes 19% of the observed activation energy for tracer Ag diffusion.
fug contributes 28% of the observed activation energy for tracer Mg diffusion.




Collective correlation factors

Collective correlation factors appear in ‘collective’ mass
transport quantities such as:

« lonic conductivity
o Intrinsic diffusion coefficients
o Interdiffusion coefficients




Fick’s First Law (1855):

= -0, &L
dx

Because it does not recognize all of the driving forces,

direct and indirect, acting on species i, Fick’s First Law

is frequently insufficient as a condition for describing fluxes.



The Onsager (1934) Flux Equations of irreversible processes
provide a more general formalism through the postulate of
linear relations between the fluxes and the driving forces:

J; :Zl—ijxj

L;; : the phenomenological coefficients
(independent of driving force)

X; : the driving forces



Consider a binary alloy AB.
The Onsager Flux Equations are written as:

AT Laa Xp+ Lag Xp

Jg=Lgg Xp+ Lyp X,

What is the meaning of the off-diagonal or cross terms ?
Consider a hypothetical situation where A feels a force X, but

B does not feel a corresponding force X;. (X;=0)

The fluxes are then: J,=L,, X, and Jg=L,X,

The A atoms are responding only to the direct force X,.

The B atoms only respond to the indirect force X, and are in effect
‘dragged’ along by the A atoms.

The strength of this drag is dictated by the size of L .



Do the phenomenological coefficients have an atomistic meaning?

<A >

L,
6VKT!

(Allnatt 1982)

A.: the ‘collective displacement’ or displacement of the ‘center-of-mass’

of species i in time t.

c.g. <ﬁ,§> <‘%A"%B>
Loy = LAB:

M 6VKTt

OVKTt

If the moving A species does not interfere with the moving B species
e.g2. A and B do not compete for the same defects
or A and B do not interact (i.e. different sublattices)

— | <R, B>=0 andlL ;=0.

However, in most cases of solid-state diffusion,

the off-diagonal

coefficients can be quite significant and should never be casually discarded.




The phenomenological coefficients can be expanded out in
much the same way as tracer diffusion coefficients:

For example, for a binary alloy:

_ a2WAC\/CANfAA
M KT

a’w,C,c, Nf .,
KT

_ @AW, CaNFE  a’weG, CoNf g’

L.. =L
TR KT KT
N: number of lattice sites per unit volume
f.. f (: collective correlation factors (the correlated parts of the

i 9 phenomenological coefficients)



Expressions for collective correlation factors can also be developed in
much the same way as tracer correlation factors.

In terms of the cosine of the angle between the ‘“first’ jump and all
subsequent jumps of the same species (diagonal factor) or another
species (off-diagonal factor)

Diagonal collective correlation factors:

fi=1+2) <cosg™ >
m=1

Off-diagonal collective correlation factors (binary case only):

fre =D <cosbiy >+—2E% <cosby, >
m=1 AnA m=1




0.4

0.2

-0.4

012345678 91011121314151617181920
m
Example of the convergence of the cosine between the first collective jump and the

m’th collective jump (of the same species A) in a binary alloy.



Collective correlation factors depend on:

e the type of lattice.
e the diffusion mechanism.
e the types of diffusing species in the matrix.

e the degree of local order of the atomic components.




Collective correlation factors in disordered alloys
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Collective correlation factors for ordered and disordered alloys

Typical comparison of collective correlation factors calculated
using Manning-type arguments with Monte Carlo simulation:
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Note the loss of agreement at high levels of order:
this is a result of concatenated diffusion mechanisms
(six-jump-cycle)



Haven Ratios and Vacancy-Wind factors in diffusion




One mobile component.

lonic conductivity and tracer diffusion (the Haven Ratio)

The Haven Ratio Hj, is the ratio of the tracer diffusion coefficient
D ,* of a single mobile species (A) to a dimensionally correct diffusion
coefficient D_ obtained from the d.c. ionic conductivity o,. G.E. Murch:
Solid State lonics Vol. 7 (1982), p.177.

H = CatiDs _Da_ f,
* KkTe, D f,,

(o}

C, is the concentration of charge carriers, q, is the charge on a mobile ion,
f, is the tracer correlation factor,

f,, is the collective correlation factor, sometimes also called the conductivity
or physical correlation factor..



Interpretation of the Haven Ratio

If we neglect collective correlations, the interpretation of the Haven
Ratio is straightforward in ionic conductors for diffusion mechanisms
such as the vacancy mechanism where H; then simply equals f, the
geometric correlation factor.

For cooperative diffusion mechanisms e.g. the interstitialcy
mechanism, the displacement of the charge in an electric field is
different from the displacement of a tracer atom:

(r*)° fa

r)° f
( q AA
Nonetheless, the interpretation of H still remains straightforward.

When the defect concentration is high, perhaps above several percent,
then the collective correlation factor f,, must be included in the
interpretation of the Haven Ratio.

Unfortunately, after a promising start with lattice gas models, little
progress has been achieved recently in the analysis of Hy for realistic
models of ionic materials, especially glasses.



The Haven Ratio also appears for interstitial diffusion
in metals:

where ¢ is the thermodynamic factor



Haven Ratio Hy = f,/f,, for carbon diffusion in Fe as a function of
carbon composition at 1000 °C.

f,=1.0 P 1.00
(lone interstitials)
0.75 |
L | < =05
R «* 050 1 (paired
interstitials)
0.25
0 L L L L
0 0.01 0.02 0.03 0.04 0.05

Cc
I V Belova and G E Murch Phil. Mag. 2006.

Chemical diffusion and activity data: R.P. Smith, Acta Metall., 1, 578 (1953);

Tracer diffusion data: D.C. Parris and R.B. McLellan, Acta Metall. 24, 523 (1976).
This behaviour is consistent with recent molecular dynamics results
that show carbon interstitials diffuse partly as lone interstitials and

partly as paired interstitials. Evteev et al. Acta Mat 2009.



Interdiffusion and tracer diffusion in binary alloys

The vacancy-wind factor S appears in the relation between
the interdiffusivity and the component tracer diffusivities in
a binary alloy:

The Darken-Manning relation

D =S(c,D, +c¢,D;)¢

where
CB DZ + CA D; (the Darken approximation)

and in terms of collective and tracer correlation factors:

(B) (A)
S - (CB Tan+Ca0 Top =Ca0 Tap = Co e ] weegzn
CB fA + CAg fB

of jumps of an A or a B atom
in time t.



Example: Vacancy-wind factor S in a binary concentrated random alloy (fcc):

Percolation
threshold
10

W,/Wg

Manning gives:
1.0< S <1.2796 (fcc).

The vacancy-wind factor S as calculated numerically from the accurate MAA
theory.

Disordered alloys rarely show w,/wg smaller than 102, so S will normally be
greater than 1 but less than about 2.



The Darken-Manning Equation was re-derived for diffusion in
B1 and B2 intermetallics (Belova and Murch 1997-1998).

The limits for the vacancy-wind factor are now quite different
from the disordered alloy:

1 ey T
i H oy
u . |

" . | e W, -
S Six-jump-cydle limit
0.1}
| | | | | |
1.0 0.0
. Wi—)B /W[i—m
Complete disorder Complete order

Disordered alloys:
1.0 < S < f,! (Manning)
1.0 < S < o (percolation limit) (MAA).



Intrinsic diffusion coefficients

Other vacancy-wind factors appear in relations
between the intrinsic diffusivities and the tracer diffusivities:

(Intrinsic diffusivities are obtained by way of measurement of inert
marker shifts in the interdiffusion experiment.)

I _
DA o DA*rA¢
I _
DB o DB*rB¢
where
r =KT LAA/CA—LA*B/CB = kT LBB/CB—LA*B/CA When L,g=0,
C,.C.D, C,.C.;Dg ry,=rg=1

and in terms of collective and tracer correlation factors:

r— fAA_CA fp(\é‘)C; r — fBB_CB fiS)CZ\I
A f, B o




A comment about the Darken approximation

The Darken approximation
All off-diagonal phenomenological coefficients are put equal to
zero.

L;=0 fori=j.

All atoms must follow uncorrelated random walks, i.e. the tracer
and the diagonal collective correlation factors are simply given by:

fi=l  fi=1

and the off-diagonal correlation factors are equal to zero:
fi;=0 forizj.

Very simple relations then exist between the diagonal
phenomenological coefficients and the tracer diffusion
coefficients:

By enforcing this relation, the diagonal phenomenological coefficients
are then corrupted in their meaning because they now ‘carry’ any off-

diagonal information (Manning, Acta Met. 1967) .



Physically, what is the vacancy-wind effect itself?




Visualization of the

vacancy-wind effect for
interdiffusion in a binary B T A
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The normalized probability of finding a vacancy in the region
around an average A atom and an average B atom with D, = 10 Dg

The vacancy-wind effect here is simply an apparent deviation from the local
equilibrium vacancy concentrations as seen by moving atoms.
For interdiffusion in this alloy, both A and B are slowed down by the vacancy-wind




Chemical diffusion in ternary disordered alloys

The ‘Darken-Manning’ type expression for the ternary
alloy is (Belova and Murch Acta Mat. 2009):

Yo ~ C ~ Darken N Darken |[ ]
DAA DAB . SAA DAA SAB DAB ¢11 ¢21
~ C Xc | ~ Darken ~ Darken

_DBA DBB_ _SBADBA SBB DBB __¢12 ¢22_

The vacancy-wind is now represented as a 2x2 matrix.

The above expression can be compared with the
Darken-Manning expression for the binary alloy:

D = SDP2™" = S(c,D, + C,Dg )¢




Ternary disordered alloys
Manning’s ideas for the binary alloy can be extended to give

approximations for the 2x2 matrix of vacancy-wind factors in the
ternary alloy. (Belova and Murch, Acta Mat. 2009):
2¢,(Cg(Dy —Dg) +Cc (D, —Dc))(D, — D)
M, ((1-¢¢)D, +¢,D¢ )(€, D, +C5Dg +cc D)
25 (Co(Dg — D) + ¢ (Dg — D¢ ))(Dg — D)
M, ((1-¢¢)Dg +cgDc)(c, D, +¢5 Dy +¢:De)

Spp =1+

Sgg =1+

D D’
SBA:1+i 1— _ B_ . SAB=1+i 1— . A *
M, c,D,+c;D; +¢.D. M, c,D, +CgDg +C. D

(At compositions close to the percolation threshold, the actual vacancy-wind
factors could in principle, behave quite differently from these predictions)

Note the formal similarity of their mathematical structures with
Manning’s original expression for S in the binary alloy:

2C) Cg (D: — D;)z

M(CgDa +CaDg)(CaADp +C5Dp)




Vacancy-wind factors in the disordered Cu-Fe-Ni fcc alloy

cFe

Cni

cCu

SCuCu

S FeFe

S CuFe

S FeCu

0.127

0.686

0.187

1.09

1.01

0.52

0.91

0.265

0.503

0.232

1.12

0.99

0.52

1.06

0.108

0.464

0.428

1.19

0.99

0.71

1.12

0.298

0.375

0.327

1.06

1.02

0.83

0.93

0.105

0.802

0.093

1.01

1.04

0.82

0.53

Vacancy-wind factor matrix elements (S;) calculated using the Manning-type
approach from the measured tracer diffusion coefficients in the Cu-Fe-Ni system.




lonic compounds: interdiffusion and tracer diffusion

Two mobile ionic species A and B share the same sublattice (and
therefore compete for the same defects).

The rest of the structure is essentially immobile at the
temperatures of interest.

For chemical interdiffusion between AX and BX, there is no
Kirkendall effect (i.e. no marker shift) because there can be no
separation of charge and therefore no net vacancy flow.

The correct equation to use under these circumstances is the Nernst-Planck
Equation not the Darken—Manning equation. The Nernst-Planck Equation
Is also fully consistent with the Manning diffusion kinetics theory developed
originally for the disordered alloy (i.e. no vacancy-wind term):

D,.Ds.
CoD e +CgDge

D=

The Nernst-Planck Equation




However, the near-exact MAA diffusion kinetics
theory does give a new vacancy-wind like correction

term to the Nernst-Planck Equation (1 v Belova, AR Allnatt
and G E Murch Acta Mat, 2009):

D 5. Dg.

D=
C,D . +CgDg.

SNP(D

where SMP is the vacancy-wind term:

e M (1 1
2 |, f,




The vacancy-wind factor SNP as calculated by the MAA theory as a
function of composition c, with w,/wg = 101, 102, 10-3, 104 and 10-°.

1.3 10-3-105
1.25 |

1.2 10-2

GNP
1.15 |

1.1
10

1.05 |

0.2 0.4 0.6 0.8 1
Ca

In most cases, it is unlikely that w,/wg is smaller than 10-2,
which means that at most, there is a 25% correction to the Nernst-Planck
Equation.




Final comments

So. Are correlations important in diffusion ?

It depends......

e At the very best, a tracer diffusion coefficient can be measured with a precision of 5%.
A precision of 30% is still considered very good.

Thus for self-diffusion in pure metals, tracer correlations that typically produce a
30-50% reduction in the diffusion coefficient could be considered borderline in
numerical importance.

e For typical solute diffusion in metals, the correlation factor can however make a
sizable contribution (probably up to 10%) to the activation energy and, for a fast diffuser,
perhaps reduce D, by an order of magnitude.

e For self-diffusion in disordered alloys, tracer correlation effects can reduce
D, (of the fast diffuser) by roughly an order of magnitude in typical disordered alloys.
Again there will be a contribution to the total activation energy of up to 10%.

e For self-diffusion in intermetallics with antisite disorder, tracer correlation effects
are now greatly magnified because of jump reversals. D, can be reduced by up to 3 or 4
orders of magnitude and contributions to the activation energy may be as high as

~ 30%, perhaps more.




e Collective transport quantities such as interdiffusion and intrinsic diffusion
coefficients are affected by collective correlation effects.

By and large, these effects will produce quite similar behaviour as for tracer correlation
effects. For example, chemical diffusion in an intermetallic will be greatly affected.

e In quantities such as Haven ratios and vacancy-wind factors, most of the
correlation effects that would lead to large changes in the individual diffusion
coefficients, now largely cancel out.

-For typical disordered alloys, putting in the vacancy-wind factor

would give a deviation of up to a factor of two (higher) than the Darken equation.
-For intermetallics, the deviation would be up to a factor of two (lower) than the
Darken equation.

-For ionic compounds, the deviation would be less than 25% from the
Nernst-Planck equation.



Thank you for your attention !




