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Tracer correlation factors



Random walk of a atom on a lattice

DtR 62 
Einstein (also Einstein‐
Smoluchowski) relation: 

relates the mean square displacement 
to the diffusion coefficient D and time t
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f is the tracer correlation factor

The tracer correlation factor
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The tracer correlation 
factor can be expressed 
in terms of the cosine of 
the angle between the 
‘first’ jump and all 
subsequent jumps of a 
given atom (the tracer).

0 ≤ f ≤ 1
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Example of the convergence 
of the cosine between the first 
tracer A jump and the
m’th tracer A jump. 

Do these correlations converge ?



Tracer correlation factors depend on:

• the type of lattice.

• the diffusion mechanism.

• the type of diffusing atom in the matrix.

• the degree of local order of the atomic components.



Small solutes such 
as H, C, N, and O in 
bcc and fcc metals 
are dissolved in 
octahedral and/or 
tetrahedral sites. 
They  diffuse via 
direct interstitial 
jumps

Direct interstitial mechanism – for small solutes
At low concentrations all jump directions 
are equally probable → no correlation

NOTE: f = 1means no correlation

1
0




f
rr ki



Vacancy mechanism ‐‐ dominates self‐ and solute diffusion in metals, 
most disordered alloys and ionic crystals.

After a vacancy‐tracer exchange 
a reverse tracer jump is more 
likely, simply because the 
vacancy is still available on the 
neighbour site.
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For self‐diffusion in cubic lattices, the correlation factors for vacancy‐assisted 
diffusion are just numbers, often called geometric correlation factors  f0:

fcc:  f0 = 0.781    bcc:  f0 =0.727

sc:  f0 =0.653    diamond:  f0= 0.5



Divacancy mechanism – contributes to self‐ and solute diffusion in 
metals at high temperatures. In correlation terms, it is closely related to the 
triple‐defect mechanism in intermetallics.
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Correlation factors for divacancy‐assisted diffusion are usually much smaller 
than those for vacancy‐assisted diffusion, e.g.:

f(divacancy in fcc) = 0.456

f(vacancy in fcc) = 0.781



Tracer correlation factors for self‐diffusion in various lattices and 
for various diffusion mechanisms:



Dj*=<R2>/6t
= fj (Z cvwj a2)

correlated part uncorrelated part
Z: coordination number
cv: vacancy concentration
wj: exchange frequency of an atom of type j with a vacancy
a: jump distance

For the hopping model (discrete jumps) the diffusion coefficient
can be seen as the product of correlated and uncorrelated parts:



Solute diffusivity:   D = fsolute a2 ω2 CV exp(HB/kT) 

 fsolute aexp [‐ (HF ‐HB + HM
solute)/kT]

HF :   Formation enthalpy of vacancy

HB : Binding enthalpy vacancy‐solute pair

HM
solute : Migration enthalpy vacancy‐solute exchange

fsolute :  Correlation factor for solute diffusion 

Activation enthalpy for solute diffusion:

Q2 = HF ‐ HB + HM
solute ‐ C

HB < 0   repulsion or HB > 0   attraction

HM
solute barrier for exchange between solute and vacancy

C      contribution to the activation energy from the correlation factor 

Normal solute-diffusion in metals



Where does the temperature dependence of the solute 
correlation factor come from?

fsolute = (w1+7Fw3/2) / (w2+w1+7Fw3/2)

where 
7F= 7 (10b4+180.5 b3+927 b2+1341b)/ 
(2b4+40.2b3+254b2+ 597b+436)
and

b= w4/w0

Example: the five-frequency model (Le Claire 
and Lidiard 1956, Manning 1964)

Over a surprisingly wide temperature interval, fsolute can be approximated by
an Arrhenius expression:

fsolute ≈ f0
solute exp (-C/kT)

w4 is the reverse of a w3 type jump
w0 is the frequency of a host jump far from the solute



How big is this contribution of C to the overall activation 
energy for diffusion?

Solute Q 2(expt.) C (calc.)
Zn 1.834 eV ~  ‐0.1 eV
Sn 1.704 eV ~  ‐0.2 eV

Example: Solute diffusion in silver



The Random Alloy Model

This model was introduced by the late John Manning in 1968/1971 to deal 
with diffusion in concentrated disordered alloys.

● Random mixing of N atomic components and isolated vacancies.

● wi – atom-vacancy exchange frequency depends on atom i
and not on its surroundings.

Note that each wi can be interpreted as an average or effective 
frequency that can depend on alloy composition.

Tracer diffusion in concentrated disordered alloys



Tracer diffusion in the random alloy

Manning (1971)

Hw
Hf
i

i 


2

H: frequency of escape of the vacancy from a particular atom.

Moleko, Allnatt and Allnatt (1989)

ii

i
i Hw

Hf
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(Self-consistent treatment)

Seven (!) Monte Carlo studies showed that Manning’s original approach 
provided the best agreement.



But all seven Monte Carlo studies were wrong because the jump sequences were
later found to be much too short !! 

In some cases, long-time diffusion behavior is only reached after 500-1000 (!) 
jumps per atom (Belova and Murch PM 2000).

Cautionary Note: This finding should be noted whenever correlation factors are 
calculated in Kinetic Monte Carlo or Molecular Dynamics simulations.

The self-consistent treatment of Moleko, Allnatt and Allnatt is, in fact, 
almost exact.



Tracer correlation factor fB in the b.c.c. alloy for various values of wA/wB. 
Points – Monte Carlo simulations; solid lines – Moleko, Allnatt and Allnatt 1989

wA/wB

Percolation threshold

Fast diffuser

Slow diffuser



Differences in the atom-vacancy exchange 
frequencies of a factor of 100 are common in 
concentrated disordered alloys.

This can lead to differences in the correlation 
factors of roughly a factor of 20.

The more mobile species will be more correlated: 
i.e. smaller correlation factors
The less mobile species will be less correlated: 
i.e. higher correlation factors

But correlation effects will not change the basic 
relationship of the exchange frequencies with the 
diffusivities but only weakens it: 

i.e If wA>> wB then DA > DB 

Comments:



Tracer correlation factors in the ternary alloy Cu-Fe-Ni using
the MAA theory  Belova et al.  Acta Mat 2005. 

Component Correlation factor

Cu 0.329

Fe 0.638

Ni 0.848

cCu=0.187, cNi = 0.686, cFe = 0.127

Component Correlation factor

Cu 0.608

Fe 0.376

Ni 0.819

cCu=0.093, cNi = 0.802, cFe = 0.105



Tracer diffusion in intermetallics



 sublattice

 sublattice

Schematic representation of possible jumps in an intermetallic:

- B atom

-A atom

-vacancy
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wB


wA
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 wB
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Intermetallics with antistructural disorder 
will always have many jump reversals
as atoms jump from the ‘right’ sublattice to 
the wrong sublattice and then immediately
reverse that jump.
This immediately leads to very small 
correlation factors for that type of 
intermetallic.



Tracer correlation in an intermetallic can be described by 
an adaptation of Manning’s diffusion kinetics formalism 
for  the random alloy (Belova and Murch Phil Mag 1999-
2003):
E.g.  For the B2 structure
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H1 and H2 are the positive roots of the following equations:

H1 and H2 are the so-called ‘vacancy escape’ frequencies 
for the vacancy to be able to ‘escape’ from an atom on the α and β sublattices.



Temperature (K)
DZn/DCu 
(expt.
(Chipman and 
Warren)

fZn
(predicted)

fCu
(predicted)

523 1.54 0.07 0.61

573 1.58 0.10 0.64

618 1.61 0.19 0.67

653 1.63 0.31 0.695

683 1.64 0.41 0.70

Predicted tracer correlation factors in CuZn from experimental knowledge
of the ratio of the tracer diffusion coefficients, the long range order 
parameter and Tc

fZn contributes 29% of the observed activation energy for tracer Zn diffusion.
fCu contributes 18% of the observed activation energy for tracer Cu diffusion.



Typical comparison of calculated tracer correlation factors 
using Manning type arguments with Monte Carlo simulation:
Typical comparison of calculated tracer correlation factors 
using Manning type arguments with Monte Carlo simulation:

Note the loss of agreement at high levels of order:
this is a result of concatenated mechanisms (six-jump-cycle)

Complete order Complete disorder



The six-jump-cycle (6JC) is a minimum energy penalty cycle 
that provides for effective diffusion in a stoichiometric intermetallic
with perfect order.

The ‘pure’ 6JC

B1

B2A1 B1

B2 A1



A theory based on the six-jump-cycle as the ‘diffusion unit’.
(the approach from the ordered state)

The 6JC is then taken as the basic diffusion ‘unit’. Extrinsic antistructural atoms (from
nonstoichiometry) and intrinsic antistructural atoms (from thermal activation)  can 
participate directly and indirectly (via interactions) in the 6JC. Belova and Murch (2002-
2004).

Another approach to tracer correlation in intermetallics



v
B A

A

A

‘w2-type 6JC’
()

‘w3-type 6JC’

‘w4-type 6JC’
()

‘w1-type 6JC’

‘w1-type 6JC’



The five-frequency model for 
describing the interaction of a 
vacancy with a solute inspired the 
6JC diffusion unit’s interaction with 
an antistructural atom.



Application of the 6JC-unit theory to interdiffusion and 
tracer diffusion data in β-AgMg.

Fit to the interdiffusion coefficient data (Iijima, et al.
1995) provides values for the ordering energy E = 7.19 
kJ mol-1 (TC=1129oC) and EMgMg - EAgAg = +0.7E .

6JC unit theory



Corresponding tracer correlation factors in β-AgMg predicted from 
the 6JC-unit theory (Belova and Murch J Phys C 2005):

fMg

fAg

fAg contributes 19% of the observed activation energy for tracer Ag diffusion.
fMg contributes 28% of the observed activation energy for tracer Mg diffusion.



Collective correlation factors

Collective correlation factors appear in ‘collective’ mass 
transport quantities such as: 

 Ionic conductivity 
 Intrinsic diffusion coefficients 
 Interdiffusion coefficients



Fick’s First Law (1855):

dx
dCDJ i

ii 

Because it does not recognize all of the driving forces, 

direct and indirect, acting on species i, Fick’s First Law 

is frequently insufficient as a condition for describing fluxes.



The Onsager (1934) Flux Equations of irreversible processes 
provide a more general formalism through the postulate of 
linear relations between the fluxes and the driving forces:


j

jiji XLJ

Lij : the phenomenological coefficients 
(independent of driving force)

Xj : the driving forces



The A atoms are responding only to the direct force XA. 
The B atoms only respond to the indirect force XA and are in effect
‘dragged’ along by the A atoms. 
The strength of this drag is dictated by the size of LAB.

Consider a binary alloy AB. 
The Onsager Flux Equations are written as: 

Consider a hypothetical situation where A feels a force XA but 

B does not feel a corresponding force XB.  (XB=0)

The fluxes are then:   JA= LAA XA and JB= LABXA

JA = LAA XA + LAB XB

JB = LBB XB + LAB XA

What is the meaning of the off-diagonal or cross terms ?



VkTt
L ji

ij 6



RR

(Allnatt 1982)

Ri: the ‘collective displacement’ or displacement of the ‘center-of-mass’
of species i in time t.

Do the phenomenological coefficients have an atomistic meaning?

VkTt
L A

AA 6

2 


R
VkTt

L BA
AB 6




RRe.g.

If the moving A species does not interfere with the moving B species
e.g.    A and B do not compete for the same defects
or      A and B do not interact (i.e. different sublattices)

<RA·RB> = 0    and LAB = 0.

However, in most cases of solid‐state diffusion, the off‐diagonal 
coefficients can be quite significant and should never be casually discarded.



The phenomenological coefficients can be expanded out in 
much the same way as tracer diffusion coefficients:

For example, for a binary alloy:
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phenomenological coefficients)
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N: number of lattice sites per unit volume
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Expressions for collective correlation factors can also be developed in 
much the same way as tracer correlation factors. 

In terms of the cosine of the angle between the ‘first’ jump and all 
subsequent jumps of the same species (diagonal factor) or another
species (off‐diagonal factor)

Diagonal collective correlation factors:

Off‐diagonal collective correlation factors (binary case only):
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Example of the convergence of the cosine between the first collective jump and the
m’th collective jump (of the same species A) in a binary alloy.



Collective correlation factors depend on:

• the type of lattice.

• the diffusion mechanism.

• the types of diffusing species in the matrix.

• the degree of local order of the atomic components.



Collective correlation factors for the fcc random alloy with wA/wB=0.1

Solid lines: MAA/Manning
Points: Monte Carlo

Sato

Slow diffuser

Fast diffuser

Collective correlation factors in disordered alloys



Typical comparison of collective correlation factors calculated 
using Manning-type arguments with Monte Carlo simulation:
Typical comparison of collective correlation factors calculated 
using Manning-type arguments with Monte Carlo simulation:

Complete order Complete disorder

Note the loss of agreement at high levels of order:
this is a result of concatenated diffusion mechanisms 
(six-jump-cycle)

Collective correlation factors for ordered and disordered alloys



Haven Ratios and Vacancy‐Wind factors in diffusion



The Haven Ratio HR is the ratio of the tracer diffusion coefficient 
DA* of a single mobile species (A) to a dimensionally correct diffusion 
coefficient Dσ obtained from the d.c. ionic conductivity σA. G.E. Murch: 
Solid State Ionics Vol. 7 (1982), p.177.

AA

AA

A

AAA
R f

f
D
D

kT
DqCH 



**2

CA is the concentration of charge carriers, qA is the charge on a mobile ion,
fA is the tracer correlation factor,

fAA is the collective correlation factor, sometimes also called the conductivity
or physical correlation factor..

One mobile component.

Ionic conductivity and tracer diffusion (the Haven Ratio)



If we neglect collective correlations, the interpretation of the Haven 
Ratio is straightforward in ionic conductors for diffusion mechanisms 
such as the vacancy mechanism where HR then simply equals f0 the 
geometric correlation factor. 

For cooperative diffusion mechanisms e.g. the interstitialcy
mechanism, the displacement of the charge in an electric field is 
different from the displacement of a tracer atom:

AAq

A
R fr

frH 2

2

)(
*)(



Nonetheless, the interpretation of HR still remains straightforward.

When the defect concentration is high, perhaps above several percent,
then the collective correlation factor fAA must be included in the
interpretation of the Haven Ratio.
Unfortunately, after a promising start with lattice gas models, little
progress has been achieved recently in the analysis of HR for realistic
models of ionic materials, especially glasses.

Interpretation of the Haven Ratio



AA

AA
R f

f
D

DH  ~
*

where is the thermodynamic factor

The Haven Ratio also appears for interstitial diffusion
in metals:
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f A
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I V Belova and G E Murch Phil. Mag. 2006. 
Chemical diffusion and activity data: R.P. Smith, Acta Metall., 1, 578 (1953);
Tracer diffusion data: D.C. Parris and R.B. McLellan, Acta Metall. 24, 523 (1976). 

◄ f0=0.5
(paired 
interstitials)

f0=1.0       ►
(lone interstitials)

Haven Ratio HR = fA/fAA for carbon diffusion in Fe as a function of 
carbon composition at 1000 °C.

This behaviour is consistent with recent molecular dynamics results 
that show carbon interstitials diffuse partly as lone interstitials and 
partly as paired interstitials. Evteev et al. Acta Mat 2009.

HR



The vacancy-wind factor S appears in the relation between 
the interdiffusivity and the component tracer diffusivities in 
a binary alloy:

**
2//

BAAB

ABBBBAAAAB

DCDC
LcLccLckTS






where

The Darken-Manning relation

Interdiffusion and tracer diffusion in binary alloys

Note: when LAB =0, 
S = 1 

(the Darken approximation)
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and in terms of collective and tracer correlation factors:

where g = nB /nA, 
nA and nB are the numbers
of jumps of an A or a B atom
in time t.



S
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cA

The vacancy-wind factor S as calculated numerically from the accurate MAA 
theory. 

Disordered alloys rarely show wA/wB smaller than 10-2, so S will normally be 
greater than 1 but less than about 2. 

wA/wB

Example: Vacancy-wind factor S in a binary concentrated random alloy (fcc):
Percolation
threshold

Manning gives:  
1.0< S <1.2796 (fcc).



Disordered alloys:
1.0  S  f0

-1 (Manning)
1.0  S  ∞ (percolation limit) (MAA). 

The Darken-Manning Equation was re-derived for diffusion in 
B1 and B2 intermetallics (Belova and Murch 1997-1998).

The limits for the vacancy-wind factor are now quite different 
from the disordered alloy:


AA w/w

1.0 0.0

Complete disorder Complete order

S Six-jump-cycle limit
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Other vacancy-wind factors appear in relations 
between the intrinsic diffusivities and the tracer diffusivities:

where 

When  LAB=0,   
rA = rB= 1*

//
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and in terms of collective and tracer correlation factors:

(Intrinsic diffusivities are obtained by way of measurement of inert 
marker shifts in the interdiffusion experiment.)

Intrinsic diffusion coefficients



The Darken approximation
All off-diagonal phenomenological coefficients are put equal to

zero.
Lij = 0 for i  j.

All atoms must follow uncorrelated random walks, i.e. the tracer
and the diagonal collective correlation factors are simply given by:

fi = 1          fii = 1 
and the off-diagonal correlation factors are equal to zero:
fij = 0   for i  j.

Very simple relations then exist between the diagonal 
phenomenological coefficients and the tracer diffusion 
coefficients: 

Lii = ci D*i /kT ,
By enforcing this relation, the diagonal phenomenological coefficients

are then corrupted in their meaning because they now ‘carry’ any off-
diagonal information (Manning, Acta Met. 1967) .

A comment about the Darken approximation



Physically, what is the vacancy-wind effect  itself?
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The normalized probability of finding a vacancy in the region 
around an average A atom and an average B atom with  DA = 10 DB

JA JB

B A

Visualization of the 
vacancy-wind effect for 
interdiffusion in a binary 
disordered alloy.

The vacancy-wind effect here is simply an apparent  deviation from the local 
equilibrium vacancy concentrations as seen by moving atoms. 
For interdiffusion in this alloy, both A and B are slowed down by the vacancy-wind
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The ‘Darken-Manning’ type expression for the ternary
alloy is (Belova and Murch Acta Mat. 2009):

The vacancy-wind is now represented as a 2x2 matrix.

The above expression can be compared with the 
Darken-Manning expression for the binary alloy:

Chemical diffusion in ternary disordered alloys
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Manning’s ideas for the binary alloy can be extended to give
approximations for the 2x2  matrix of vacancy-wind factors in the 
ternary alloy. (Belova and Murch,  Acta Mat. 2009):
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Note the formal similarity of their mathematical structures with
Manning’s original expression for S in the binary alloy:

(At compositions close to the percolation threshold, the actual vacancy-wind 
factors could in principle, behave quite differently from these predictions) 

Ternary disordered alloys



cFe cNi cCu SCuCu SFeFe SCuFe SFeCu

0.127 0.686 0.187 1.09 1.01 0.52 0.91

0.265 0.503 0.232 1.12 0.99 0.52 1.06

0.108 0.464 0.428 1.19 0.99 0.71 1.12

0.298 0.375 0.327 1.06 1.02 0.83 0.93

0.105 0.802 0.093 1.01 1.04 0.82 0.53

Vacancy-wind factor matrix elements (Sij) calculated using the Manning-type
approach from the measured tracer diffusion coefficients in the Cu-Fe-Ni system.

Vacancy-wind factors in the disordered Cu-Fe-Ni fcc alloy



Ionic compounds: interdiffusion and tracer diffusion
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Two mobile ionic species A and B share the same sublattice (and
therefore compete for the same defects).

The rest of the structure is essentially immobile at the
temperatures of interest.

For chemical interdiffusion between AX and BX, there is no
Kirkendall effect (i.e. no marker shift) because there can be no
separation of charge and therefore no net vacancy flow.

The correct equation to use under these circumstances is the Nernst-Planck 
Equation not the Darken–Manning equation. The Nernst-Planck Equation 
is also fully consistent with the Manning diffusion kinetics theory developed 
originally for the disordered alloy (i.e. no vacancy-wind term):         

The Nernst-Planck Equation
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However, the near-exact MAA diffusion kinetics 
theory does give a new vacancy-wind like correction 
term to the Nernst-Planck Equation (I V Belova, A R Allnatt
and G E  Murch Acta Mat, 2009):

where SNP is the vacancy-wind term:
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The vacancy-wind factor SNP as calculated by the MAA theory as a 
function of composition cA with wA/wB = 10-1, 10-2, 10-3, 10-4 and 10-5. 

In most cases, it is unlikely that wA/wB is smaller than 10-2 , 
which means that at most, there is a 25% correction to the Nernst-Planck
Equation. 



So. Are correlations important in diffusion ? 

It depends......

● At the very best, a tracer diffusion coefficient can be measured with a precision of 5%.
A precision of 30% is still considered very good. 
Thus for self-diffusion in pure metals, tracer correlations that typically produce a 
30-50% reduction in the diffusion coefficient could be considered borderline in 
numerical importance.

● For typical solute diffusion in metals, the correlation factor can however make a 
sizable contribution (probably up to 10%) to the activation energy and, for a fast diffuser,
perhaps reduce D0 by an order of magnitude.

● For self-diffusion in disordered alloys, tracer correlation effects can reduce
D0 (of the fast diffuser) by roughly an order of magnitude in typical disordered alloys.
Again there will be a contribution to the total activation energy of up to 10%.

● For self-diffusion in intermetallics with antisite disorder, tracer correlation effects 
are now greatly magnified because of jump reversals. D0 can be reduced by up to 3 or 4
orders of magnitude and contributions to the activation energy may be as high as
~ 30%, perhaps more.

Final comments



● Collective transport quantities such as interdiffusion and intrinsic diffusion
coefficients are affected by collective correlation effects. 
By and large, these effects will produce quite similar behaviour as for tracer correlation
effects. For example, chemical diffusion in an intermetallic will be greatly affected.

● In quantities such as Haven ratios and vacancy-wind factors, most of the
correlation effects that would lead to large changes in the individual diffusion 
coefficients, now largely cancel out.

-For typical disordered alloys, putting in the vacancy-wind factor 
would give a deviation of up to a factor of two (higher) than the Darken equation. 
-For intermetallics, the deviation would be up to a factor of two (lower) than the 
Darken equation. 
-For ionic compounds, the deviation would be less than 25% from the 
Nernst-Planck equation. 



Thank you for your attention !


