
 

 

 

One	dimensional	diffusion	

As Crank shows,1 the differential solution to the one-dimensional diffusion equation at time, t, 
with a diffusion coefficient, D, for a situation in which semi-infinite slabs of material are joined 
at x = 0, with a fixed concentration of C0 for x < 0 and zero for x > 0 is given by: 
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However, when the concentration is C1 for x > 0, the differential solution becomes: 
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where ܥߜ is the excess concentration provided by the diffusion of the slab ߦߜ at position ߦ.	 

Interdiffusion	couple	

This situation is appropriate for an interdiffusion couple in which the diffusion coefficient is 
independent of concentration. Integrating over ߦ: 
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or, with the substitution ߟ ൌ  ,ݐܦ√2/ߦ
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1 J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, 1975. 

 

dξ ξ
x

C
0

C
1

X=0



One-Dimensional Diffusion 

2 
 

The integral can be expanded in a form of the error function: 
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Thus, the excess concentration for a semi-infinite couple is: 
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Finite	slab	

For a slab of finite width h located at origin, we construct a mirror slab of the same width, so that 

diffusion will proceed symmetrically in both directions. The flux is zero at x = 0, due to Fick’s 
first law, since the concentration gradient must be zero by symmetry. This has the same effect of 
having one slab with an infinite diffusion barrier at x = 0.  Crank solves this problem by simply 
integrating (2) from ݔ െ ݄ to ݔ ൅ ݄: 
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or, with the substitution ߟ ൌ  ,ݐܦ√2/ߦ
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. The integral can be expanded in a form of the error function: 
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Thus, the excess concentration for a finite slab is: 
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When the slab is much thinner than the diffusion length (i.e., ݄ ≪  the integration (7) ,( ݐܦ√2
reduces to the sum over two differential elements ݀ߦ, each of width h, and setting ߦ ൌ  :ݔ
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The concentration ܥሺݔ,  ሻ may be replaced by the isotopic abundance for tracer studies or whereݐ
the impurity has enriched isotopes. For example, the abundance of Mg-25 is readily measured as 
a function of depth using SIMS.  ܥ଴ is the abundance of Mg-25 in the as-coated tracer layer, and 
 ଵ is the abundance of Mg-25 in the bulk Mg material. Since the abundance is the ratio of Mg-25ܥ
intensity to the sum of the intensities of all Mg isotopes, variations in the incidence ion beam are 
eliminated.  

Experimental data can be fitted to (11) by minimizing the sum of the square of the residuals and 
letting h and D be the fitting parameters: 
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where S is the SIMS signal as a function of x for each of the tracer or impurity isotopes, ܣ௧௥௔௖௘௥ 
is the abundance of the tracer isotope in the original tracer film (e.g., Mg-25), and ܣ௡௔௧௨௥௔௟ is the 
natural or background abundance of the tracer isotope. The abundance, A, of the tracer isotope 
can be a fitting parameter to offset the SIMS-measured value.  

The more exact solution for thick films, given by (10), can also be used for fitting: 
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Actually, the ܣ fitting parameter can be replaced by ܣ௡௔௧௨௥௔௟ if the SIMS signals for all isotopes 
are first corrected for bias. For thin films, the expression can then be written 
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The more exact solution for thick film, given by (10), can also be used for fitting: 
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where we have changed the notation for generality in (14) and (15) using the subscript i to 
represent each of the isotopes. ܣ௜ሺݔሻ is the measured abundance of the isotope after the SIMS 
signals are corrected for isotopic bias; ܤ௜ is the natural or bulk abundance of isotope i; and ௜ܶ is 
the abundance of isotope i in the deposited tracer film. Equations (14) and (15) allow each of the 
isotopes to be used in fitting. 

In experimental practice using SIMS depth profiling, some further broadening of the diffusion 
profile is expected by roughening and mixing. Schultz et al. 20032 include a ߪ term to account 
for this effect, which leads to a modified form of (15): 
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Since ߪ is typically the order of 10nm, its effect is very small for diffusion lengths 2√ݐܦ greater 
than 1µm.  

For impurities, since the molar or atomic densities of the impurity (solute) and the bulk matrix 
(solvent) may be different, a correction must be applied by replacing h with ݄ᇱ, where 
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where AW represents the atomic weight of each species, factoring in the abundances and atomic 
masses of each of the isotopes. 

For impurity studies where the impurity does not have an enriched isotope (e.g., Al or Mn), the 
concentrations are measured by the impurity ion intensity, preferably corrected by matrix effects 
as a function of impurity concentration. For this case, there is no internal isotope standard, and 
variations in ion intensity must be monitored by a reliable majority mass (e.g., Mg-24).  

 

                                                 
2 Olaf Schulz, Manfred Martin, Christos Argirusis and Günter Borchardt. 2003. “Cation tracer diffusion of 138La, 
84Sr and 25Mg in polycrystalline La0.9Sr0.1Ga0.9Mg0.1O2.9” Phys. Chem. Chem. Phys. 5, 2308–2313. 


