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Abstract

As the US begins to integrate biomass crops and residues into its mix of energy
feedstocks, tools are needed to measure the long-term sustainability of these feedstocks. Two
aspects of sustainability are long-term potential for profitably producing energy and protection
of ecosystems influenced by energy-related activities. The Soil and Water Assessment Tool
(SWAT) is an important model used in our efforts to quantify both aspects. To quantify potential
feedstock production, we used SWAT to estimate switchgrass yields at a national scale. The
results from this analysis produced a map of the potential switchgrass yield along its natural
eastern range. To quantify ecological protection, we are using the SWAT model to forecast
changes in water quality and fish richness as a result of landscape alterations due to
incorporating bioenergy crops. We have implemented the SWAT model in the Arkansas-Red-
White region, which drains into the Mississippi River, and we present our methods here. We
identified two sub-watersheds for sensitivity analysis and calibration of the water quality results,
and then, explored ways to apply the calibration results to the whole region and validate the
model setup. We also present an overview of our research in which results from the calibrated
regional SWAT model were used to analyze potential changes in fish biodiversity. Only by
evaluating the energy and environmental implications of landscape changes can we make
informed decisions about bioenergy at the national scale, and the SWAT model will enable us to
reach that goal.
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1. Introduction

Projecting how changes in the agricultural landscape influence water quality is a
complex issue that requires an appropriate modeling tool capable of representing important
aspects of the system. Our research is focused on quantifying the changes in water quality
associated with introducing dedicated energy crops to some parts of the current landscape and
harvesting residues of other crops. Our choice of a watershed model was dependent on two
factors: 1) its ability to predict both the yields of bioenergy crops and crop residues, and 2) its
ability to represent watershed influences on water quality at regional-to-national spatial scales.

Working at regional-to-national scales placed a number of constraints on our choices.
First, although bioenergy land covers are the focus of our research, we must include other land
covers because they also influence water quality. Therefore, we require a model that can
address the influence of natural, agricultural and bioenergy vegetation as well as urban and
other non-vegetated land covers on the watershed. Second, the model must be capable of using
spatially explicit input data that are generally available throughout the conterminous US. Third,
the model must be capable of representing watershed influences on water quality adequately at
relatively coarse spatial scales consistent with the resolution of national GIS input datasets. The
size of sub-watersheds used in modeling is limited by the ability to process high-resolution
digital elevation maps and the inherent resolution of satellite-derived spatial data. We
identified the Soil and Water Assessment Tool (SWAT) as an appropriate candidate for our
efforts to quantify bioenergy crop yields and water quality effects at regional-to-national scales.
Another advantage of the SWAT model is its large user community, which has led to testing in a
wide variety of settings (Gassman et al., 2007).

Applications of SWAT to large, regional river basins are much less common (e.g., Arnold
et al., 2000, Upper Mississippi River basin) than those for smaller spatial areas (e.g., Vache et al.,
2002; Nelson et al., 2006, 45 subbasins spanning 119,400 ha). A number of applications have
examined the relationship between sensitivity of SWAT predictions and scale. Scale is likely to
have little influence on biomass yield predictions. However, water quality and nitrate, in
particular, can be better predicted (up to a point) with higher resolution data (Jha et al., 2004;
Chaubey et al., 2005).

In this paper, we present three sections that provide an overview of three studies at
regional and larger scales. First, we present the results of a study to estimate Alamo switchgrass
yields within its natural range in the eastern US using SWAT. Second, we present calibration
results from a companion study to predict water quality from current Midwest landscapes.
Finally, we present an overview of our research to predict how bioenergy landscapes will alter
fish biodiversity. Only by evaluating energy and environmental implications of landscape
changes can we make informed decisions. Therefore, we are looking to the SWAT model as a
tool that will enable us to reach that goal at a national scale. We also discuss challenges of
working at this scale, including difficulties involved in model validation and scaling-up calibration

results.
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2. Background

2.1 Estimation of Bioenergy Feedstock

Biomass productivity is an important aspect to address when considering the large-scale
sustainability of a bioenergy future (Hall, 1997). Unfortunately, there are a limited number of
sites where dedicated energy crops have been planted and production potential measured.
Better estimates of dedicated energy crop productivity are essential to providing more accurate
spatial estimates of resource potential. The purpose of this analysis was to estimate switchgrass
yield for major hydrologic regions of the United States using SWAT. We focused our analysis on
the natural eastern range of switchgrass (Parrish and Fike, 2005), so the SWAT model was run by
each 2-digit hydrologic region spanning this range. Parameters for the lowland variety of Alamo
switchgrass were used for the model runs.

2.2 Modeling water quality

Modeling water quality at a regional scale involves a number of steps that consider the
scale of the problem for large spatial extents. Some of the issues to consider include data
availability, scaling of results and computing capabilities. We assembled data from different
sources and modeled water quality for the Arkansas-White-Red River (AWR) basin. We then
performed sensitivity analysis and streamflow calibration at two subbasins and afterward scaled
up these results to the whole region.

2.3 Modeling aquatic biodiversity

With the nation’s increasing interest in the production of switchgrass as a bioenergy
crop, it is important to understand and evaluate the potential effects of switchgrass production
on water quality and stream aquatic biota. We used SWAT to link land-use changes brought
about by biomass production with changes in aquatic habitat for fish. We are developing
empirical models for fish richness at the regional scale based on a number of predictors,
including SWAT-predicted nutrient concentrations and flows.

3. Methods and Results

3.1 Estimation of Bioenergy Feedstock

As the first step, subbasins were delineated for each region of interest using a 1-km
resolution digital elevation model (DEM) based on Shuttle Radar Topography Mission - SRTM
data (Farr et al., 2007). We superimposed the network of larger, main-stem streams onto the
DEM. The main-stem streams were identified from the National Hydrologic Dataset (NHDPIus)
(NHDPIus 2009) as reaches with a “thinnercod” value of 1. The average delineated subbasin size
was set to 500,000 hectares (or 100,000 hectares in cases where a drainage area of 500,000 was
too large to capture all the area within a region).

SWAT predictions of switchgrass yield were made for each hydrological response unit
(HRU) within each subbasin. An HRU is a unique combination of land cover, soil and slope class.
For the purpose of obtaining regional estimates of switchgrass yield, we created two land cover
classes within each subregion by reclassifying all land cover classes other than water to Alamo
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switchgrass in the 30-m resolution 2001 National Land Cover Dataset (Homer et al., 2004). The
reclassified land cover had two classes — switchgrass and water. Soil characteristics were
defined by the STATSGO dataset (Soil Survey Staff, 1994). We defined three slope classes, slopes
of 0 tol%, 1 to 5% and greater than 5%, based on the 1-km resolution SRTM data. All HRUs
created using the aforementioned land cover, soil and slope data were used in the SWAT runs.

The SWAT default parameters for Alamo switchgrass were used except as noted below.
The defaults are nearly all derived from Kiniry et al. (2005). Because switchgrass is a perennial
grass, switchgrass was already planted and had an initial leaf area index of 0.5 and biomass of
500 kg/ha when we initialized simulations. Each year, we assumed that switchgrass required
1,100 physiological heat units to reach maturity. This estimate is at the low end of the reported
range (Kiniry et al., 2005). To allow for crop drying, we delayed harvesting until reaching the
120% of heat units required to reach maturity and assumed that 80% of the above-ground
biomass was harvested each year.

Starting from 1985, SWAT was run for 21 years with simulated climate (using the SWAT
weather generator). We treated the first two years of the model run as spin-up years and
excluded them from our reported time-averaged switchgrass yield predictions. To produce
spatially-explicit predictions, we averaged predicted switchgrass yields for the remaining 19
years (Figure 1). Consequently, our yield predictions should be treated as those of mature
stands of switchgrass.

SWAT-projected switchgrass yields varied from zero in the northern latitudes to over 16
Mg/ha in southern lllinois, Arkansas, western Kentucky and Tennessee (Figure 1). In addition to
the latitudinal gradient, predicted yields increased while moving east from very low values west
of the 100" parallel (Figure 1). Predictions across the southern extremes of the eastern US were
typically between 6 and 12 Mg/ha (Figure 1). The low values at higher latitudes reflect the fact
that the parameters used are for a lowland ecotype. Future efforts will examine yields for the
upland ecotype, which is grown successfully at higher latitudes as well.

T~
/
{

e

M oo -2m

B oooam \ 1 i .

W oo s00 pd A Figure 1. Average Alamo switchgrass
oo ) . e . yields (Mg/ha) projected by SWAT




2009 International SWAT Conference Proceedings
University of Colorado at Boulder

3.2 Modeling water quality

To quantify water quality and biodiversity implications of biofuel production at the
regional scale, we used USGS-defined, 8-digit hydrologic units (HUC) obtained from NHDPlus as
subbasins instead of SWAT-delineated subbasins. Because SWAT requires one major stream
reach per subbasin, we used the following procedure to derive main reaches from NHDPlus
data. Within each subbasin, we identified the collection of reaches sharing the largest stream
order. To identify the main channel, we selected the reach with the smallest value of
“levelpathi” as the one farthest downstream (levelpathi is a code assigned to all channels from
the stream’s mouth to the stream’s headwater and can be defined as a unique identifier for the
mouth of a stream network). The final set of reaches was merged to produce a GIS layer with
one stream feature per subbasin.

HRUs within each subbasin were defined as unique combinations of dominant soil type,
land cover and slope as described earlier with a few modifications. We used the 2008 Crop Data
Layer (CDL-08) to define land cover, substituting 2001 NLCD for one state (NM) lacking CDL-08
data. We assigned CDL land cover categories to SWAT land cover categories with the help of
expert advice (personal communication with Anthony Turhollow). Each unique STATSGO map
unit and land cover category that comprised more than 10% of a subbasin was used to define
HRUs.

We reclassified a 30-m digital elevation model (DEM) of the AWR basin to 56 m and
used it as the elevation input. This reduced resolution was necessary due to the large size of the
study area and limitations on processing a 30-m DEM. We were able to process the AWR basin
using the 56-m DEM, which also matched the resolution of the CDL land cover data. Using the
56-m DEM, we categorized slope into three categories, <2%, 2-5% and >5%, and we required all
categories to be included in the definition of HRUs regardless of area.

We simulated tile drainage because it is common in the AWR basin and because
simulating tile drainage has been shown to improve flow predictions (Green et al., 2006). We
assumed that tile drainage was present in cropland areas with poorly drained soils with less than
2% slope. We assumed a tile depth of 1.1 m and a 36 h drain time.

We used climate data from DAYMET (Thornton et al., 1997) estimated for the center of
each subbasin over the period 1980 to 2003. Daily climate input variables we included were
total precipitation (mm), minimum and maximum temperatures (°C) and solar radiation
(MJ/m2/day). Wind speed, relative humidity and potential evaporation were simulated by
SWAT. ;

We performed a sensitivity analysis to identify parameters with the largest influence on
streamflow (van Griensven et al., 2006). The analysis was conducted for each of two subbasins
— one heavily forested and the other with grassland, shrubland and agricultural land (referred
to as “agricultural”) (Figure 2). Monthly flows were most sensitive to the baseflow alpha factor
(Alpha_Bf) in the forested subbasin and to the curve number (CN2) in the grassland-agriculture
subbasin. In both subbasins, the parameter ranked second was soil evaporation compensation
factor (Esco in Table 1). The results of the sensitivity analysis helped to identify a subset of
parameters that could be used to calibrate the model effectively.
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Figure 2. Land cover in two subbasins used to calibrate parameters against monthly flow data

We calibrated monthly flows against monthly streamflow records from USGS gauging
stations near the outlets of the two subbasins of interest. We selected parameters that had the
most influence on streamflow and entered them into the auto-calibration routine. SWAT-
predicted monthly flows were automatically calibrated against monthly flows between 1985 and
1996. The quality of calibration results is typically measured using the Nash-Sutcliffe efficiency
(NSE), which ranges from zero to one. Values greater than 0.75 are considered very good, and
those above 0.65 are considered good (Moriasi et al., 2007). The NSE for the calibrated forested
subbasin was 0.74, and the NSE for the calibrated agricultural basin was 0.78. For each subbasin
with its individually calibrated parameters, we validated SWAT-predicted monthly streamflow
using data from 1997-2003. The validation data NSE for the forested subbasin was 0.75, and
0.65 for the agricultural basin.

We compared parameter changes suggested by the calibration runs for the two basins
(Table 1). To apply the calibration results for the whole region, we selected parameters from the
two calibrated subbasins with similar final calibrated values. The parameters selected were
baseflow alpha factor, maximum canopy storage, channel effective hydraulic conductivity, soil
evaporation compensation factor and surface runoff lag time (Table 1). Of these parameters, the
‘best’ values from the forested and agricultural subbasins were selected and averaged. The
average parameter values were then applied over the whole region. For other parameters, such
as the curve number, calibrated results were different in the two subbasins. There was a need
to reduce the curve number for the agricultural basin and increase it in the forested basin.
Consequently, we retained default values for these parameters in the regional run.
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The performance of the five-parameter calibrated run in the forested basin provided good
results with an NSE of 0.63. The performance of the five-parameter calibrated run on the agricultural
basin was fair with an NSE of 0.45.

The five parameters selected in the calibration were applied over the whole study region, and
the model was run from 1980 to 2003. The results from the first two years (1980 and 1981) were
skipped in the output. This model setup needed to be validated with data that spanned the whole study
region. For this purpose, we obtained streamflow data for each subbasin from NHDPIlus data. These
streamflow estimates were originally calculated by the unit runoff method in NHDPIlus and represent
mean annual flow in cubic feet per second (cfs) estimated at the bottom of a flowline (NHDPIus, 2009).
The NHDPlus streamflow values were converted to units of cubic meters per second (cms) and then
subtracted from SWAT average daily streamflow predictions (in cms), averaged over the 22-year period
to obtain the amount by which SWAT over or under predicts streamflow when compared with NHDPlus
streamflow estimates. .

The results indicate that SWAT overpredicts streamflow in the downstream basins along the
eastern regions of the study area and under predicts streamflow in some of the upstream basins (Figure
3). These results suggest that flows predicted by SWAT are higher than expected based on watershed
area (unit-runoff method) farther downstream and lower than expected based on watershed area
upstream. These results are not surprising because the unit-runoff method does not account for
variations in precipitation, and precipitation follows a strong east-west gradient (wetter in the east).

(Comparison of SWAT and NHD+ !
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Figure 3. Long-term flow comparison between SWAT and NHDPIus model predictions

Our next step will be to evaluate changes in water quality using the validated model to compare
current and future land use scenarios based on output from the Policy Analysis System (POLYSYS)
(Ugarte and Ray 2000).
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3.3 Aquatic biodiversity

We are developing empirical models for fish richness at the regional scale based on a number of
predictors, including SWAT-predicted nutrient concentrations and flows. We used SWAT model output
for stream discharge, nutrient concentration and sediment loadings to describe watershed water quality
(8-digit USGS hydrologic units, HUC). We worked under the premise that streams and rivers with a high
biodiversity of fish species need to be protected from declining water quality that can affect aquatic
biota (Hails, 2008). Our hypothesis is that the cultivation of switchgrass on agricultural lands can reduce
sediment and nutrient loadings to streams and hence improve future water quality and habitat for fish
(Berkman and Rabeni 1987; Berka et al., 2001).

Our study focused on the Arkansas-White-Red River (AWR) basin. In building empirical models
for biodiversity, we included several SWAT water quality and quantity outputs as predictors (average
annual discharge and concentrations of nitrate, total phosphorus and sediment). These were averaged
over a 22 year period. Additional predictor variables included mean annual precipitation, upstream
drainage area, elevation at watershed outlets, percent land cover and the relative position of each HUC
watershed along a downstream longitudinal gradient.

For watersheds in the AWR river basin, measures of streamflow and other predictors correlated
with streamflow (e.g., % forest cover) had the largest influence on the species richness of native fish.
Among headwater basins, watershed effects on biodiversity were dominated by the percent of forest,
which was correlated with percent agriculture.

Our next step will be to predict aquatic species diversity in future agriculture land use scenarios.
SWAT-derived water quality and discharge data will play a large role in our future efforts to model
patterns in aquatic biodiversity.

4. Conclusion

The methods and results outlined here have shown how SWAT can be useful for exploring the
productivity and environmental sustainability of switchgrass as a bioenergy crop at regional to larger
scales. As our work with modeling switchgrass production and watershed modeling of bioenergy
landscapes continues, we can improve our understanding of which areas provide the highest economic
and environmental potential for biomass feedstock production. With the need for better understanding
at a national scale, the approach we have outlined can be applied to other regions to produce guidance

at this scale.
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