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Human agency is a critical determinant of the dynamics of

agroecosystems. However, the manner in which agency is

represented within different approaches to agroecosystem

modeling is largely contingent on the scales of analysis and

the conceptualization of the system of interest. While

appropriate at times, narrow conceptualizations of

agroecosystems can preclude consideration for how agency

manifests at different scales, thereby marginalizing

processes, feedbacks, and constraints that would otherwise

affect model results. Modifications to the existing modeling

toolkit may therefore enable more holistic representations of

human agency. Model integration can assist with the

development of multi-scale agroecosystem modeling

frameworks that capture different aspects of agency. In

addition, expanding the use of socioeconomic scenarios and

stakeholder participation can assist in explicitly defining

context-dependent  elements of scale and agency. Such

approaches, however, should be accompanied by greater

recognition of the meta agency of model users and the need

for more critical evaluation of model selection and

application.
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Introduction
The implications of global change for the sustainability of

global and regional agroecosystems and food security

continue to be a priority research and policy concern

[1]. This concern arises in part from the complexity of

agroecosystems, which poses significant challenges to

predicting their responses to multiple driving forces.

Agroecosystems can be characterized as socioecological

systems with dynamically interacting, multi-scaled socio-

economic and ecological subsystems [2]. While physical,

biological, and ecological sciences provide powerful tools

for understanding changes in the Earth system as well as

the physiological response of crops and livestock to those

changes, human interventions are a significant source of

complexity and uncertainty in the behavior of agroeco-

systems. Few, if any, aspects of agroecosystems are unaf-

fected by human agency — the capacity of actors (i.e.,

individuals, organizations, and institutions) to act, directly

or indirectly, to affect change [3�,4,5]. Agency can mani-

fest in different modes: individual decision-making;

proxy decisions made on behalf of others; and collective

action based on pooled knowledge and resources [4]. It

also influences, and is influenced by, the structure of

society and the interactions among its institutions that

enable or constrain the capacity to act.

A common characteristic of agroecosystems is the depen-

dence of their dynamics and behavior on scale [6��,7].

Therefore, diagnosing and predicting socioeconomic and

ecological influences on agroecosystem processes and

outcomes are facilitated by conceptualizing, observing,

and modeling the system at scales that are relevant to

the questions that are being asked [8,9��]. Cash et al.
[10, pg. 2] define scale as ‘the spatial, temporal, quantitative,
or analytical dimensions used to measure and study any
phenomenon.’ This definition acknowledges the impor-

tance of spatial and temporal scales to the understanding

of socioecological systems, but also recognizes that a

broader range of scales can be applied in systems analysis

such as institutions, networks, or knowledge. In addition,

each scale is composed of multiple levels, which repre-

sent the units of analysis [10]. For example, knowledge

relevant to agroecosystems can be local and contextual,

such as a specific management practice for a particular

location and crop, or global and general, such as awareness

that agricultural production is influenced by environmen-

tal conditions of climate, topography, and soils.
 the modeling of agroecosystems, Curr Opin Environ Sustain (2015), http://dx.doi.org/10.1016/
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Consistent with such definitions, a broad range of scales

and associated levels relevant to agroecosystems have

been identified in the literature (Table 1). These repre-

sent useful points of entry for agroecosystem analysis.

Human agency, like many other system properties, varies

across the levels of these scales, from individual decision-

making by actors at specific point in time and space to the

more aggregate consequences of complex governance

systems composed of diverse actors with agency at mul-

tiple levels [11]. Consideration of the interactions be-

tween agency and scale is therefore an important

component of understanding the response of agroecosys-

tems to global change in the Anthropocene [12]. The

objective of this paper is to examine the interactions be-

tween scale and human agency reflected in various model-

ing tools currently available to researchers in assessing the

responses of agroecosystems to different driving forces. In so

doing, the paper identifies key elements of scale that are

relevant for addressing different questions regarding

the sustainability of agroecosystems, reflects on how well

existing models are positioned to inform those questions,

and identifies potentially useful advances to enhance the

capacity for modeling of agroecosystem dynamics.

Scale and human agency
Actors associated with agroecosystems have management

objectives that they seek to achieve through the imple-

mentation of system interventions. Because interventions

are an expression of choice, implementation is contingent

on agency. However, actors, their objectives, and agency

can vary with scale and across the levels of those scales

[13,14]. The framing of agroecosystems as multi-scale

and/or multi-level therefore provides an analytical lens

that aids in identifying important processes and interac-

tions by which agency influences system behavior and

outcomes. One immediate implication of such a framing
Please cite this article in press as: Preston BL, et al.: Scale and the representation of human agency in
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Table 1

Scales and levels relevant to the analysis of agroecological systems

Type of scale Examples of l

Spatial � local ! regional ! national ! global

� centimeter2! meter2! kilometer2

Temporal � hourly ! daily ! monthly ! annual ! deca

Jurisdictional � cities ! counties ! states/provinces ! nat

Biophysical � organism ! population ! community !eco

Economic � micro ! macro 

Institutional � bounded ! unbounded

� small government ! big government

� operating rules ! policies ! laws/regulation

Management � tasks ! projects ! practices ! strategies 

Risk � negligible ! manageable ! intolerable 

Ethical � fair ! unfair

� equal ! unequal

Developmental � under-developed ! developing ! rapidly d

Networks � family ! kin ! society ! trans-society 

Knowledge � specific/contextual ! general/universal 
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is that attempts to conceptualize or model agroecosystems

as discrete, closed systems may result in biased insights or

mask important consequences [3�]. The multi-scaled,

multi-level nature of agroecosystems creates the potential

for significant spatial and temporal teleconnections to

arise from human agency [15]. In fact, current challenges

associated with the sustainable management of agroeco-

systems to support livelihoods, food security, and eco-

logical integrity are increasingly associated with such

complex dynamics where actions in one place and time

have consequences elsewhere [16��,17].

Two examples from the literature can be used to illustrate

the scale complexity inherent in current challenges asso-

ciated with the management of agroecosystems. First,

U.S. federal policies incentivizing bioenergy in pursuit of

energy security have led to marked increases in corn

production. While beneficial for individual producers

[18], rapid growth in ethanol production has led to con-

cerns regarding competition for the use of corn as food,

fiber, and fuel [18,19]. The rate of growth in corn use for

ethanol has risen disproportionately to the growth in corn

for other uses [20]. Competition between food and fuel

has been exacerbated during periods of declining yields

associated with droughts or other climatic stresses [20]. As

a case-in-point, during the U.S. 2012 drought, corn and

ethanol prices rose to their highest levels in a decade [20].

Meanwhile, expanded corn production has also been

linked to adverse externalities for natural ecosystems

[21]. Hence, agency at the national level has had direct

implications for decision-making at the farm level in

terms of land use and crop selection. It has also had

indirect implications at the international level with re-

spect to perceived adverse impacts on land use change,

greenhouse gas emissions, food security, and equity

[18,19,22–24].
 the modeling of agroecosystems, Curr Opin Environ Sustain (2015), http://dx.doi.org/10.1016/

evels Selected references

[34,69,76]

dal ! millennial [34,69]

ions ! multi-national ! international [34,59,76]

system ! Earth system [34,59,77,78]

[59,69,77]

s ! constitutions

[34,57,77,78]

[34,69]

[14,78,79,80�,81]

[82,83]

eveloping ! developed [3�,84]

[14,31,69]

[10,78,85]
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A second example involves the externalities associated

with interactions between sub-surface tile drainage and

chemical fertilizer application — management practices

that expanded in the U.S. Midwest during the 20th

century, the former as a solution for water logged soils

and the latter as a remedy for declining soil quality. At

the farm level, these practices resulted in increased

productivity. However, these combined practices deliv-

ered water with high-nutrient loads downstream, which

contributed to water quality impairment including the

‘dead zone’ in the Gulf of Mexico [25,26]. Because the

Mississippi River and Gulf of Mexico fall under the

jurisdiction of nine federal agencies and Mexico, as well

as the governments of ten bordering states [27], aware-

ness of the dead zone triggered action across diverse

institutions and actors, with subsequent feedbacks to

agricultural practices on farms. Such ‘dead zones’, how-

ever, are not only an agricultural issue, but also an

ecological one that affects other actors, sectors, and liveli-

hoods [25,28]. A holistic view of the relationship between

agricultural practices and the ‘dead zone’ can be decon-

structed to identify the multiple scales in operation —

spatial, temporal, institutional, management — and the

characteristic levels of each (Figure 1). Although some

scales are difficult to describe using a strict hierarchical

framing [29], for each scale a contrast can be made

between micro levels that are local and/or immediate

and macro levels that are aggregations of subsidiary levels.
Please cite this article in press as: Preston BL, et al.: Scale and the representation of human agency in
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Figure 1
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Although discrete elements of the system can be identi-

fied and analyzed, it is the interactions across different

scales and levels that create teleconnections and indirect

effects that drive system outcomes [30].

While such dependency can be readily recognized and

diagnosed within historical case studies, prognostic anal-

yses with a priori specification of scale-dependent agency

pose more formidable challenges. Prognostic models rep-

resent important tools for investigating the dynamic

responses of agroecosystems to different factors and

their interactions [31]. The processes in these models,

including human agency, are generally, and by and large

appropriately, designed to address a relatively bounded

problem and therefore are developed to incorporate a

limited number of scales and levels. This makes the

conceptualization of the system of interest a critical

consideration in the development and application of

models [32,33]. For example, a point-based crop model

may be sufficient to investigate the direct effects of

climate variability and change on crop yields for an

individual farm. However, in practice, the consequences

of such effects are mediated by a range of other exoge-

nous factors such as markets, farm management, and

policies, which link outcomes at the farm level to a broad

range of social institutions. Meanwhile, using models to

explore broader themes of food security requires the

conceptualization of agroecosystems as complex systems,
 the modeling of agroecosystems, Curr Opin Environ Sustain (2015), http://dx.doi.org/10.1016/
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he analysis of the relationship between agricultural practices in the

levels are based on Table 1 and relevant scientific and policy literature
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which significantly increases the demands with respect to

scales and levels that are represented, processes that are

included, and data needs. Adapting models to represent

such complexity remains challenging [34].

Representation of agency within
agroecosystem models
The complexity of agroecosystems, the scope of human

interest in these systems, and the breadth of relevant

scientific disciplines are all reflected in the diversity of

available tools for agroecosystem modeling (Table 2).
Please cite this article in press as: Preston BL, et al.: Scale and the representation of human agency in
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Table 2

Scales and agents associated with agroecosystem models including 

Modeling approach Relevant scales of modeling 

Production-function

Statistical yield models � Spatial

� Temporal

� Biophysical

� Jurisdictional

� No

Process-based crop simulators � Spatial

� Temporal

� Biophysical

� Management

� Far

Crop distribution models � Spatial

� Temporal

� Biophysical

� No

Economic models

Partial equilibrium models with

agricultural sector

� Spatial

� Temporal

� Biophysical

� Economic

� Jurisdictional

� Institutional

� Ma

General equilibrium models � Spatial

� Temporal

� Economic

� Jurisdictional

� Institutional

� Ma

Input/output models � Spatial

� Temporal

� Economic

� Jurisdictional

� Institutional

� No

Ricardian analysis models � Spatial

� Temporal

� Biophysical

� Economic

� Management

� Far

Bio-economic farm models � Spatial

� Temporal

� Biophysical

� Economic

� Management

� Far

Integrated assessment models (IAM)

Global IAMs � Spatial

� Temporal

� Biophysical

� Economic

� Jurisdictional

� Institutional

� Management

� Developmental

� Ma

� Po

Current Opinion in Environmental Sustainability 2015, :1–11 
This diversity reflects model development processes that

focus on addressing specific questions for specific scales

and levels rather than holistic, systems-based analysis

[30,35]. Some models, such as crop simulation models

(Table 2) are designed for applications at the level of

individual fields, over time periods of a cropping season or

a very few years, and focus almost exclusively on the

biophysics of plant growth and productivity. Others, such

as some integrated assessment models (IAMs; Table 2),

can be global in their spatial extent, use and generate

data over multi-decadal time periods, and represent the
 the modeling of agroecosystems, Curr Opin Environ Sustain (2015), http://dx.doi.org/10.1016/

extent to which agency is implicitly or explicitly represented

Actor Implicit or explicit agency Examples

ne � N/A [86]

mer � Implicit [36,37,38]

ne � N/A [54]

rkets � Explicit [37,87,88,89]

rkets � Explicit [90,91]

ne � N/A [92,93]

mer � Implicit [40,41]

mer � Implicit [62,94,95]

rkets

licy-makers

� Implicit [96�,97,98,99]
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Table 2 (Continued )

Modeling approach Relevant scales of modeling Actor Implicit or explicit agency Examples

Regional IAMs � Spatial

� Temporal

� Biophysical

� Economic

� Jurisdictional

� Institutional

� Management

� Markets

� Policy-makers

� Other stakeholders

� Explicit [71��,72��,100]

Decision models

Agent-based models � Spatial

� Temporal

� Biophysical

� Economic

� Institutions

� Management

� Networks

� Risk

� Ethical

� Farmer

� Markets

� Other stakeholders

� Explicit [45,46,47,48,101,102]

Non-agent-based models � Spatial

� Temporal

� Biophysical

� Management

� Ethical

� Farmer

� Other stakeholders

� Implicit & Explicit [103�,104,105]

Supply chain optimization models � Spatial

� Temporal

� Economic

� Management

� Networks

� None � N/A [106,107]

Risk models

Catastrophe loss models � Spatial

� Temporal

� Biophysical

� Economic

� Jurisdictional

� Institutional

� Risk

� None � N/A [80�,81]
contribution of agriculture as a sector of the global econo-

my. The result is a large and diverse ‘toolbox’ of models.

However, each individual model generally targets a lim-

ited set of questions that ultimately influence the range of

agroecosystem scales and levels that are prioritized and

represented within a model.

With regard to agency, models vary with respect to who

the actor is — from individual farmers to international

corporations or other aggregated economic entities — and

in how that agency is represented — from explicit deci-

sion rules that are introduced exogenously to implicit

processes. This can be readily explored by examining

how agency is represented within different types of

models (Table 2). At the level of individual fields and

farms, the actor is generally conceptualized as the indi-

vidual farmer or land owner. Agency at this level is very

much implicit in crop simulation models like APSIM [36],

DSSAT [37], and EPIC [38] in the sense that there are

specified farm operations that presume an actor, but there

are no explicit decision rules or adjustments in operations

in response to dynamically changing conditions. Hence,

actors in these types of models have been characterized as
Please cite this article in press as: Preston BL, et al.: Scale and the representation of human agency in
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‘dumb’ [39] or ‘naı̈ve’ [40]. In contrast, the implicit actors

in empirical Ricardian models (which use rent or land

values as an analysis endpoint rather than crop yields),

have been described as clairvoyant because they are

assumed to respond optimally in order to maximize

production [40,41]. Yet, these are idealized assumptions

that do not capture the complexities of agency at spatial

and temporal scales of individual farms and farmers [40],

nor do they represent responses triggered by agency at

other levels or scales.

Agent-based and behavioral models are designed to

address such limitations by explicitly simulating the

decision-making process of individual or small groups

of farmers in response to environmental, economic,

and institutional constraints (Table 2) [42–44]. The

Mathematical Programming-based Multi-Agent Systems

(MP-MAS), for example, is an agent-based approach

with a strong foundation in microeconomics and farm

management theory and optional modules for simulating

biophysical dynamics [45]. Land-use and operational

decision-making by one or more individual actors

are explicitly represented as responses to biophysical
 the modeling of agroecosystems, Curr Opin Environ Sustain (2015), http://dx.doi.org/10.1016/
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conditions, economic markets, and social networks for

innovation diffusion. Bert et al. [46] take a similar ap-

proach in which individual farmers make choices among

specified options based upon environmental and econom-

ic conditions according to explicit decision-making rules.

Models such as CATCHSCAPE [47] and SYPRIA [48]

extend such approaches by explicitly modeling the be-

havior of other actors such as water resource managers,

non-agricultural households, and industries [45]. Mean-

while, behavioral models (e.g., [49,50�]) explicitly repre-

sent the psychology and cognitive reasoning of decision-

making by individuals. Results generated by agent-based

models at the individual farm level can be subsequently

aggregated to represent agroecosystem dynamics and

outcomes at higher levels of geographic organization.

However, challenges remain with respect to capturing

non-linear dynamics, teleconnections, and changes in

socioeconomic systems [51,52].

Some models use aggregate geographic levels as a starting

point. As a result, agency shifts from the individual and

groups of individuals to collective, holistic actors includ-

ing regional and national agencies and markets (Table 2).

This is often accompanied by more aggregate temporal

scaling as decisions shift from near-term, tactical to lon-

ger-term, strategic and structural choices [40]. Spatially

aggregated empirical models of crop productivity at the

regional or national level are often developed using

historical data on variations in crop yields and correlations

with co-occurring variations in climate (e.g. [53,54]). The

data used in these models are most often available for sub-

national politically-defined districts (e.g., counties in the

United States) and the spatial scale of these models is

thus the spatial scale of those geo-political units. There is

essentially no human agency in these models. While

agent-based farm models can be implemented on an

agricultural landscape of multiple farms, as that landscape

expands spatially to the regional and national level, the

explicit simulation of large numbers of agents and their

interactions becomes intractable [51].

At the national and international level, the modeling tools

which address agriculture are largely macroeconomic

models. One type includes national level input–output

models (Table 2), for which there is no representation of

agency. The actors in the general and partial equilibrium

models applied at national and international scales, in-

cluding IAMs, are highly aggregated, effectively non-

decomposable collections of commodity and other market

traders. While crop selection, land use, and technology

improvements all reflect some degree of implicit decision-

making by various actors at different scales and levels [55],

these processes are often operationalized as endogenous

factors driven by utility maximization. Nevertheless, such

models retain the capacity to undertake policy experi-

ments relevant to agroecosystems, such as national energy

policies associated with bioenergy production [23].
Please cite this article in press as: Preston BL, et al.: Scale and the representation of human agency in
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Limitations of the existing toolkit
Although the existing modeling toolkit for agroecosys-

tems is extensive, a number of shortcomings are evident.

First, available tools are often limited with respect to the

scales they explicitly represent (Table 2), as well as the

levels associated with those scales. Furthermore, levels

among scales are generally correlated, such that a focus on

higher levels of one scale is accompanied by a similar high

level focus at other scales. Although spatial and temporal

scales are inherent to environmental modeling, other

scales described in the literature as being relevant are

not routinely represented. For example, there is little

consideration for the role of social institutions apart from

the economy. Models favor expert, generalizable knowl-

edge over local, traditional, and contextual knowledge,

and therefore may not capture heterogeneity among

farms, communities, or regions [3�]. Ethical consider-

ations or exploration of the role of different levels of

social networking are often absent, except in the case of

agent-based and behavioral models. While such gaps are

often by design, missing scales have important implica-

tions for the representation of agency. Institutions have a

critical role in the development of capacity to implement

agroecosystem interventions. Ethics and values are fun-

damental to choices regarding environmental manage-

ment and the uptake of different technologies such as

bioenergy or genetically modified foods [56]. Different

levels of knowledge manifest in agroecosystems, as farm

level management practices are strongly influenced by

local, contextual knowledge.

Second, models encounter significant challenges not sim-

ply with scales, but also with scaling [57]. An obvious case

is one of spatial scaling problems, whereby the processes

and outcomes modeled at one level are not illustrative of

those at other levels. For example, farm level models of

agricultural productivity may provide few insights into

questions of food security if they do not consider issues of

procurement, supply chains, and markets, which are

influenced by agency at higher spatial and institutional

levels [58]. In particular, an apparent gap exists between

the farm level models where individual actors make

explicit choices and regional to global models where

agency is the aggregate behavior of heterogeneous actors

at different levels [59]. Furthermore, while empirical and

process-based crop models are common tools for explor-

ing the future implications of global climate change on

agricultural production and food security, such tools were

not developed for long temporal integrations, in part

because they erroneously assume relationships and con-

ditions will remain stationary. Such scaling problems are

exacerbated by the aforementioned failure to consider

alternative scales of modeling. Practices and outcomes

that generate trade-offs among scales or levels are difficult

to reconcile without engaging ethical considerations and/

or jurisdictional and institutional scales where power to

reconcile such trade-offs reside.
 the modeling of agroecosystems, Curr Opin Environ Sustain (2015), http://dx.doi.org/10.1016/
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Third, as with any quantitative model, the capacity to

represent complex systems and their behavior is contin-

gent on the availability of input data for model variables

and processes as well as data for model calibration and

validation. Advances in environmental observing sys-

tems, computation, and simulation are creating new data

sets and data management capabilities. Yet, such

advances have not addressed all data needs, and the large

data volumes associated with climate, land use, and

simulation pose challenges in their own right [60]. These

problems are common to multiple types of agroecosystem

models. For computational general equilibrium models,

improved information is needed regarding biofuel tech-

nologies, the economics of forestry enterprises as well as

water supply and demand [61]. Meanwhile, in reviewing

bio-economic farm models, Janssen and van Ittersum [62]

note that the data needs of models can limit their trans-

ferability to other geographic locations and problems.

The data problem extends beyond simply the availability

of information and includes challenges associated with

the integration of disparate data, which necessitates con-

sistent units and spatial and temporal levels, as well as

compliance with copyright and citation practices [63].

Fourth, there is limited consideration for how human

agency in problem framing and the selection of which

models to use affect model results and interpretation [64].

Up to this point, agency has been discussed from the

perspective of the virtual actors that exist within models

themselves. For example, the application of different

management practices within a crop model or the optimal

selection of crops within an IAM are virtual representations

of real world decision-making and behavior. However,

except perhaps in the case of agent-based and behavioral

models that attempt to simulate actual decision processes

and choice, agency within models is largely parameter-

ized — there are, of course, no real actors within models

making decisions. Furthermore, the choices that exist

within models are invariably an illustrative, constrained

set of choices available in the real world [65]. The norma-

tive decisions made by model developers and users regard-

ing what response and management options should be

included ultimately influence model behavior and the

results that are generated. Hence, virtual actors can be

juxtaposed against the meta actors — the developers and

users of the models. Users make conscious and deliberate

choices regarding what models to use, to address specific

problems, under a defined set of assumptions.

Toward multi-scaled human agency in
agroecosystem modeling
One valuable objective of agroecosystem model develop-

ment should be to develop models that capture the

richness of human agency, both to avoid potential bias

in model results as well as to enhance their relevance to

decision-making. Various approaches exist for addressing

this challenge. As a starting point, boundary critique can
Please cite this article in press as: Preston BL, et al.: Scale and the representation of human agency in
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be more rigorously applied to better understand the

connections between agroecosystem models and the sys-

tems they attempt to represent. To this end, the concept

of scale as defined here can be used a tool for assessing,

articulating, and defining the conceptual foundation and

boundaries of a modeling activity. Given the scientific

and practical demands for increasingly complex modeling

tools that can provide insights regarding socioecological

systems, mechanisms for managing that complexity can

be beneficial. As illustrated here (Figure 1), explicitly

identifying the scales and levels relevant to the develop-

ment or application of agroecosystem models can assist in

identifying their strengths and weaknesses. This infor-

mation can be used to prioritize model development or

data needs and/or to identify model limitations and

knowledge gaps that may affect interpretation and use

of their results. Furthermore, more explicit use of stake-

holders as meta actors in modeling can enhance model

legitimacy [66]. Moreover, stakeholders have valuable

knowledge, particularly at the local level, with respect

to interactions between agency and different scales as

well as the scalability of different modeling tools and

their assumptions [67]. Therefore, stakeholder participa-

tion can assist in model evaluation and therefore model

improvement [68].

In addition, greater emphasis on model integration or

coupling can be an effective pathway for linking top-

down and bottom-up models to incorporate agency across

multiple scales and levels [69,70�]. For example, Thom-

son et al. [71��] use a high-resolution version of the EPIC

crop model nested in the Global Climate Assessment

Model (GCAM) IAM. GCAM provides high level bound-

ary conditions for EPIC in terms of land use and macro-

economic driving forces while EPIC models agricultural

productivity for a range of management practices. Such

approaches link farm-level production and management

to global markets and aggregate agricultural outcomes.

However, dynamic agency in modifying farm operations

in response to changing conditions is limited and the

intermediate levels of scales and agency are not neces-

sarily well-represented. Additionally, some scales of

agroecosystems, such as institutions or ethical consider-

ations, lack explicit definition. Hence, exploring other

ways of coupling different types of models to capture

a broader range of scales and levels may help address

such gaps.

An alternative approach is to acknowledge the inherent

constraints imposed by models on the representation of

agroecosystem scale dynamics and apply models in con-

cert with a broader societal context. To this end, the use

of socioeconomic scenarios to define alternative futures

that include not only population and economic growth,

but also preferences for behaviors, attitudes toward the

environment, technological change, adaptation options

and capacity can help to create context around models,
 the modeling of agroecosystems, Curr Opin Environ Sustain (2015), http://dx.doi.org/10.1016/
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and even influence model parameterization. Scenarios

can also assist with scaling challenges by articulating

conditions, trends, and agency at multiple levels. For

example, the multi-sector RegIS IAM used the UKCIP

national socio-economic scenarios which were extended

to the regional level [66]. More recently, Harrison

et al. [72��] applied scenarios for Scotland and the Euro-

pean Union as part of the CLIMSAVE integrated assess-

ment platform. The recent emergence of the next

generation global Shared Socioeconomic Pathways repre-

sent an opportunity for consistent use of socioeconomic

scenarios for IAM and other agroecosystem assessment

efforts [73�,74], provided additional investment is made

in demonstrating the scalability of those scenarios [74,75].

Conclusions
Models represent valuable tools for understanding the

status, potential responses, and fate of agroecosystems.

Human agency is a critical factor influencing agroecosys-

tems, yet one that is not comprehensively addressed

across the existing modeling toolkit, in part due to the

challenges associated with modeling how agency varies

with scale. This leaves the insights emerging from agroe-

cosystem models vulnerable to spurious conclusions.

Modeling frameworks that emphasize the integration of

multiple models that represent multiple scales and levels

as well as those that integrate quantitative and qualitative

information may be more robust tools for generating

scalable insights regarding the dynamics of agroecosys-

tems under global change. Meanwhile, more critical

reflection upon the selection and use of models in support

of different research objectives and/or societal applica-

tions can better enable responsible model use.
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