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 A  1. Introduction 

The stakeholders involved in management of land and carbon (C) are diverse. 
Farmers and foresters are concerned with plants and management practices that are 
most likely to sustain profits. The opportunity to sell C sequestration credits adds a 
new dimension to production strategies. Land managers may be asking questions, 
such as how tillage and fertilizer practices in a specific location affect C storage and 
crop yields. Regional planners and governing bodies may have the opportunity to 
influence where and how cultivation occurs and interacts with other land uses and 
industries. They may ask questions related to how crops can be distributed across a 
landscape to achieve multiple goals that reflect local priorities (water quality, scenic 
views, traditional lifestyles, tax revenues, etc.). At state and national levels, there are 
requirements to manage human activities to comply with land, water, and air-
emission regulations as well as policy objectives such as job creation and energy 
security. Decision makers at these levels may desire guidance on how the interactions 
of policy options provide incentives or disincentives for certain land-use practices 
and resulting environmental and socioeconomic impacts. Many decision makers are 
most interested in how scientific information can be used to guide land-use practices 
in the near term, typically one to five years. However, the scientific information may 
derive from data measured at entirely different scales or locations and in time spans 
that range from decades to centuries. With rising attention to global markets and 
climate change, managers are concerned about how changes in their region are 
affected by global processes. National and regional decision makers want to know 
how their choices affect productivity, incomes, C and nutrient cycles, and other 
development goals. There needs to be a better match between the diverse needs of 
managers and the information provided by scientific analysis and models. 

Models are an important tool in scientific investigations. Britain’s Science 
Council defines science to be “the pursuit of knowledge and understanding of the 
natural and social world following a systematic methodology based on evidence.”i 
Systems for observing, documenting, and analyzing results are organized under many 
different disciplines, which share the common thread of being built around 
observation and measurement. Careful monitoring and measurement leads to new 
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discoveries, new and revised hypotheses, tests of those hypotheses, and, hence, better 
science. Disciplined measurements that use accepted protocols have much more than 
a supporting role for science – they form its very foundation. However, for many 
practical, financial, logistic, and physical reasons, not everything can be observed 
and measured. For example, some changes occur over decades, centuries, or 
millennia, and others occur on very large areas, but most measurements record short-
term changes in a relatively small area. Support for long-term or large-scale 
monitoring is scanty and difficult to obtain. Furthermore, the causes and effects of 
complex relationships are often difficult to discern and change over time, making 
research results dependent on the temporal and spatial scales of analysis. Therefore, 
models that are properly designed and used can play a valuable role in elucidating 
long-term, large-scale, or complex processes. Models are a tool that can be used to 
explore scientific hypotheses. Ray Orbach likened science to a three-legged stool, the 
legs of which are theory, experiment, and modeling and simulation (personal 
communication). All three legs depend on foundations of data. 

This chapter describes ways to use models as a bridge between scientific 
understanding of land-use practices and C flux and the needs of decision makers 
regarding management of land and C. To do so, we explore the modeling process and 
types of models that are used for land and C. That topic sets the context for a 
discussion of the advantages of using models to increase understanding of decision 
makers about land and C processes as well as cautionary principles. The next section 
reveals how scientists can best communicate modeling results to decision makers and 
what decision makers should ask of models. This analysis leads to some 
recommended practices and a conclusion about the next steps that should be taken to 
foster improved integration between science and management via models. Because of 
the diversity of stakeholders involved in these issues, the audience for this chapter is 
quite broad. Chapter 7 discusses how C is a part of land-use models, and several 
chapters review and analyze how information related to land use and the C cycle are 
monitored and measured. 

 A  2. The Modeling Process 

Modeling is a process that enhances understanding of a system by requiring a formal 
statement of what is known and not known (Van Winkle and Dale 1998). Modeling 
is often called an art as there are diverse approaches to capture observed relationships 
using mathematics, and it takes experience, expertise, and creativity to appropriately 
express complex interactions in what are necessarily simplified constructs. The 
modeling process requires formulating a hypothesis concerning relationships among 
components of a system and fosters exploration of the implications of the hypothesis. 
Thus modeling has an important role in the iterative process of hypothesis 
formulation and testing (Overton 1977). It influences experimental design, 
monitoring approaches, and interpretation of results (Van Winkle and Dale 1998). 

Models can identify gaps and inconsistencies in knowledge. Aber and 
Driscoll (1997, p. 647) claim that “models are often more interesting when they fail 
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than when they succeed” because there is more potential for learning when model 
results are not consistent with empirical observations or current understanding than 
when results are consistent (e.g., see Lee 1973; Ackerman et al. 1974; Morgan and 
Henrion 1990; Hall 2000; Meadows, Randers, and Meadows 2004). Inconsistencies 
inspire scientists to look for other theories and to investigate if exceptions are 
occurring. Inconsistency between model output and data can reveal nonstationary 
processes in the system or poor data quality (Pontius and Petrova 2010, Pontius and 
Li 2010) even when the model simulates the mechanics accurately. On the other 
hand, such inconsistency could indicate that a model’s underlying assumptions are 
wrong, the conceptual theory requires revision, key processes are excluded, or 
combinations of all of the above. If the model instigates in-depth query, then the 
modeling process has succeeded in fostering enhanced learning. Much can be learned 
about misunderstandings of system processes responsible for unanticipated 
outcomes. Initial conclusions from modeling often instigate changes to the original 
hypothesis or the model itself and thus influence the next step in the scientific 
investigation. 

Models are abstractions meant to represent key elements and interactions of a 
system so that relationships can be analyzed within established boundaries. Model 
results are the logical extensions of existing data and are produced via a process that 
assimilates and applies current understanding. However, models can also mislead and 
have been used to reinforce common beliefs until a preponderance of evidence 
supports a better model and eventually overcomes the inertia of long-held 
assumptions (Box 1979). Box 8.1 describes problems that arise when underlying 
model theory is not in agreement with empirical data. 

Modeling may be used to simulate specific conditions as represented by 
scenarios of land-use and C cycles in a particular context. Model results can be 
analyzed to explore potential effects of processes, interactions, or decisions. Models 
provide a tool for managers to enhance their understanding of the complexities and 
unique features of a given situation as well as the potential response(s) to 
management actions or other changes. They also provide a means to project effects 
under various scenarios and to evaluate possible future outcomes of decisions. 
Models should be used to test and improve understanding of underlying relationships. 
However, as the context for modeling expands in spatial and temporal extent, the 
complexity and uncertainty of both the model and observations increase, making it 
difficult to test theorized relationships with data. 

The modeling process is important to improve knowledge about land use and 
C. Changes in land cover affect C storage and sequestration processes, but the 
interactions among changes in C, land cover, land use, management, and long-term 
storage capacity and productivity are less clear. This disconnect occurs, in part, 
because scientific knowledge about how to manage for long-term C storage capacity 
remains limited and, in part, because C has not been a significant goal for managing 
land. Changes in land use, management, cover, and other land and soil attributes can 
all affect C storage and fluxes (see Chapters 2 and 3). Although there are detailed, 
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mechanistic models of C flux at the cellular and plant levels, models linking C and 
land changes at plot scales typically do not incorporate the major driving forces and 
feedbacks operative at larger scales of land change (Verburg et al. 2004). Another 
problem in discerning the effects of changes in land and C is selecting the location 
and temporal and spatial scale of analysis. Land cover and land management are in 
constant flux, and changes are the product of several major drivers at different scales. 
The influences of cultural, technological, biophysical, political, economic, and 
demographic factors on land use are complex, poorly understood, and variable over 
space and time (Lambin, Geist, and Lepers 2003). There is a great need to sort out 
the conditions under which certain drivers influence land change and the impact of 
those interactions (Center for BioEnergy Sustainability [CBES] 2009). No one model 
represents all of these forces; each approach includes just some of the factors 
influencing land-use changes. 

The ability of a model to integrate scientific understanding in such a way that 
decision making can be improved depends on the state of the science and data 
availability, management needs, and conveyance of scientific understanding to 
managers. The state of the science can range from an explicit, detailed understanding 
of the key processes with a narrow range of confidence around parameter values to 
general ideas to be tested, refuted, or incrementally revised with large or unknowable 
confidence intervals around key variables. Unfortunately, the state of the science 
supporting the modeling of land use and C cycles varies widely over ecosystems and 
scales and is often much closer to the “general idea” end of the knowledge spectrum. 
Although land-use change has been assumed to be a major contributor to greenhouse 
gas (GHG) emissions (World Resources Institute [WRI] 2009), this assumption and 
the estimated values associated with it are increasingly questioned (Le Quéré et al. 
2009), and land use remains the greatest source of uncertainty in global emission 
assessments (National Research Council [NRC] 2010) because of the cumulative 
uncertainty in the types and rates of land-use change, rates of regrowth, and fates of 
the C involved (Dale and King 1996). Thus modeling should be viewed as part of an 
iterative process for enhancing scientific understanding, pinpointing needs for better 
data, and generating better models of land management and C flux to support the 
decision-making process. 

 B  2.1. Key Components of the Modeling Process 

The development of a model and the documentation that describes the model and its 
use should reflect at least nine components. The information that each component 
requires are summarized in Table 8.1 and described next. 

The purpose of the model – what processes it was specifically developed to 
simulate and why – should be clearly articulated. Who developed the model, for what 
sponsors, and what was the hypothesis that the model was meant to elucidate? The 
purpose should include a description of the scope of applications that the model was 
designed to represent. 
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The application context of the model has implications for, sets requirements 
on, and places limitations on the model and its results. The context includes the 
phenomenon being modeled, the hypothesis under investigation, the values and 
interests of the stakeholders, the availability of data, the availability of human and 
economic resources, the temporal and spatial constraints, the ecological condition of 
the landscape and its topology, the historic dynamics and rates of change in land 
cover and its topology, and the needs of the decision makers. Having a conceptual 
framework for the model as applied to each situation will help to set the context and 
identify the boundaries to the problem space. 

Model assumptions depend largely on the model purpose and structure but 
derive partly from the context. Model results should be interpreted carefully and 
within the context of the assumptions on which the model is based. These assumed 
conditions define the time frame and spatial boundaries of concern, processes being 
modeled, the validity of parameter values, boundary conditions, the completeness 
and validity of the theory underlying the model, and feedbacks to be included. It is 
also important to consider what processes and conditions are not included. Because 
these assumptions are typically specific to each situation, caution must be used in 
applying a model developed for one circumstance to another case. Model 
assumptions should accurately reflect and reveal the relationships between drivers 
and effects in the models and the degree to which these relations are based on 
empirical evidence. For example, some public policies related to the estimated land-
use change effects of bioenergy have relied on economic modeling assumptions that 
lack empirical support (Kline et al. 2011, Kim and Dale 2011). 

Inputs include all data and metadata (data about data) needed to run the 
model. These data include values of variables, variable names, initial conditions, 
current rates of change, spatial and temporal boundary values, process-specifying 
control data, data-format information, data tags, and file names and formats. 

Outputs include all data and metadata produced by the model, such as 
dependent-variable values, variable names, format specifications, format types 
(tables, graphs, etc.), and format specifications. If one model’s output is further 
processed or manipulated based on another model or factors generated by a 
submodel, these steps should be clearly identified as well. 

Calibration is the process of determining the set of parameter values that 
produces the most appropriate model outcomes given the available information. The 
calibration methods and their reliability and precision should be specified. 

Validation is the process of determining the soundness and accuracy of the 
model outcomes. Validation must be performed in a separate step from calibration 
and use independent data sets. The validation methods and their reliability and 
precision should be specified. Models need to be validated by comparing projections 
to current observational data or historical conditions. However, such a comparison is 
not always done and may be infeasible in some cases. This is the case with many of 
the models of land changes. Too often they are not validated or even compared to 
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empirical observations (Kline and Dale 2009). See Pontius et al. (2008) for examples 
of useful validations. Without proper validation, a model’s projections are merely the 
result of assumptions and initial conditions and should be considered with caution 
and appropriate skepticism. 

Sensitivity analysis of models is a method to identify the influence on model 
outcomes of variability in the values of specific parameters. Such an analysis 
typically runs iterations of the model with different values of one input variable so 
that the variability of the results indicates the sensitivity of the model to that variable. 

Uncertainty analysis consists of determining what information is omitted, 
poorly known, or unknowable and how this absence could affect modeling results. 
The strength and validity of a theory to describe a given phenomenon may be a 
source of uncertainty (however, Box 8.1 describes a situation in which an invalid 
underlying theory led to repeated efforts to increase precision and reduce 
uncertainties within the model rather than revise the underlying theory). Some 
uncertainties are irreducible, and some may not be bounded by probability, but these 
can be critical for understanding total uncertainty (Tannert, Elvers, and Jandrig 
2007). Uncertainty analysis complements sensitivity analysis by helping a user 
identify the limits of the model’s applicability. 

insert Box 8.1 approximately here 

insert Table 8.1 approximately here 

 B  2.2. Types of Models 

There are many types of models, including heuristic, physical, and mathematical 
(Dale and O’Neill 1999). Heuristic models are relatively simple but capture key 
relationships of the system in a nonquantitative way. They can be depicted as 
pictures, diagrams, words, or simple mathematical relationships (such as inequalities) 
rather than accurate, absolute measures. Many conceptual models fall into this 
category because they provide a simple qualitative and transparent representation of 
the system being studied. Such approaches are designed to reveal how a system 
works. 

One example of heuristic models is the conceptual approach that has been 
applied in most economic modeling of land-use change associated with bioenergy 
policies (Figure 8.1), which begins with two basic land classes: forests and cultivated 
areas. By starting with this simple model, the effect of an additional demand for land 
for bioenergy crops inevitably leads to displacement and land-use change. The model 
does not attempt to ask if land-use change occurs; rather, it presumes that land-use 
change occurs and then estimates how much occurs under different scenarios. 

insert Figure 8.1 approximately here 

An alternative representation of the world would lead to a different modeling 
approach. For example, the conceptual model developed to portray how land use 
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relates to global economic models in Figure 8.2 (CBES 2009) illustrates the 
following distinct relationships: 

<listing> 

 Initial land-use change is a function of local cultural, technical, 
biophysical, political, and demographic process 

 Subsequent land-use change – what is planted on previously cleared 
land – is influenced by a distinct set of drivers and is more susceptible 
to global economic forces 

</listing> 

The figure points out that there is a difference between land use and the land-cover 
attributes that are typically used in global economic models. Land use is rarely 
measured (Dale et al. 2011). As a result, global economic models used to estimate 
land-use change are based on data sets more reflective of land cover than land use. 
Furthermore, existing global models typically portray changes in proportions of land 
cover and only relate to C flux when particular assumptions of current C content are 
made about the places where land-cover changes occur. 

insert Figure 8.2 approximately here 

Another example of a heuristic model is a narrative that describes changes in 
land and C as consequences consistent with the particular scenario depicted (e.g., 
Richards 1990, Richards and Flint 1994). Such conceptual models are appealing in 
that they are relatively easy to understand. However, their simplicity may mean that 
some of the important interactions in the system are not fully characterized. 

Physical models are simplified abstractions of the real world, typically 
constructed in three dimensions. Examples are microcosms, wind tunnels (used to 
examine aerodynamic properties of airplanes, cars, and seeds), trials and test plots, 
and aquariums (used in studies of fish population dynamics). Physical models of C 
flux and land-use change are difficult to construct because of the large spatial and 
temporal scales involved. As one example, Biosphere 2 is a 1.2 hectare structure built 
as a closed ecosystem in Arizona to explore interactions within five biomes and an 
agricultural area (Allen, Nelson, and Alling 2003). The facility faced major 
engineering challenges but over two years was able to track great fluctuations in 
carbon dioxide (CO2) and declines in oxygen. Biosphere 2 dealt with accelerated 
rates of biogeochemical cycling and ranges of atmospheric components that occur in 
closed systems by developing new approaches for air, water, and wastewater 
recycling and reuse. Much was learned about managing crops using nonchemical pest 
and disease control. The advantage of physical models is that they provide empirical 
information and directly relate to the human desire for visualization; however, the 
Biosphere 2 system is a poor replicate of the Earth. No physical model can capture 
the full complexity of the interactions between land and C fluxes at global scales. 
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Mathematical models portray relationships via numeric formulas. Equations 
are developed to reflect the major processes, interactions, and constraints of the 
system. This chapter focuses on how mathematical models of land and C can be used 
to both integrate science and inform decision makers. The many types of 
mathematical models can be characterized by the approach that is taken to the 
problem (e.g., optimization), the method used to solve the problem (e.g., analytic 
versus simulation), or the underlying theory as to which forces are driving change. 

There are several approaches used in mathematical models of land change 
based on different modeling methods and drivers of change (Table 8.2). Transition 
models assume that the history or scenario is critical to future interactions, whereas 
agent-based models assume that particular actors (such as land managers and policy 
makers) are most important to future pathways. Economic models explain land 
changes as being the result of supply, demand, and relative prices. General 
equilibrium models represent the whole economy with several interacting markets 
that seek equilibrium after a simulated shock. In contrast, partial-equilibrium models 
analyze these forces within a defined subset of the economy. Spatially explicit land-
use models account for the role of location in simulating land changes. Biophysical 
models assume that the physical and environmental settings are prime drivers of 
change and are sometimes used to project implications of different scenarios (e.g., 
land management or disturbances). Optimization models employ a problem 
formulation that sets out to derive conditions under which a specific objective is 
maximized or minimized given certain constraints. System dynamic models focus on 
interactions between components of the organization. Table 8.2 and its examples are 
included to make readers aware of the diversity of approaches and the many models 
that exist regarding land-use change. 

There is often overlap in approaches used to model land changes, typically 
depending on the questions being addressed and how the models are used. For 
example, the Integrated Model to Assess the Global Environment (IMAGEii) links 
models within a societal-environmental-climate framework to simulate the 
consequences of human activities worldwide and to assess sustainability issues 
related to climate change, biodiversity, and human well-being. As another example, 
the Policy Analysis System (POLYSYS) (Ugarte and Ray 2000) is a modular partial 
equilibrium economic modeling system of the U.S. agriculture sector in which 
planning decisions are made at the Agricultural Statistics District level, and problems 
about crop demands, livestock issues, and market prices are solved at the national 
level relative to baseline projections estimated by the Food and Agricultural Policy 
Research Institute (FAPRI), the U.S. Department of Agriculture, or the 
Congressional Budget Office.iii 

insert Table 8.2 approximately here 
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 B  2.3. Modeling Multiple Drivers 

A major challenge in land-use change modeling is considering the implications of 
different drivers of change. Combinations of models are often used to account for 
feedbacks and interactions between different sectors. Example model frameworks 
developed to link the land-use, economic, and energy sectors include economic-
biophysical models (LEITAP-IMAGEiv and GTAP-KLUMv), general equilibrium 
and partial equilibrium models (GTAP-FAPRI, GTAP-IMPACT, and GTAP-PEMvi), 
economic-forestry models (GLOBIOM-G4Mvii), economic-energy models (LEITAP-
TIMERviii), economic-agricultural models (AgLink-SAPIM, IFPSIM-EPIC, and 
GTAP-CAPRI-FSSIM), economic–land-use models (GTAP-CLUE), and economic-
environmental models (e.g., GTAP-CA-GREET). 

Another tool to address the potential for multiple drivers and effects is 
through life cycle assessment (LCA), an approach designed to assess major impacts 
associated with all stages of a process from cradle to grave and including social, 
environmental, and economic effects (e.g., GREET,ix Ecoinvent,x and GHGeniusxi). 
LCA often requires the results of many other models as input values. Some call these 
LCA approaches spreadsheet models, and their value may be in providing a means to 
link a whole set of model outputs into a common framework and to document the 
many influencing factors and their effects. 

A common simplification underlying many models used to estimate land-use 
change is to assume that the change in land cover from one point in time to another is 
caused by the land use associated with the secondary observation. Thus if what was 
once classified as forest is subsequently classified as a soybean field, a causal 
relationship is assumed based on the observed correlation. In reality, the forces that 
determine if land is cleared, how land is cleared, when land is cleared, and what is 
planted on the land after it is cleared are most likely to be quite distinct in each case 
and highly dependent on many site-specific contextual variables. 

 B  2.4. The Role of Data in Modeling Land and Carbon 

Accuracy in modeling of land and C processes depends on the underlying data and 
relationship assumed to describe these phenomena. Obtaining data is often a 
challenge. Independent data for validation are not always available at the time the 
model is developed. In that case, any data that are readily available are often used to 
calibrate the model, and validation often must await new information. Furthermore, 
the number of observations available for validation is often less than the number of 
parameters. When only a small amount of data is available, the standard deviation in 
model parameters can exceed the variation being modeled, which may compromise 
the statistical validity of any simulated values. 

Typically and not unexpectedly, there is a lack of fit between the model 
projections and the observations. Often the model intent is to portray the theory. 
Even so, this discrepancy may stimulate a reevaluation of the model, a reevaluation 
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of the input data or the questions being asked of the model, or both. Any data set is 
but one interpretation of reality, and there are always concerns about the reliability of 
the data because of sampling bias, spatial and temporal aspects of the sampling, 
testing design, and so forth. Thus models offer one of many possible interpretations 
of relationships among variables – just as the sample data provide one perspective. 
The relation between model projections and extant data needs to be considered, and if 
there is no agreement between observation and model projection in trends, values, or 
direction, then the differences must be explained. 

Historical data or data collected from an independent location can serve for 
validation. When projecting model outcomes to the future, and thus to unknown 
conditions, creative ways to validate the model must be devised. Often a model can 
be initiated under past conditions and used to project changes up to the present time 
(e.g., Zeng et al. 2008). Such hindcasts can then be compared to historical data so 
that confidence in modeling past conditions can be extended to projections of the 
future in a quantitative way (e.g., see Pontius and Neeti 2010). Hindcasting should 
use historical data from time periods during which the processes of interest were 
operative. In other words, a test of model validity is limited to the prevalent 
conditions associated with the historic data. Thus models cannot make “predictions” 
about a future based on past relationships and processes, when these key variables are 
changing. Examples of significant global changes include warming, precipitation 
regimes, atmospheric concentrations of CO2, conversion of natural landscapes (such 
as coastal zones) to human uses, intensification of nutrient cycles, hydrological 
cycles, disturbance regimes, introduction of nonnative species into ecosystems, and 
species loss. 

Some data are not appropriate for model validation. For example, two-point 
comparisons can easily misrepresent actual trends and processes. Similarly, small 
data sets that happen to capture a rare or extreme event value may bias data in one 
direction, whereas discarding the data may lead to an opposite bias. In addition, 
although models of ecological succession can be tested by data that contain changes 
over time in vegetation, C, or floristic composition (e.g., Pontius et al. 2008), if 
regular disturbances are a part of the system being modeled and yet did not occur at 
places from which the data were obtained, then those data would not be useful for 
model validation. In contrast, Doyle (1981) presents a case of using past hurricane 
disturbance for appropriate model testing. 

A concern specific to modeling land and C issues is the underlying data used 
to set initial conditions and values of model parameters. Too often, data are used 
without considering the bias originating from data inventory and editing, the effects 
of data uncertainty on model projections, or the suitability of the data for the 
application. For example, average C stock values generated from protected forest 
research sites may not be representative of C stocks on lands being converted to 
agriculture, because the latter have often undergone decades of timber extraction and 
other minor disturbances leading up to their use for agriculture. Similarly, data for 
land cover is sometimes employed when land use is being modeled. This chapter 
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focuses on information underlying land use because Chapter 7 discusses C in land-
use models. 

A major challenge for modeling land use is the paucity of reliable data at 
appropriate temporal and spatial scales. There is only limited information about how 
land is used or managed. Any given class of land cover or land use could have wide-
ranging C storage, flux, and potentials. Indeed, variation within a land-cover or land-
use class may exceed that between classes. In addition, variations in forest growth 
rates or density can alter conclusions about the GHG emission effects of changes in 
forest area (Rautiainen et al. 2011). 

Remote sensing data from satellites, although illustrative of many changes in 
the landscape, do not typically provide the detail necessary to estimate above- or 
belowground C storage or flux and other key attributes, such as what land is best 
suited for production and what intensity of production the land can support (CBES 
2009; see Chapter 5). Satellite imagery is limited to observed land cover during 
recent decades, and even then, differing sensors and data classification systems make 
change analysis challenging. Remote sensing is capable of generating data with high 
spatial and temporal resolution, although the raw imagery alone does not reveal how 
the land is managed or why changes in cover occur. Many changes in land use and 
management are not measurable from land-cover data, which may lead to a 
misinterpretation of change and effects. 

Some scientists use census or survey data to supplement land cover, but that 
information often deviates widely among countries because of variations in 
definitions of land-use classes and inventory techniques (Grainger 2010). 
Nevertheless, if properly collected and reported, census data can provide a valuable 
source of information on land management that is highly relevant to C flux and 
assessment. Currently, the variability in crops and global land-management practices 
cannot be accurately modeled or documented, partly because no global data sets are 
available that consistently measure changes in well-defined vegetation categories at 
regular intervals (Grainger 2008), much less changes in above- and belowground C 
stocks over time. 

The categorization of land types can influence model interpretation. Even the 
definition of forest can cause confusion (Colson et al. 2009). Huge variations in C 
stores and sequestration capacity can occur over time within a single land-cover 
category such as forest or pasture (Rautiainen et al. 2011). Simple definitions of land-
cover categories usually ignore these dynamics and merely assign average values for 
attributes to each category and then assume an abrupt and complete change at an 
arbitrary point of class differentiation (e.g., when forest canopy falls from 10 percent 
to 9 percent of the measured area, the land-cover changes from that of average 
“forest” to that of average “pasture”). In this case, changes in land-cover 
classification are often inappropriately substituted for changes in “land use.” Using 
these definitional shortcuts to characterize how changes in land use affect C may not 
have much relationship to real-world processes that govern C sequestration and 
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storage. Significant variations in the C attributes that depend on the history of land-
use practices and the variance of C within land-cover types are typically not a part of 
the analysis. 

Another example is marginal land, which is generally defined as land that is 
not generating profits under a given set of conditions. Marginal and degraded land 
that was previously cleared but is not actively cultivated represents a large and poorly 
characterized resource that can be categorized in several ways. Specific attention 
should be paid to historic trends and fluxes of C and nutrients because these 
dynamics are poorly understood and yet form a critical component of any assessment 
of potential land uses and C storage. Over the past two decades, an average of 3.8 
million square kilometers of land (an area larger than India) was burned each year 
(Giglio et al. 2010), and most of the fires occurred on marginal lands in Sub-Saharan 
Africa and agricultural frontiers in other developing nations. These lands clearly have 
great potential to sequester or release C depending on management practices. In 
particular, characterizing the extent, location, and factors leading to land 
underutilization is necessary to design policies that can guide decisions about desired 
directions (e.g., to reduce total GHG emissions and to improve rural economies) 
(CBES 2009). 

Consistent and precise information about C stocks, nitrogen stocks, and land-
use- and land-cover–specific fluxes of C and nitrogen are not available at the global 
scale. Standard data sets are needed for validation or verification of model results 
from back-casting or other approaches; however, adequate validation of global 
models may not be feasible in the near term because of data limitations. The global 
land-change modeling community requires spatially explicit land-use data updated on 
a yearly or seasonal basis with special attention to marginal lands and connecting, 
where possible, the land-use management data available from local agencies to 
observed land-cover information (Ramankutty et al. 2008) along with corresponding 
biogeochemical fluxes associated with these uses and cover types. 

 A  3. Using Models in Making Decisions about Land and Carbon 
Cycling 

Models can be valuable tools for increasing understanding about interactions between 
land use and the C cycle, or they can foster misconceptions. Overreliance on models 
can have consequences ranging from misinformation that undercuts efficient 
assessment of water quality (e.g., the Chesapeake Bay [Shivers and Moglen 2008]) to 
financial calamity (discussed later). Hall (1988) points out that decision makers 
sometimes accept model results without considering how they relate to the real 
world. Models offer several advantages for guiding decisions in land-use and C 
management, but they should be employed with a certain amount of caution. 
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 B  3.1. Advantages of Using Models to Increase the Understanding of 
Decision Makers 

Quantitative models, when run in a deterministic mode, are repeatable. They are able 
to integrate known information from several different sources and disciplines and 
thus can address the broad constraints, conditions, and opportunities with which 
decision makers are presented. Often, decision makers have to address issues that 
require attention at different temporal and spatial scales. Some models focus on 
processes that occur on the order of seconds to minutes (e.g., how land use can affect 
air quality), whereas others consider changes on the timescale of decades, centuries, 
or millennia (e.g., return interval of fires, droughts, or climate change). 

Models that help to explain the dynamics behind changes over years to 
decades are most in demand by decision makers dealing with land and C issues 
because they match political time horizons and because many of these effects are not 
apparent for many decades or even centuries. In any case, the timescale of a model 
needs to relate to the timescale of the management questions and their implications. 
Furthermore, the specific management issue targeted by a modeling project focuses 
the spatial scale of the question and points to the type of model to be used as well. 
Although some management issues deal with decisions on small scales for 
homogeneously managed land, it is often necessary to consider a parcel within a 
larger context because past management of the parcel along with past, present, and 
future activities on adjacent lands may have influences (White et al. 1997) and 
because natural and political boundaries also come into play. 

Models can help to organize and track information, ideas, and the outcomes 
of decision-making experiments in a way that would not be possible otherwise. The 
act of writing an equation explicitly defines relations and formalizes the hypothesis 
being explored. Mathematical models are useful to explore relationships in cases 
where field or laboratory data are limited, incomplete, or not directly applicable to 
the decision being made. In those cases, results from mathematical models can 
provide a perspective on alternative choices. Even when extensive data are available, 
the complexity of a situation may require a model for interpreting interactions or 
expanding results to larger spatial scales or longer timescales. The absence of 
adequate data does not imply that there is no scientific value in developing models of 
land use or C flux. The collaborative process of scientists developing a simulation 
model can be worthwhile, because it requires synthesis of data, theories, and opinions 
over scales of space, time, and biological organization. It often results in questions 
appropriate for new experimental studies, particularly when models do not meet 
expectations (Aber 1997). Furthermore, it can help to focus efforts on priorities for 
data collection and analysis. 

The advantages of model experiments and scenario analysis may be 
particularly useful to decision makers and other stakeholders designing steps to use 
market and financial incentives to reduce the emissions of GHGs from deforestation 
and forest degradation (REDD). REDD objectives often include conservation, 
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biodiversity, and alleviation of poverty. Modeling of land use is needed (1) to 
identify and assess the practices that would have occurred without a REDD Project 
intervention (the “business as usual” scenario) and (2) to compare the effects of that 
scenario with what would happen under alternative policies designed to reduce GHG 
emissions (Brown et al. 2007). REDD-related research efforts have revealed some of 
the different drivers of land-use change around the world (e.g., in Panama: Dale et al. 
2003; Indonesia: Butler, Koh, and Ghazou 2009; Uganda: Nakakaawa, Vedeld, and 
Aune 2011). REDD activities have typically been undertaken by national or local 
governments with support from external partners such as Norway, the United 
Nations, and the World Bank. However, it is the people living in an area where 
REDD activities occur who are most affected, because their livelihoods typically 
depend on the forest. Hence, modeling land-use change with respect to C fluxes and 
REDD is likely to be more useful if it incorporates an understanding of local social, 
cultural, and political conditions and aspirations. Properly designed models, along 
with participatory approaches, monitoring, and other tools, could help to guide 
investment decisions that benefit indigenous people and conserve natural resources 
while providing a point of reference for a political process dealing with the causes 
and effects of deforestation (Corbera, Estrada, and Brown 2010). 

 B  3.2. Cautionary Principles in Using Models for Decision Making 

Great caution is required in interpreting model projections, and decisions should not 
be based solely on model results because model projections are representations of a 
selected set of observations of the real world based on the existing scientific 
understanding of the system (Dale and Van Winkle 1998). Effectively used, 
calibrated, and validated, these results can provide information regarding what could 
happen, not necessarily what will occur in the real world. 

Model results always have uncertainties because they are based on 
simplifications of processes and their interactions. That is why model results are 
called projections (estimates of future possibilities) rather than predictions 
(something that is declared in advance) (Dale and Van Winkle 1998). Even so, 
decision makers and the public typically do not recognize the great uncertainties in 
land-use changes as sources of GHG emissions (estimates of the annual flux of CO2 

released through forest clearing are uncertain by plus or minus 200 percent according 
to the NRC [2010]). Decision makers need to understand how models fit within the 
process of scientific investigation. Developing scientific knowledge is an iterative 
process that builds from observations to formulate hypotheses that can then be tested 
with empirical information or, in an interim period when data are lacking, with 
models. Additional data collection, research, and analyses lead to new 
understandings and new hypotheses, which, in turn, are often further revised in the 
future. Thus models do not present “truths” but only an interpretation of the 
underlying assumptions and scenarios being explored at a given point in time. 

Model results are often presented to decision makers as possible implications 
of a certain set of assumptions that characterize a future scenario. Frequently, several 
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scenarios and their implications are presented as a way to capture a range of future 
possibilities (e.g., Intergovernmental Panel on Climate Change [IPCC] 2000). In such 
cases, scenario analysis is used to explore alternative futures. Because the future is 
unknown, it is important to consider several scenarios and to base at least one 
scenario on “business as usual.” Although changes occur in all situations, an 
extrapolation of recent trends can be used as a point of reference in many situations. 
An example of this approach occurred in the Brazilian state of Rondônia (Dale et al. 
1994), where a model was developed to identify the effects of farmers’ decisions on 
C sequestration. The model assessed the ability of those farmers to remain on the 
land and found that the business as usual (slash, burn, cultivate, deplete the soil, and 
move on) scenario was more similar to the “unsustainable” scenario than to 
“sustainable” scenarios that involved the use of multiple perennial crops and no 
burning. These model results helped to support the government’s plan to establish 
farmers who used multiple perennial crops and did not burn as a way to show other 
farmers how to manage land for persistent productivity and to enhance C 
sequestration. Such scenario exploration informs policy makers about which aspects 
of the systems they should be most concerned. 

Current understandings of complex systems, as reflected in models, are rarely 
adequate to provide answers to decision makers’ questions. There is no simple theory 
to describe all the complexities in land-use processes (Veldkamp et al. 2001, CBES 
2009). The sophistication of numerical models and accompanying sensitivity analysis 
and “error bars” can lead to a false sense of confidence and may inhibit people from 
questioning the applicability or accuracy of results. Often it is necessary to move 
ahead in the decision-making process with incomplete information (Wiens 1996). 
Models may be able to provide some insights; however, they cannot provide 
predictions about particular outcomes when new forces are at play. In such cases, 
models can be used to inform decision makers about potential issues and outcomes, 
but it is critical that the limitations of models and their projections be made clear. 

Although this book focuses on the topic of land use and the C cycle, the role 
of models in the 2008 global financial collapse provides some lessons regarding the 
use of models for integrating science and decision making. In July 2009, The 
Economist featured a series of articles titled “What went wrong with economics?” 
that led to a debate about the appropriate role of models and modeling. Unlike global 
land-use change, the financial markets are regulated, carefully tracked, clearly 
defined in monetary values, and supported by extensive accounting and records. Such 
a system is far simpler and more disposed to modeling and verification than C and 
land use. One key problem leading to the financial crisis was excessive reliance on 
models representing complex security derivatives and hedges that were not 
adequately understood. In addition, some models were fit to historic data that did not 
measure critical phenomena and were based on inappropriate assumptions (e.g., 
assuming growth and stability in perpetuity for home mortgages). Finally, the models 
were not routinely calibrated to account for stochastic events or nonstationarity in the 
processes they represented. A major collateral problem identified was lack of 
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attention to and analysis of accumulating empirical evidence (e.g., excessive growth 
in housing stock). Jean-Luc Demeulemeester and Claude Diebolt (2009) therefore 
urged decision makers to “take models for what they are: simplified views of the 
world that help us think about a complex issue, but are not true representations of the 
complexity itself.”  

Experiences in the finance sector offer a cautionary note to policy makers 
who must rely on models. As George Box (1979) noted, we must realize that “all 
models are wrong; some are useful” (p. 202). The lessons from modeling in the 
financial sector underscore the need to have a good understanding of the underlying 
model and the data supporting it and to compare model simulations with the 
empirical evidence to avoid serious errors. When models are used to estimate C 
changes associated with land cover and land use, these caveats merit serious 
attention. 

 B  3.3. Communicating about Models to Decision Makers 

Models are quite useful for communication because they are often designed to 
describe how elements of a system respond to policy alternatives. Developing a 
model requires defining and quantifying key drivers of a system and determining 
how they interact. It also calls for selecting a theory on which to base the model and 
to formalize the underlying logic. 

Models need to be understood not only by those developing and applying 
them but also by decision makers and society. Based on his experience in using 
mathematical models in courtroom situations, Swartzman (1996) points out: 

<listing> 

 The model must make common sense. 

 The model must be simple enough for nonscientists to understand. 

 Jargon must be avoided. 

 The model and its projections must be clearly described; simple 
illustrative graphics are most helpful. 

</listing> 

These lessons are general enough to be applicable to decisions about land and the C 
cycle. However, to capture key processes accurately, modelers must make models 
more detailed and complex, whereas decision makers want models to be more 
understandable. This situation produces tension in applied modeling. 

Model results are often not used in decision making because they are poorly 
understood. Many of the challenges related to model use arises from unrealistic 
expectations (Van Winkle and Dale 1998). Discrepancies between reality and model 
projections arise, in part, from a lack of decision makers’ understanding of the model 
assumptions, the scientific process, the uncertainty in the model projections, the 



 17

variability in the natural system, the immaturity of theory, and factors that were not 
included in the model but that influence the outcome of decisions. Other times, 
model results are adopted with too few caveats about their interpretation or validity. 

One way to improve decision making supported by models is to increase 
communication between the decision makers and the modelers and scientific 
disciplines that support the analyses related to the policy issue at hand. Ways to 
enhance communication include workshops, presentations, white papers, and 
understandable and accessible documentation. Such steps can create more realistic 
expectations of the contributions of models. Understanding the outcome of a model is 
not achieved just by examining the graphical, mapped, or tabular output but also by 
being aware of the strengths and limitations of the particular modeling approach, the 
assumptions, and the uncertainties in the projections (Dale and Van Winkle 1998). 
Decision makers should be briefed on specifics of model documentation (see Table 
8.1) and need to know the quality of the underlying information. However, decisions 
must frequently be made in the face of uncertainty. It is in those instances that the 
modeling process may be most useful. 

Decision makers need to be regularly informed that models based purely on 
theory or that combine qualitative and quantitative information cannot provide 
reliable or valid quantitative predictions because they never include all influences in 
a system. Models can provide estimates and suggest trends regarding the direction of 
change and the relative importance of different processes and parameters; however, 
results are no more reliable or valid than their underlying data and assumptions. 
Therefore, it is important for policies and decisions to have clearly defined goals and 
a systematic approach for monitoring progress toward those goals based on empirical 
data and analysis that are independent of models. 

Integrating models into decision making requires (1) developing flexible 
approaches to presenting and applying the results and (2) making the models and 
modeling results available and understandable to landowners and resource managers. 
For such applications, models may need to be designed up front to meet the specific 
needs and skills of the users and to accommodate new data and understanding as they 
develop. There are many different models, and most were developed for a specific, 
narrow purpose or to test the influence of a single attribute or factor of change among 
many others. However, when new needs and questions arise, there is a tendency to 
use existing models and other tools that are readily available. It is much easier to use 
an existing model than to conduct years of data collection and scientific analysis or to 
create a new model designed for the current concern. If existing models are adopted 
to address land- and C management concerns, then those models should be adapted to 
reflect not only the economic processes involved but also the biophysical processes, 
land-use history and trends, local cultural traditions, and socioeconomic and time 
constraints of the people occupying and managing the land. 



 18

 A  4. Conclusions and Opportunities Ahead 

Properly designed and applied, models can support the process of exploration and 
refinement of land-management options and improve understanding of underlying 
processes. However, it is critical to follow basic procedures for modeling so the 
assumptions of models are clear, the models are tested and validated with appropriate 
data (when possible), and the range of applicability of the model projections is made 
clear. In any case, gaps among claims, expectations, and the roles of models and the 
modeling process need to be pointed out to the user when these tools are used in 
policy and management. Furthermore, it is extremely important not to confuse model 
projections with scientific results. Models support decision making by helping to 
overcome human limits in the ability to assimilate, process, and interpret data without 
bias but are never a substitute for the human decision process. 

Opportunities exist to improve modeling of land-use change and the C cycle 
so that the scientific understanding and information on these issues is presented in a 
way that is more useful to decision makers. Specific suggestions include: 

<listing> 

 Modeling at the appropriate spatial and temporal scale (while 
considering changes that might occur at least one scale up and down) 

 Following appropriate modeling procedures (see Table 8.1) 

 Focusing on elegance of the approach – that is, including and 
identifying the necessary information and processes and avoiding 
unnecessary detail; encouraging the collection of data to validate the 
model and its projections 

 Communicating the results, sensitivities, and uncertainties to both 
scientists and policy analysts (and recognizing the different ways to do 
this) 

 Developing a new ontology of land classifications based on empirical 
measurements of C stocks, fluxes, and capacity for future storage 

 Applying the ontology to establish a global reference data set of high 
geospatial and temporal resolution (A common reference system is 
needed to permit improved analysis of changes associated with land 
use and to allow comparisons of model results, and current land-cover 
and land-use classifications and data sets are inadequate to meet C 
modeling demands.) 

</listing> 

Models are often an integral part of scientific development and management, 
and a variety of tools are available for developing, testing, and implementing models. 
Because land changes are spatially dynamic, it is useful to use mapping and spatial 
analysis to document change. A variety of visualization approaches can be used for 
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communication, validation, or sometimes extrapolation (e.g., Pontius, Huffaker, and 
Denman 2004; Pontius, Versiuis, and Maizia 2006). The steps and components of the 
modeling process are straightforward but not always applied. Too often, the use and 
value of models do not extend far from the communities of researchers who develop 
these models. Therefore, this review suggests a need for the following: 

<listing> 

 Understanding that models can be a part of the management process 
that includes exploration and refinement of management options 

 Involving field researchers and other local stakeholders in the process 
of developing model assumptions and input values 

 Properly documenting models using standardized procedures 

 Adopting interdisciplinary approaches for complex issues such as 
land-use change 

 Framing the question appropriately for the policy needs 

 Using models that are appropriate for the question 

 Educating decision makers about the scientific process 

</listing> 

Key challenges include (1) the development of spatial and temporal data sets at 
resolutions that provide accurate representation of historic changes in C stocks, C 
flux, and C storage capacity associated with geospatially explicit land-management 
projections; (2) balancing the complexity of dynamic historic changes, uncertain 
future climate conditions, global markets, and development with the need for clear 
and simple representations of the causes and effects of land-use change; and (3) 
providing clarity to decision makers on the differences between best available 
science and best available models. 
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Table 8.1: Key components of model documentation. 

 

Component Description of Information That Needs to Be Provided 

Purpose Hypothesis 

Process or phenomenon being simulated 

Applicability 

Application 
context 

Conceptual framework for the model as applied to a specific case 

Variables and processes considered exogenous 

Reference-case specifications 

Assumptions Temporal and spatial extent of applicability 

Spatial and temporal resolution of each data set and submodel 

Process included and not included and how specified (giving citations for underlying 
theory or observations) 

Feedbacks included and not included and how specified 

Scenarios used 

Questions being asked 

Inputs All initial conditions and their units 

How the initial-condition data were obtained and their sources 

Variability in input data 

Outputs Variables simulated and their units 

How the simulations can be used 

Calibration Iterative process used to determine the set of parameter values that produces the most 
appropriate model outcomes given the available information 

Data used for calibration 

Validation Process used to determine the soundness of the conceptual framework 

Accuracy of the model outcomes 

Methods for judging accuracy 

Data used for validation 

Sensitivity 
analysis 

How variation in particular parameters affects model outcomes 

Method used to identify the influence on model outcomes of variability in parameter 
values  

Uncertainty 
analysis  

Assumptions for which there is a lack of knowledge and for which the facts are not 
obtainable 

Risk of uncertain input data and assumptions 

Method used to ascertain the uncertainty in model parameters (e.g., errors in experimental 
design, lack of key measurements, poor understanding of underlying processes, and 
presence of confounding factors) 

Human actions owing to free will 
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Table 8.2: Mathematical models and frameworks used for land-use change (derived and expanded 
from discussion in Lambin et al. [2003] and in CBES [2009], particularly Figure 2 provided by L. 
Panichelli). There is some overlap in the types of models in the table because some applications 
combine several approaches. 

 

Type of Model and 
Framework 

Key Drivers of Change Paths toward Stability 
That Emerge 

Examples 

Transition model Scenario or history Change probability  Mather, Rudel, Moran and 
Brondizioxii 

Agent-based model Individual actors, such as 
land managers  

Multiphasic rather than 
sequential 

CASA,xiii Berndes-Sparovek, 
G4M 

General-equilibrium 
model 

Global economic 
pressures 

Equilibrium (by 
definition) 

GTAP, LEITAP, EPPA, DART14 

Partial-equilibrium 
model 

A specific economic 
sector (e.g., agricultural 
economics) 

Equilibrium (by 
definition) 

AgLink, ESIM, FAPRI, CAPRI, 
IMPACT, PEM, POLES, 
PRIMES15 

Spatially explicit 
land-use models 

Land suitability, 
productivity, and available 
infrastructure and 
transport costs 

Variable CLUE, KLUM (which uses the 
Lund-Potsdam-Jena [LPJ] 
dynamic global vegetation 
model), GLOB, GEOMOD16 

Biophysical models Biophysical, site-specific 
issues 

Variable EPIC, DayCentCentury17 

Optimization models Maximization or 
minimization of an 
objective function, 
generally economic profit 
or utility 

Equilibrium GLOBIOM, EUFASOM, 
FASOM, LUCEA, Panichelli-
Gnansounou18 

Systems dynamics Organizations, institutions, 
and their interactions  

Dynamic (by 
definition) 

Sheehan-Greene, GLUE, 
Stamboulis-Papachristos, 
TIMER19 
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Box 8.1: An Example of Problems That Arise When Underlying 
Model Theory Is Not in Agreement with Empirical Data and 
Their Implications 

The Copernican Revolution in astronomy provides an example of how setting 
forth the underlying theory of mathematical models is essential to documenting 
how models are used to explain observations. In 1543, Copernicus published a 
mathematical model explaining the theory of a heliocentric planetary system, 
which displaced the Earth from the center of the universe. However, it was not 
until 1822 that the model was formally accepted by decision makers in the 
Catholic Church and much of the general public. In the intervening centuries, 
earlier mathematical models were repeatedly adjusted so that they could better 
explain the observed phenomena without changing the assumption that Earth 
was at the center of the solar system. In particular, the Ptolemaic (or 
geocentric) system was repeatedly revised to explain observed movements of 
the planets. The adjustment of the Ptolemaic model was necessary to support a 
simple and fundamental conceptual belief – reinforced by apparent observation 
each day – that the sun circled around the Earth. Meanwhile, scientists such as 
Kepler contributed further analysis, and Galileo conducted telescopic studies 
that supported the heliocentic theory and the model of Copernicus. It took a 
preponderance of evidence and a great deal of time for leaders deeply invested 
in the geocentric model to accept change. 

A similar situation may be occurring as general economic models are 
applied to support the belief that U.S. ethanol policy causes an increase in 
global deforestation. The models estimating these indirect land-use changes do 
not include many of the key underlying social, cultural, political, and 
ecological processes known to drive deforestation. This is not surprising 
considering that global economic models were developed for entirely different 
purposes. Empirical evidence from the first decade of ethanol growth in the 
United States (2000 to 2010) provided little support for the assumptions and 
land-use change results produced by the models (Oladosu et al. 2011). 
Adjustments to the models could make marginal improvements; however, if a 
model does not incorporate appropriate theory, it is unlikely to adequately 
explain the observed patterns. Alignment or discrepancy will become more 
apparent as more accurate observations are accumulated. Regardless, it is not 
that a model is good or bad (an odd concept in itself) but rather that a model is 
unlikely to be appropriate for describing changes if known drivers for change 
are omitted. Therefore, it is critical that underlying theory be set forth as part of 
the model documentation. 

Examples of processes not included in many land-use change models 
are reversibility and repeated use of fire in the historic baseline. The fact that 
land is typically cleared and burned to formalize a claim, and reburned 
repeatedly in the absence of market demand, is not included in current models. 
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Such land is more likely to rebuild C stocks above- and belowground when it is 
brought into productive management, generating an effect from indirect land-
use change that is diametrically opposite of prevailing global equilibrium 
model estimates (CBES 2009). Furthermore, if reversion occurs within a short 
time frame, there may be no indirect land-use change effect (net emissions 
from land-use change would be zero); however, the Environmental Protection 
Agency’s Renewable Fuel Standard specifically omits land reversion (see 
http://www.epa.gov/OMS/renewablefuels/rfs2-peer-review-emissions.pdf 

[accessed March 23, 2012]). To improve validity and accuracy, models used to 
estimate indirect effects of bioenergy should adequately incorporate baseline 
and ongoing land-use changes as a part of their processes (Kline et al. 2011; 
Gnansounou et al. 2009; Keeney and Hertel 2009; Kim, Kim, and Dale 2009). 
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 A  Figure Captions 

Figure 8.1: A conceptual diagram that is commonly used in economic modeling to project land-use 

change (adapted from Dehue, Meyer, and van de Staaij et al. 2010). This representation assumes that 

all land is either in forests or responsible cultivation and has uniform environmental characteristics 

within a category (such as ability to sequester or release C). The assumption is that indirect land-use 

change occurs when existing plantations are used to produce biomass feedstock (circle A) and cause 

expansion of the land use for biomass production to forest or cultivated areas (circles B or C) if there 

is insufficient reduction in feedstock demand or increase in yield. This conceptual model does not 

recognize the variability in C sequestration and other environmental variables within each land type 

or the great availability of previously cleared and underutilized land (Food and Agriculture 

Organization of the United Nations and International Institute for Applied Systems Analysis [FAO 

and IAASA 2007]).
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Figure 8.2: Conceptual diagram of the relationships among initial land use, changes in land cover, 

data interpretation filters, and global economic models, as well as the effects of these components on 

C flux and subsequent drivers of land-use change [adapted from CBES (2009)].
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