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Indicators for Bioenergy Sustainability
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Categories of environmental sustainability indicators

Environment Indicator Units

Soil quality 1. Total organic carbon 

(TOC)

Mg/ha

2. Total nitrogen (N) Mg/ha

3. Extractable 

phosphorus (P)

Mg/ha

4. Bulk density g/cm3

Water quality 

and quantity

5. Nitrate concentration 

in streams (and export)

concentration: mg/L;

export: kg/ha/yr

6. Total phosphorus (P) 

concentration in streams 

(and export)

concentration: mg/L;

export: kg/ha/yr

7. Suspended sediment 

concentration in streams 

(and export)

concentration: mg/L;

export: kg/ha/yr

8. Herbicide 

concentration in streams 

(and export)

concentration: mg/L;

export: kg/ha/yr

9. Storm flow L/s

10. Minimum base flow L/s

11. Consumptive water 

use (incorporates base 

flow)

feedstock production: 

m3/ha/day;

biorefinery: m3/day

Environment Indicator Units

Greenhouse 

gases

12. CO2 equivalent 

emissions (CO2 and N2O)

kgCeq/GJ

Biodiversity 13. Presence of taxa of 

special concern

Presence

14. Habitat area of taxa of 

special concern

ha

Air quality 15. Tropospheric ozone ppb

16. Carbon monoxide ppm

17. Total particulate 

matter less than 2.5μm 

diameter (PM2.5)

µg/m3

18. Total particulate 

matter less than 10μm 

diameter (PM10)

µg/m3

Productivity 19. Aboveground net 

primary productivity 

(ANPP) / Yield

gC/m2/year

McBride et al. (2011) Ecological 
Indicators 11:1277-1289



Feedstock type

Resource 
conditions

Management

Processing

Harvesting 
and collection

Storage

Transport

Fuel type

Conversion 
process

Co-products

Storage

Transport

Blend 
conditions

Engine type 
and efficiency

Looking at the biofuel supply chain in terms of 
environmental sustainability indicators

Feedstock 

production 

Feedstock 

logistics 

Conversion to 

biofuel
Biofuel logistics

Biofuel

End uses

Categories without major effects

Soil quality

Water

Greenhouse gases

Biodiversity

Air quality

Productivity

Categories of Environmental Sustainability

Efroymson et al.  (2013) Environmental 

Management 51:291-306.
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Virginia Dale, ORNLBioenergy sustainability is 
context dependent



Challenges require bioenergy sustainability assessments to be

◦ Flexible to support the range of analyses that different groups of researchers, 
policymakers, and stakeholders may seek to undertake

Goals in for bioenergy sustainability assessments
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Challenges require bioenergy sustainability assessments to be
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policymakers, and stakeholders may seek to undertake

◦ Adaptable for assessing the diverse bioenergy production pathways
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quantifying data uncertainty to reduce bias and potential arbitrary nature of 
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Lou Gross
University of Tennessee

Robustness of 
assessment protocols



7 Key Components for Sustainability Assessment
Identification of goals and boundaries for analysis

Indicator selection and categorization

Normalization and weighting

Aggregation

Analysis of data quality

Evaluation of assessment results

Visualization and reporting
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7 Key Components for Sustainability Assessment
Identification of goals and boundaries for analysis

Indicator selection and categorization

Normalization and weighting

Aggregation:

Analysis of data quality

Evaluation of assessment results

Visualization and reporting

Research focused on studying mathematical properties of 
aggregation functions and how they can be utilized to develop 
flexible, adaptable, and robust assessment protocols
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Applying mathematics to develop aggregation 
strategies
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Mathematical study of aggregation functions
Aggregation Functions by Grabisch, 
Marichal, Mesiar, and Pap (2009) provides 
a formal framework for the study of 
aggregation functions and their 
application.

Two important factors for determining 
appropriate aggregation strategies:
• Desired assessment goals

• Characteristics of indicator data
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Concerns in assessment can be addressed by 
appropriate selection of aggregation functions

Sustainability assessments are context dependent. Fostering consistent 
assessment valuations under varying contexts is critical

•Compensatory behavior of index/aggregation function
• ex. Should a low environmental indicator value be able to offset a high economic 

indicator in the total aggregate value? (Weak vs. strong sustainability argument)
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1 − 𝜆 𝑀𝑖𝑛 𝑥𝑖 + 𝜆 
𝑖=1

𝑛
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•Compensatory behavior of index/aggregation function
• ex. Should a low environmental indicator value be able to offset a high economic 

indicator in the total aggregate value? (Weak vs. strong sustainability argument)

•A simple change in units of measurement can change assessment outputs
• Admissible transformations by scale of measurability (ratio, interval, ordinal, …) lead 

to invariant functions with respect to those scales

•Aggregation can take place at many steps within an assessment 
• Inconsistencies can arise if aggregate values are used in further aggregations and if 

the input ordering is varied
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Example: Meaningfulness of Aggregation 
Function on a Measurability Scale



Meaningfulness of aggregation functions 
on independent ratio scales 

A researcher is interested in tracking nitrogen and phosphorus concentration in a stream 
adjacent to a bioenergy production site.  Measurements are taken in consecutive years.
◦ Year 1: nitrogen concentration is 0.97 mg/L and phosphorus concentration is 0.051 mg/L

◦ Year 2: nitrogen concentration is 0.95 mg/L and phosphorus concentration is 0.082 mg/L
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-- The researcher finds that the aggregate value has increased from year 1 to year 2 --
Alternatively, consider the researcher recording phosphorus measurements in cg/L instead of 
mg/L. This would yield values of 0.0051 cg/L year 1 and 0.0082 cg/L year 2.  The aggregate value 
of indicators is then (0.970+0.0051)/2=0.48755 for the first year and (0.95+0.0082)/2=0.4791 
the second year.  

-- The researcher now finds that the aggregate value has decreased from year 1 to year 2 –
Both mg/L and cg/L are ratio scale measurement units. In order to consistently allow changes 
between different ratio scale units, the aggregation function must be meaningful on independent 
ratio scales. Notably, use of the geometric mean would resolve this issue. 



Quick Summary on 
Meaningfulness

Meaningfulness of a function 
is related to the ability of the 
function to maintain the 
information contained in the 
data.

Meaningfulness is with 
respect to scales of 
measurability

◦ Example scales are Ordinal, 
Interval, and Ratio



Example: Aggregation and Associativity
of the Aggregation Function
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Example: Discrepancies of aggregate values and associativity of 
arithmetic mean
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However, if one decides to instead group all the measures together first, 
(0.5, 0.4, 0.6, 0.5, 0.5, 0.1, 0.1, 0.3, 0.3) and take the arithmetic mean, the resulting value is 0.3667.  

This discrepancy is due to the fact that the arithmetic mean is not associative.
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Example: Discrepancies of aggregate values and associativity of 
arithmetic mean

A function 𝐹, such that 𝐹:∪𝑛∈ℕ 𝕀
𝑛 → 𝕀 is associative if 

𝐹 𝑥 = 𝑥 ∀ 𝑥 ∈ 𝕀
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𝑛

𝐹 is the aggregation function chosen, 𝒙 and 𝒙′ are indicator measurements, 𝕀 is the 
interval on which the indicators are measured. 
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𝐹 𝒙, 𝒙′ = 𝐹(𝐹 𝒙 , 𝐹 𝒙′ )

for all 𝒙, 𝒙′ ∈ ∪𝑛∈ℕ 𝕀
𝑛

𝐹 is the aggregation function chosen, 𝒙 and 𝒙′ are indicator measurements, 𝕀 is the 
interval on which the indicators are measured. 

Associativity relates to the consistency of sub-aggregates (or aggregates of subsets of 
indicator variables) to the aggregate value for the entire set of variables under the 
same aggregation function. 
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Distributions of Normalized Indicator Data
Distributions communicate not only mean values of 
indicators, but also uncertainty.  

Furthermore, moving from data points to distributions 
of data allows for the utilization statistical and 
probabilistic techniques.

Using distance to target normalization, indicator 
measures will be mapped to values between 0 and 1, 
where 0 is a baseline value (non-ideal value) and 1 
represents a target or (ideal value).

An ideal distribution to describe data that is on the 
interval between 0 and 1 is the Beta Distribution.



Mixture Modeling using Beta Distributions
Mixture modeling refers to the combination of random variables using 

weights to generate distributions that fit multi-modal data.

Beta distributions offer flexible behavior 
through various parameterization.

Mixture models and model selection using information criteria provide a 
framework to pursue information theoretic aggregation strategies
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Information Theoretic Approach to 
Aggregation of Distributions

•How can one aggregate the information from multiple distributions for indicators in such a way 
that reduces complexity and maintains the most information

• Various information criteria can be used for model selection
• Akaike Information Criteria (AIC)

• Schwarz Bayesian Information Criteria (SBIC or BIC)

•Both of these information criteria balance a maximized likelihood of a distribution given the data 
and a penalty for overfitting (i.e. introduction of unnecessary parameters and complexity)



Example: Model Selection for Aggregate 
Probability Distribution



Example: Model Selection for Aggregate Distribution
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Example: Model Selection for Aggregate Distribution



Summary: Issues and Solutions
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Issues
Correct and Incorrect aggregation functions 
don’t exist

◦ Tradeoffs

◦ Appropriate aggregation function choice 
depends on implementation and data

Uncertainty
◦ Exists at both level of individual indicators and at 

aggregate level of indicators

Normalization and Weighting
◦ Explicit weighting of indicators before 

aggregation introduces bias

◦ Normalization weights indicators implicitly 
before aggregation

Solutions
Correct and Incorrect aggregation functions 
don’t exist

◦ Well defined assessment goals and function

◦ Utilize theoretical results to understand when 
inconsistency can arise and anticipate issues

Uncertainty
◦ Utilize statistical and probabilistic approaches 

and properties of specific aggregation functions

Normalization and Weighting
◦ Bias cannot be avoided, pin normalized values 

and weights to targets and baselines

◦ Quantify implicit weights and impact of implicit 
weights on aggregate outputs.



Future Research Directions
•Aggregation can take place over space and/or time, which may lead to different 
aggregation strategies
• ex. Does the assessment compare multiple sites for the same period of time or does it 

compare a site to itself over some time period?

•Upon development of aggregation strategy, create complementary statistical 
methods for the assessment of data variability and uncertainty
• Preliminary work to quantify uncertainty utilizing the geometric mean as the aggregation 

function has yielded positive results

•Sensitivity testing and analysis of assessment results
• Issues of comparability arise often in assessment of multiple sites

•Develop visualization and communication tool utilizing assessment protocols
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Thank you. 
INTERESTED?

Check in for results at the

Center for bioenergy sustainability:

http://web.ornl.gov/sci/ees/cbes/

Email:

npollesc@utk.edu

RESOURCES
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Oldosu, G.A., Davis, M.R., Downing, M.E., and Hilliard, M.R., 
(2013). Indicators for assessing socioeconomic sustainability of 
bioenergy systems: a short list of practical measures. Ecological 
Indicators, 26: 87-102.

Grabisch, M., Marichal, J-L., Mesiar, R., and Pap, E. 
(2009). Aggregation Functions. Cambridge University 
Press, New York, 1 edition.

McBride, A.C., Dale, V.H., Baskaran, L.M., Downing, M.E., Eaton, 
L.M., Efroymson, R.A., Garten, C.T., Kline, K.L., Jager, H.I., 
Mulholland, P.J., Parish, E.S., Schweizer, P.E., and Storey, J.M. 
(2011). Indicators to support environmental sustainability of 
bioenergy systems. Ecological Indicators, 11(5):1277-1289.
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Additional slides if time allows



Multiple site-multiple indicator assessment
Consistency of aggregate output where 
assessments treat multiple sites and 
with multiple indicators is related to the 
properties of bisymmetry and strong bi-
symmetry

• Example: Bisymmetry ensures that 
aggregating rows and then columns of 
data, is equivalent to aggregating 
columns and then rows. Thus approach A 
and approach B yield the same total 
aggregate value for all sites and all 
indicators. (see diagram on right)

Indicator 1
Site 1

⋯ Indicator 1
Site 𝑗

Aggregate of 
Indicator 1

⋮ ⋱ ⋮ ⋮

Indicator 𝑖
Site 1

⋯ Indicator 𝑖
Site 𝑗

Aggregate of 
Indicator 𝑖

Aggregate of 
Site 1

⋯ Aggregate of 
Site 𝑗

Aggregate of 
All Sites and All 

Indicators

APPROACH A

A
P
P
R
O
A
C
H
B
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Multiple site-multiple indicator 
assessment: Strong Bisymmetry
𝐹:∪𝑛∈ℕ 𝕀

𝑛 → 𝕀 is strongly bisymmetric if 𝐹 𝑥 = 𝑥 ∀ 𝑥 ∈ 𝕀 and 
if for any 𝑛, 𝑝 ∈ ℕ we have 

𝐹 𝐹 𝑥11, … , 𝑥1𝑛 , … , 𝐹 𝑥𝑝1, … , 𝑥𝑝𝑛 = 𝐹(𝐹 𝑥11, … , 𝑥𝑝1 , … , 𝐹 𝑥1𝑛, … , 𝑥𝑝𝑛 )

for all 𝑝 × 𝑛 matrices

𝑥11 … 𝑥1𝑛
⋮ ⋱ ⋮
𝑥𝑝1 … 𝑥𝑝𝑛

∈ 𝕀𝑝×𝑛
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• Example: Bisymmetry ensures that 
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Multiple site-multiple indicator assessment
Consistency of aggregate output where 
assessments treat multiple sites and 
with multiple indicators is related to the 
properties of bisymmetry and strong bi-
symmetry

• Fortunately, many common aggregation 
functions have the property of 
bisymmetry.
• Ex. Arithmetic and Geometric means, Min, Max, Product, Sum
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