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TRANSPORTATION CONSUMPTION AND REDUCTION LEGISLATION

* LD Transportation Consumes Petroleum

[1]
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Methodology to Reduce Fuel Consumption
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* Fundamentally * Engine combustion AIternatiye
what is going on in processes combustion
internal processes (LTC)
combustion
engines * In-application high o

octane bio-fuel * LTC efficiency
results paradox

e What do we need
to be concerned

about in terms of - High octane fuels * Gross to brake
efficiency? are powertrain efficiency
configuration and challenges

efficiency enablers
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"The engine is the ideal teaching tool — it features all
of the elements of engineering: materials, fluids,
thermodynamics, lubrication, chemistry, electronics,
etc. The only thing missing is nuclear reaction."

-Phil Myers
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Engine Research Areas
Fuel Chemistry

(chemical kinetics, organic chemistry)

1.2

0.9 1 1.1 i
1000/T [1/K]

Combustion

(thermodynamics, fluid dynamics, heat transfer)

iso-octane (2,2, 4-trimethylpentane)
Octane nurmber assumed to be 100
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Combustion Fundamentals

4 A

* Fundamentally
what is going in on
internal
combustion
engines

* What do we need
to be concerned
about in terms of
efficiency?
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How Efficiently Can | Get Work Out of My Engine?

* Internal Combustion Engines are NOT a thermodynamic
cycle!

— Not governed by Carnot Efficiency!

* Engine is a chemical reaction constrained to a changing volume to
convert chemical potential to work

* new working fluid every fired cycle + working fluid changes composition!

Max work from fuel Max work from device

1
Wmax,use ful — _AGTO,PO Nehermat = 1 = (rc(Y‘1)>

* Efficiency is dependent on amount work (W, ysefu1) and how well work
is extracted in the cycle

* Engine efficiency couples chemical reaction to the device
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Maximum Work Cares About Temperature and
Composition

» Surroundings o
Acomposition \ A Irreversibility

Wmax,useful — _(Hp — Hr) +T, (Sp — S,,)
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directly dependenton T 20}
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* High temperature affects engine : ]
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In-practice Combustion Processes and Fuel
Property Efficiency Enablers

4 A

* Engine combustion
processes

* In-application high
octane bio-fuel
results

* High octane fuels
are powertrain
configuration and
efficiency enablers
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What Forms of Combustion are Used?

Gasoline Engine
(Spark Ignition)
spark plug

Hot-Flame Region:
NOx

Flame propagation

E""".‘""!'-. U.S. DEPARTMENT OF

Diesel Engine HCCl Engine
(Compression Ignition) (Homogeneous Charge
fuel injector Compression Ignition)

Hot-Flame Region: Low-Temperature Combustion:
NOx & Soot Ultra-Low Emissions (< 1900K)
Mixing controlled Autoignition

[Images adopted from 21]
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Flame Propagation (gasoline)

Gasoline Engine
(Spark Ignition)

=
©
=3
o
S
spark plug 3
0
=
o

Hot-Flame Region:
NOx

Easy to control
Command Spark
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Mixing Controlled (diesel)

Diesel Engine
(Compression Ignition)

Pressure [bar]

fuel injector

Hot-Flame Region:
NOx & Soot

Easy to control
Command Spray
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Bulk Autoignition (HCCI)
HCCl Engine

(Homogeneous Charge
Compression Ignition)

Pressure [bar]

Low-Temperature Combustion:
Ultra-Low Emissions (< 1900K)

Difficult to control
is fuel specific
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Knock Limits SI Engine Efficiency

. o E
Gasoline Engine  qutoignition,;,, = Ae(®?)
(Spark Ignition)
* Knock can create oblique shocks
e Shock compression down
ringland
*  Plocal > material yield

spark plug

* Knock increases heat transfer

1000

Coefficient of Correlation : 0.74
900 -
— 800+ L]
- NI . " .
Knock sets = ™ R LB
compression ratio (7;) 3 o001 §i ; '! '-_l': "
(i.e., cycle efficiency) g %07 ;f§ -
E 400 e - .
o E L
_ 1 _ 1 3004 .
Nthermal = -1 :
Hot-Flame Region: Tc T e @ me | s s
NOx Knock Intensity [kPa]

http://www.youtube.com/watch?feature=player_detailpage&list=PL01EEAE444A42515D&v=kAVnMIwbGqE#t=436 [8]
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http://www.youtube.com/watch?feature=player_detailpage&list=PL01EEAE444A42515D&v=kAVnMIwbGqE#t=436
http://www.youtube.com/watch?feature=player_detailpage&list=PL01EEAE444A42515D&v=kAVnMIwbGqE#t=436

Lower Octane Number Reduces Maximum Load and Increases
High-Load Fuel Consumption

. . . Eq
* To avoid knock combustion phasing _—  qutoignition,;,,, = Ae(ﬁ)
is retarded

— During combustion unburned charge — 87AK, hiavv :Tock limited
—E
PV = nRT — 30 not knoc imited

1 /Extrawork' -
[ ] [ ] [ ] 1 ’
* Couple chemical reaction (i.e., ] E30 =100 RON

W nax,usefut) to the engine cycle 1 \Gas = 90 RON
1000 - _

W=JPdv

Pressure (kPa)

* Want most P and DV 1004

* Knock avoidance reduces —
efficiency Volume (L)

Propensity to knock is reduced with higher octane number

U.S. DEPARTMENT OF

ENERGY ‘¥ OAK RIDGE NATIONAT LLABORATORY

15 MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

POLENT O 8
, TR
-\' %
2 &
A0 .'\~‘




Octane Number is a Rating Relative to a Reference

* Octane scale defined long ago...

O aromatics
HC CH, CHa Iso-octane 130 - monoolefins C,>C, data adapted from [9]
° RON=100 ol © non-cyclic parrafins
o N Ny, MON=100 0] @ 2o isooctane
3 3 T 5%
Ha 100l @ 1B24 N 3,
H He He n-heptane 90 @ _E%0 °
[3)
HaC” \ﬁ/ \ﬁ/ “cH, RON=0 o 38. N
2 2 MON=0 Z ol /
= 501 °
* Octane number factors ;18 3
— bonds, statistics, conditions, etc... 20
107 A _—n-heptane _
* Correlate real fuels to ref O 50 30 40 50 60 70 80 %0 100 1i01k0
orreiate rea uels to rererence 0O 10 20 30 40 50 60 70 80 90 100110120130
— Non-cycle paraffin define scale RON (-)

* These are highly sensitive to pressure!

* Octane number tells only part of the story

* Referenced to normal paraffin
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HIGH OCTANE FUELS ALREADY ON MARKET...

* More than 14 million FFVs on the road
* Ave. FFV less than 4 gal. E85 per year!

Is A “RENEWABLE SUPER PREMIUM” A BETTER PATH FOR ETHANOL?
* Itis likely that optimum blend is E20-E40

Solid = FFV || Dashed = EtOH optimized engine
40

] 1| === Cost per Mile
35 MPG

] . || = Efficiency (%)
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25 ~
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Recent High Octane Sl Bio-Fuel work at ORNL Shows
Optimization in Efficiency and Fuel Energy

* 3 Fuels Tested 87 AKI 1B24 E30

— 87 AKI RON (-) 90.2 96.6 100.3
* “regular” pump gasoline, 0% EtOH MON (-) 83.9 86.8 88.8
— I1B24 S (-) 6.3 9.8 11.5

* 87 AKI +24% Iso-butanol (vol./vol.)
— E30 (renewable super premium)

+ 87 AKI + 30% Ethanol (vol./vol.) = 87AKI miB24 ME30

[
o
o

S
* FFV customer w/E30 S 95
— ~12% MPG reduction é 2(5) |
* Engine must capitalize on other 2 80 -
fuel properties to offset ethanol = LHV (M)/kg) V?I:}If/"e:«;;v
o o a
energy deficit s
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E30 Benefits are Beyond Octane Number.......

B E30
* Knock limits S| Engine Load & n . o
2000
—e— 87 AKIEQO —e— |[B24 —e— E30 1 [ *=data point
e 1800 [+=datapoin]
! 2000 r/min 1600- RON=100.3
] A | . 1400
221 / , d ©1200
O 20 gt <1000 -
£ 18] / ‘\:’. 2 800- :RON=00.2
< 16 / S = 600 : A
£ 14] / Lt-"' 400- ' : :
B ] . 3 200
KJ . .
3 121 / o Max Efficiency .
101 i X 1200 1600 2000 2400 2800 3200
LT P
S—Mﬁ . . . . | Speed (r/min)

0 250 500 750 1000 1250 1500 1750 2000

800
IMEPg (kPa) 500 m 87AKI mIB24 mE30
400 -
E30 Benefits are Beyond AKI 200 |
0 -
*API Pub. 4261, June 2001 HoV (ki/kg) HoV Gas eq.
(ki/kg)

% NREL, “Utilization of Renewable Oxygenates as Gasoline
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Charge Cooling is Critical Additional Factor for
Improving Anti-Knock Properties

* HoV affects in-use anti-knock

UFI
%%g o~ |intake
surge
heater tank 19
| ©
turbine ©
simulating PFI ] <
orifice
{/\ Dl
exhaust —
A temperature
>
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E30 Combustion Rate Faster Than Other Fuels

* Burning velocities of
ethanol and i-butanol 250 500 750 1000 1250 1500 1750 2000
faster than gasoline* IMEPg (kPa)

. 2000 r/min
* Faster combustion / 3]
—o— | —A— 87 AK| —e— | —A—|B24 —e—|—A—E30
rEduces knOCk open markers = KLSA 24 '<_[|
T T T T T T T T T T T T T T T @)
15% EGR o,
° IB24 and E30 have fester A n :I .20 m
. / LL
combustion i \x 4* YOl B~
VAN A=
L"MAAAAA%Q A AAALAALLEE i OSO
Loalt 125
* Why? .
E ]
S 16
\o E ‘O.oC‘o‘O
o 12_ >0 O
i
g

o

Is faster duration fuel,
phasing or |Oad dominated? *Broustail, Guillaume, et al. "Experimental determination of laminar
’ ° . . .

burning velocity for butanol and ethanol iso-octane blends." Fuel
90.1 (2011): 1-6
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Dilution is Most Dominant on 5-50 MFB Time

* Prematurely retard E30 [13]
—.—l—'— 87AKI 2000 -
* E30 and 1B24 offer —om | mo= E30 r/min
. . —o— | —o— |B24
chemical benefits to —0m | o= E30 at 87AKI KLSA
reducing end gas knock — X'.'O'. 2%
15% EGR 118 =
16 &£
114 =
e 5-50 Rate Load Independent 1.
— | 1128
Lo
* 0% EGR ;320 10'_5
—Fuel dominates 5-50 time o181 o%EGR
L 16
* 15% EGR EO 14 |
, S 12
* Fuel & load independent, Ty 0 J S A T S S S S
phasing dominates O 6 8 1012 14 16 18 20 22 24 26

CA50 [°CA]
e Kinetic & Dilution Tradeoff
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Reduced Speed Sensitivity of E30 Improves Low-End Torque

* E30 low-speed load much higher

* Onset of Knock speed dependent

* E30 knock trend speed independent

Fuel sensitivity is important “other” factor

—e— 87 AKIEQ —e— IB24 —e+— E30

26
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History Has Shown That Technology Enters the LD

Market

* LD technology adoption occurring

* Historically has increased specific

power

— Downsizing?

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percent of Market Share

Light Duty Vehicle Technology Penetration Share
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Injection Supercharged
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mMY 2012

6Speed  Continuously 7+ Speed
Transmission  Variable  Transmission
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Evolutionary Changes to Cars

A=1 Engine Map

Typical midsize U.S. car
— 65 MPH cruise = 16kW

* Lines of constant power
BMEP+V gxSpeed
2x10"3

— V4 =1.2 and 2L engines

— Power =

* Assume all losses same

Assume 2.0L & transmission

Evolutionary changes

Transmission “Downspeed”

©
©

: ""14-1-,, U.S. DEPARTMENT OF

t e,

7 @
A /5
a %

N

Displacement “Downsize”

Displacement + Transmission
“Downsize+speed”

16 Kw Power (typical midsize car 65 MPH road load)

,_\1800
i)
@ 1600

BTE (%)*
®© 1400 o] .
— {1 11.2L 35
8 1200 . 30
o
11000 ) 2
L 3800 1200 .
< 1 — . o
o 600 ® O 10
= I :%\ Downsize I 50
& 400 - 30: ';S,Oeed . 0.0
= 2004 . 25T 20 :

0 1 F ' -—r—*lo-

1200 1600 2000 2400 2800 3200

Speed (r/min)

*FMEP correlated

87AKI Limits Options!
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’¥ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY



E30 Estimates of Economy & CO:2

» Surpasses 2020 CAFE est.
close to 2025
e Vehicle same as 2012

16 Kw Power (typical midsize car 65 MPH road load)

Fuel Economy [MPG]
87 AKI 39.7 449 46.1
E30 357 407 409 439
E30 (gaseq) 39.6 452 455 4838 1600
© 1600
. . © 1400
Engine out [g CO2/mi] 5
© 1200
@ @ @ %1000
87 AKI 209.6 1872 1810 NA L 800
E30 2105 1818 177.8 1660 & 600
5 400
: = 200
At Steady 65 Mph Cruise Up to: =

~13.8% increase in MPG!
~23.5% reduction in CO2!

__ - [12]
_——" | JE30+15%EGR
— et ™S
] 135
LA : BTE (%)*
1 2 M 35
] ﬁ) 87AKI + 15% EGR o5
20
2.0
] B C 35 15
: . : eed 10
Li * - x Downsizil I 5.0
QO25 _ Vnspee” A 0.0
s ‘r———loﬁ

1200 1600 2000 2400 2800 3200

Speed (r/min)

*FMEP correlated
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Summary
* Engines couple chemistry and mechanics

* Fuel Octane offers established technological pathway for higher n
engines

Renewable feedstocks for high octane fuels possible
— Optimization of fuels and engines must be congruent

Ethanol offers unique properties “beyond octane”

EGR anti-knock effects are somewhat fuel dependent

E30 enabled Downsized Engine (40% smaller disp. assumed)

* Reserve power (cruise control, terrain changes, safety
maneuvers, etc...)

° 13.8% increase in MPG & 23.5% reduction in CO2

 NHTSA 2020 MPG (Hwy) predicted, no changes to 2012
vehicle
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