Modeling of the EAST ICRF Antenna with ICANT Code
Chengming Qin, Yanping Zhao, L. Colas, S. Heuraux,
1Inst. of Plasma Physics, Chinese Acad. of Sciences., Hefei, China
2CEA-Cadarache, 13108 St-Paul-lez-Durance, France
3Laboratoire de Physique des Milieux Ionisés, CNRS UMR 7040, Université Henri Poincaré, BP 239 F-54506 Vandoeuvre l/cedex, France

A new ion-cyclotron range of frequencies (ICRF) antenna for Experimental Advanced Superconducting Tokamak (EAST) is in project. The antenna configuration is based on the Resonant Double Loop (RDL) [1] concept which used on Tore Supra launchers has proved its high power density capabilities. It consists of 2 toroidal RDL units side by side, mounted inside a large mid-plane port. The new ICRF antenna is planned for coupling 4MW RF power into plasma, and operation frequency range is from 30 to 110MHz.

The ICANT code computes self-consistently the surface current distribution on a 3D antenna model radiating in a plasma or vacuum and has been used to analyze the coupling properties of various antenna models. [2] In this work, this code has been used to model the new ICRF antenna and assess its coupling capabilities, as well as the near-fields in front of the antenna in order find the sources of the high electric near-by fields and to find the most dangerous points in the antenna area. Comparisons are also made with Transmission Line theory (TL) using a simplified antenna model. The results show a good agreement.