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The growing availability of information collected from citizen mapmakers, volunteer contributors, and other informal 

sources of spatial data has enabled a wealth of new opportunities for analysis and investigation.  Of utmost concern 

from the geospatial analytical community of researchers and practitioners is the quantifiable accuracy and credibility of 

this volunteered geographic information (VGI), which may differ in format and use from existing conventional spatial 

data.  This paper discusses comparable contexts for the preparation and evaluation of the accuracy of spatial data from 

conventional sources and new VGI contexts and builds upon the vocabulary and metrics that can be used to quantify 

and evaluate the contexts in which VGI or other similar data may be used.  By incorporating the relevant concepts of 

vagueness and ambiguity in spatial information (Foody 2004, Leyk etal. 2005) and the quantitative metrics of 

classification uncertainty (Eastman 2009) or change confusion (Christman 2010), VGI may be effectively evaluated and 

analyzed using existing techniques that have proven effective in other analytical contexts. 

Within existing spatial analytical frameworks, there are a number of techniques and evaluation frameworks that may 

provide insight and guidance for the evaluation and use of VGI and other informal sources of data: 

 From land use and land cover classification come challenges of the representation and thematic categorization of 

continuous phenomena into discrete classes.  Additionally the incorporation of ancillary data, in the sense of 

representations of auxiliary characteristics that may not directly pertain to the topic of interest but may aid in its 

categorization (Lambin et al. 2011; Miller and Rogan 2007; Herold et al. 2008; Christman 2010; Foody 2010). 

 From species distribution modeling comes the challenge of lacking “absence” data regarding where a subject of 

interest may not be found, and instead needing to model only “presence” data regarding the possibilistic range, 

rather than a normalized probabilistic distribution (Fielding and Bell 1997; Sangermano and Eastman 2007; 

Machado et al. 2011). 

 From spatial statistical analysis come quantitative frameworks for the assessment of spatial dependence, spatial 

connectedness, spatial and statistical interpolation and extrapolation, and Bayesian frameworks of likelihood 

that may be used to infer conditions beyond or within the range of verifiable cases (Legendre 1993; Miller 2003; 

Betts et al. 2006; Goodchild et al. 2007) 

When using a parametric classification method to delineate discrete categories among the continuous range of variability 

in spatial data, the intermediate “soft-classified” products may represent the probability or proportion of class 

membership within the given mapping unit.  If prepared as independent measures of class membership, these become 

possibilistic metrics that can yield information about the contextual knowledge of the overall classification scheme, in 

addition to the location under investigation (Foody 2004).  Using this framework, the discrete category ascribed a 

particular feature may be defined by rules based on a clear majority or obvious plurality of membership.  However, in 

situations in which there are multiple classes with high membership values, there is ambiguity about the best class 

definition for a feature, which may imply that there is insufficient information to distinguish among the classes of a 

given legend scheme (Leyk et al. 2005).  In situations in which no class in a chosen legend has a high membership value 

for a particular feature, there is vagueness, which may imply that the legend scheme lacks an appropriate thematic class to 

adequately categorize the feature in question (Fisher 1999). Quantitatively, metrics incorporating these possibilistic 

memberships can be used to generate indices of classification uncertainty (Eastman 2009) to describe the performance of 

the particular classifier and legend scheme.  In the comparison of the resulting map information to independent 

reference data or another categorical map, the compounded uncertainty can lead to confusion in the analysis, which may 

be quantified to properly contextualize and verify the resulting estimates of error or change (Christman 2010). 

The common issues in assessing the validity of spatial information have similar conditions regarding the use of VGI 

(after Chrisman 1999, Bolstad 2010).  The most commonly raised issue pertains to the assessment of attribute error, in 

which a user must assess whether the thematic type ascribed to a feature is correct; the complementary question 



ascribed VGI is whether the information is true and trustworthy.  Further, the evaluation of positional error within 

conventional accuracy assessments directly relates to whether locations are correctly depicted in the VGI data.  Beyond 

the precision of the feature representations, there is a question of logical consistency, in which all features are depicted with 

the same rules across the data set; within the VGI assessment framework, this relates to whether the magnitudes of 

values are comparable across space, time, or categories.  Similarly, the need for completeness in the dataset, in which all 

qualifying features are depicted raises issues in VGI of where or in what regions aren’t features represented in the 

dataset.  Finally, in the more qualitative assessment of the credibility, aesthetic, or conceptual effectiveness of the spatially 

represented phenomenon, one might ask of both conventional geospatial data and VGI: is the message of the map 

clear, and does the information set comprehensively describe the situation to the intended audience? 

In the context of VGI, these frameworks can yield important insights regarding the data collection scheme and cases of 

conflicting or incomplete knowledge about the conditions at a particular location (c.f. Goodchild and Glennon 2010).  

For example, in the use of VGI in the aftermath of a natural disturbance, as is often the case with the implementations 

like the crowdmapping platform Ushahidi (http://ushahidi.com) by members of both the public and geospatial 

community to map “help needed” or “help offered” scenarios, several cautionary lessons could be crafted using this 

framework.  First, in the context of many mapped VGI feature entries, in which there is a majority of entries of one 

kind or the other, the resulting message is clear: the situation is either dire or stable at a given location.  By contrast, in 

regions in which few VGI feature entries have been recorded, there may be insufficient information to draw a 

conclusion; importantly, one must maintain caution in interpreting a lack of negative responses as positive (perhaps 

responses are not possible).  Further, one must also exercise caution in relating population density to the density of 

VGI feature entries, as the situations of vagueness in either case may yield important information, such as isolated rural 

residents.  Finally, in situations of ambiguity, regardless of the density of feature entries, additional information may be 

critical to correctly categorize the situation. 

Volunteered Geographic Information has enabled a broad population to contribute to new datasets previously 

unavailable or requiring intensive preparation.  While the sources and frameworks for collecting and managing these 

data are rapidly evolving, many methods for evaluation and interpretation of these data exist within the range of 

analogous geospatial analytical techniques.  In this context, frameworks that enable the consideration of the credibility 

of both the data and the categorization scheme can be an important tool in generating timely insights from these new 

sources. 
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