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a b s t r a c t

Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or
carbon reinforcing fibers that are initially 10–13 mm long. When an LFT is injection molded, flow during
mold filling degrades the fiber length. Here we present a detailed quantitative model for fiber length
attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution at each spatial
node. A conservation equation for total fiber length is combined with a breakage rate that is based on
buckling of fibers due to hydrodynamic forces. The model is combined with a mold filling simulation
to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling.
The predictions compare well to experiments on a glass–fiber/PP LFT molding. Fiber length distributions
predicted by the model are easily incorporated into micromechanics models to predict the stress–strain
behavior of molded LFT materials.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Long-fiber thermoplastic composites (or LFTs) bridge the gap
between short- and continuous-fiber thermoplastic composites,
offering better mechanical properties than short-fiber materials
but retaining the ability to be injection molded. LFTs, under the
trade name of Verton, were developed in the mid-1980s by Impe-
rial Chemical Industries of the United Kingdom, and initially con-
sisted of a polyamide 6,6 matrix reinforced with glass fibers
[1,2]. To date, glass remains the most common reinforcing mate-
rial, but carbon is seen as well [3–5]. Other matrix materials have
included polypropylene [6–8,4,9–11], polyethylene terephthalate
[7,12], polybutylene terephthalate [12], polyphthalamide [13,14],
polycarbonate [14], polyphenylene sulfide [14], and blends of poly-
carbonate or polyamide 6,6 with polytetrafluoroethylene [14].
Mechanical property improvements over short-fiber plastics have
been significant, and the ability to injection mold these materials
has been preserved.

LFT pellets are usually prepared by a pultrusion process, in
which continuous fibers with a polymer matrix surrounding them
are pulled through a circular die. As the resulting fiber-filled strand
solidifies, it may be sliced into individual pellets. These pellets are
typical 2–3 mm in diameter and 10–13 mm long, with 10–13 mm
long fibers aligned along their length. This is a dramatic contrast to
the 0.2–0.4 mm long, randomly oriented fibers in short-fiber pel-
lets [2].

Processing affects the microstructure of LFTs, just as it does
with other composite materials. For LFTs the main microstructural
variables are fiber orientation and fiber length. Fiber orientation for
LFTs can be modeled using conventional moment tensor equations
[15–17], and at least one special fiber orientation model had been
developed to better capture some of the quantitative details of LFT
fiber orientation [18].

Regarding fiber length, a number of experimental studies have
examined changes in fiber length in LFT materials. The fibers in
an LFT initially have the length of the pellet, 10–13 mm, but few fi-
bers with this length survive in an injection-molded part. While fi-
bers may break during any stage of the injection molding process,
Bailey and Kraft [6] found that significant attrition occurs before
the polymer melt enters the mold. Thus, most experimental studies
examine fiber breakage as a function of process parameters such as
screw back pressure, injection speed, gate size, and nozzle design.

Bailey and Kraft [6] and Vu-Khanh et al. [12] found that 10 mm
long glass fibers in a polyamide matrix were reduced to lengths of
approximately 1 mm by the end of the molding process, with mean
fiber lengths no greater than 1.6 mm at the screw exit (i.e., before
entering the mold). However, moldings made with a polypropylene
matrix had mean fiber lengths two to three times greater than with
polyamide matrices. In an edge-gated disk molding of unspecified
thickness, Bailey and Kraft [6] found mean fiber lengths in the in-
ner core to be three times those of the skin layer, a phenomenon
attributed to the high shear rates in the skin during mold filling.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compositesa.2013.04.002&domain=pdf
http://dx.doi.org/10.1016/j.compositesa.2013.04.002
mailto:ctucker@illinois.edu
http://dx.doi.org/10.1016/j.compositesa.2013.04.002
http://www.sciencedirect.com/science/journal/1359835X
http://www.elsevier.com/locate/compositesa


12 J.H. Phelps et al. / Composites: Part A 51 (2013) 11–21
Mean fiber lengths on the order of 1 mm were also observed by Vu-
Khanh et al. [12] for 6 mm thick rectangular plate moldings
(124 mm � 67 mm) with polybutylene terephthalate and polyeth-
ylene terephthalate matrices. O’Regan and Akay [19] and LaFran-
che et al. [20] also give typical fiber lengths for both plate
moldings and more complex production parts. O’Regan and Akay
also found skin/core differences in fiber length, and the fiber length
decreased along the flow path, in some cases by as much as 30%.

Significant fiber length degradation also occurs in compounding
equipment, as shown by a number of experimental studies. This
literature is nicely reviewed by Inceoglu et al. [21]. One key obser-
vation is that changes in fiber length are primarily dependent on
total strain, at least within a modest range of stress levels
[22,21]. Also, if the stress level is substantially reduced, then the
average fiber length will degrade more slowly [22].

In contrast to the large number of experiments, very little has
been done to model changes in fiber length during processing.
Shon et al. [23] proposed a model for compounding devices in
which an average fiber length L decreased toward an equilibrium
value L1 according to

dL
dt
¼ �kf ðL� L1Þ ð1Þ

Shon and co-workers did not specify how the average length L is de-
fined, nor how one might predict the model parameters L1 and kf.
They used the kinetic constant kf as a fitting parameter, and re-
ported kf values for different compounding devices as a way of
describing the performance of those devices.

Inceoglu et al. [21] provided experimental data showing how
the weight-average fiber length Lw progresses with time or strain,
verifying the exponential decrease in fiber length predicted by
Shon et al.’s model. They also suggested that specific mechanical
energy (SME) is a useful parameter for correlating the rates of fiber
length degradation in different devices. They proposed an exten-
sion of Shon et al.’s model,

dLw

dt
¼ �K 00SMEðLw � Lw1Þ ð2Þ

Using SME allowed Inceoglu et al. to collapse data from both lab-
scale and production-scale twin-screw extruders onto a single
curve, but a ten-fold change in the rate constant K00 was required
to represent the data for a batch mixer, which operates at much
lower stress levels.

A much more sophisticated model for fiber length attrition was
recently reported by Durin et al. [24], while this article was in ini-
tial review. That model and the one we present here are closely re-
lated, and should produce similar results. We will discuss the
model of Durin et al. in more detail in Section 2.6, after presenting
our model.

In this study, we develop a quantitative, mechanistic model to
predict changes in fiber length distribution during the molding of
LFT composites, and compare the predictions of that model to
molding experiments. Having a model that accounts for the roles
of stress and total strain is particularly important for injection
molding, where the stress and shear rate levels vary dramatically
across the cavity thickness. Also, having a model that predicts
the entire fiber length distribution allows more accurate prediction
of mechanical properties, especially strength and fracture
toughness.

We apply our model to study changes in fiber length caused by
flow in the runner system and mold cavity, and defer the modeling
of the injection unit. In most manufacturing situations the screw
selection and plasticizing conditions are relatively stable across a
variety of parts, while the mold cavity geometry will vary greatly.
Thus, being able to model the effect of part geometry on fiber
length is a good first goal in developing predictive models for fiber
length. Focusing on the cavity flow also allows us to take a ‘‘contin-
uum’’ approach, which is appropriate for a first model. We recog-
nize that some special, non-local treatment of the melting zone
of the screw, and of geometric features like gates and sharp bends
in runners, may have to be added to create a complete model for
fiber length.

2. Theory

The main steps in developing the theory are to select appropri-
ate variables to describe the microstructure; write the balance
equation for these variables; and develop constitutive equations
as needed to describe the process dynamics. The resulting theory
can then be implemented in a mold filling simulation.

2.1. Microstructural variables

The microstructure at any position within the flow is described
by a discrete approximation to the fiber length distribution. Choose
a finite increment of fiber length D‘, and let ‘i = iD‘ be a set of dis-
crete length values. i ranges from 1 to n, where n is large enough
that ‘n is greater than or equal to the initial fiber length in the pel-
lets. One should also choose D‘ = ‘1 to be smaller than the shortest
fiber that will break during the flow. This is not a strict require-
ment, but without this the model may not conserve total fiber
length.

Now let Ni represent the expected value of the number of fibers
of length ‘i in a sample taken from a small region. Alternately, the
Ni values can be regarded as proportional to the expected number
of fibers of length ‘i per unit volume. The set of Ni values, i = 1 to n,
represents the local fiber length distribution. While it is common
to normalize the fiber length distribution function Ni, we do not as-
sume any particular normalization of this function in what follows.

An alternate way to describe fiber length distributions is to use
a weight-based distribution function, wi. This is related to the
number-based distribution function by

wi ¼ jNi‘i ð3Þ

where j is any convenient normalization constant. Often j is cho-
sen to make

P
wi ¼ 1.

Length distribution data is often summarized by giving an aver-
age length value. Here one must be careful to distinguish how the
average is computed. The number-average fiber length Ln is

Ln ¼
P

Ni‘iP
Ni

; ð4Þ

while the weight-average (or length-average) fiber length Lw is

Lw ¼
P

Ni‘
2
iP

Ni‘i
: ð5Þ

It is always true that Lw P Ln, with the equality applying when all
fibers have the same length. In analogy with the polydispersity in-
dex for polymer molecular weights, one could characterize the
breadth of the fiber length distribution by the ratio Lw/Ln, though
this idea has not been widely used.

In studying models for the fiber length distribution it is also
helpful to define a total fiber length:

Lt ¼
X

Ni‘i ð6Þ

The value of Lt is arbitrary, depending on the normalization of Ni,
but any model for the fiber length distribution should maintain a
constant value of Lt.

Fig. 1 shows an experimental fiber length distribution for one of
the samples in our study. The distribution of lengths is quite broad,
with a few fibers of 12 mm or longer remaining in the sample, even
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Fig. 1. Experimental fiber length distribution at position A for sample AF3D.
Vertical lines indicate the number-average fiber length Ln = 1.58 mm and the
weight-average fiber length Lw = 3.05 mm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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though the majority of the fibers are less than 2 mm long. Very
similar experimental distributions have been shown in the litera-
ture [22,21]. The number-average and weight-average fiber
lengths are also shown in this figure.

Micromechanics theories can predict the properties of LFTs and
other composites as a function of the fiber length, volume fraction,
and orientation, as well as the fiber and matrix properties. Such
theories can either use a single average value of length, or they
can use the complete length distribution Ni [25]. Since the average
length values can easily be calculated from the Ni values, either
type of micromechanics calculation can use the results from our fi-
ber length model.

2.2. Conservation of total length

The basic equation that governs the dynamics of the fiber length
distribution expresses how Ni changes as fibers break. To write this
equation we must define the rate at which parent fibers break, and
the corresponding rate at which new, shorter children fibers are
formed. Consider a time interval Dt, and define the breakage rate
Pi such that PiDt is the probability that a fiber of length ‘i will break
over the time interval Dt. Similarly, define the child generation rate
Rji such that the probability of generating a child fiber of length ‘j

over the interval Dt by breaking a parent fiber of length ‘i is RjiDt.
We assume that all breakage events involve a single fiber break-

ing into two smaller fibers. Consider a fiber of length ‘i that breaks
into two children, with lengths ‘j and ‘k. Since total fiber length is
conserved, we must have ‘j + ‘k = ‘i, or j + k = i. The probability of
these two child fibers being created must be the same, so the child
generation rate must satisfy

Rki ¼ Rði�kÞi ð7Þ

For example, R6,10 = R4,10. Also, the sum of the rates of creating all
possible child fibers from parents of a given length, say ‘i, is deter-
mined by the probability of breaking that parent fiber. Accounting
for the fact that each break of a parent creates two children, this re-
quires thatX

j

Rji ¼ 2Pi ð8Þ

Because shorter fibers never re-combine to produce longer fibers,
we also know that Rji = 0 for all j P i.
Now consider the fibers of length ‘i in a small volume of mate-
rial. Within some normalization factor there are Ni such fibers.
Over a time Dt we would expect PiNiDt of these fibers to break,
thus decreasing the value of Ni. Ni could also increase, when longer
fibers break to produce children of length ‘i. The contribution of
parent fibers with length ‘k to children of length ‘i would be RikNkD
t. The total rate of child generation is formed by summing this over
all possible parent lengths ‘k.

Combining the loss due to breakage with the growth due to
generation of children gives a basic conservation equation for Ni:

dNi

dt
¼ �PiNi þ

X
k

RikNk ð9Þ

This is the basic conservation equation for fiber length.
Using Eq. (9) one can write an equation for the rate of change of

total length, Lt (see Eq. (6)). One can then show that if Eqs. (7) and
(8) hold, dLt/dt = 0, and total fiber length is conserved [26].

2.3. Fiber breakage rate

The next step is to develop a constitutive equation that gives
the breakage rate Pi as a function of flow conditions and fiber prop-
erties. Our initial model is based on hydrodynamic loading of a sin-
gle fiber. In an LFT, as in most practical fiber composites, each fiber
will also have contact or near-contact with a number of neighbor-
ing fibers, and this may affect the breakage rate. Some models exist
for the frequency and number of short-range contacts [27], and for
sliding forces at fiber–fiber contacts [28]. However, at present
there is not a good model for normal forces due to fiber–fiber con-
tacts. Also, the effect of the contact forces on total fiber loading is
unclear. While hydrodynamic loading can place a fiber in compres-
sion (causing buckling, the presumed mode of failure) or tension, it
is not known if the individual contact forces increase or decrease
the effects of the hydrodynamic loading. For instance, normal
forces from contacts may promote bending in fibers, but these
forces also drive the formation of fiber networks, which may sup-
port individual fibers and prevent breakage. What can be safely as-
sumed, however, is that the presence of even slight contact forces
may trigger buckling from the compressive forces of a hydrody-
namically loaded fiber. With this assumption, we choose as a first
step to focus on the hydrodynamic forces acting on a fiber. This ap-
proach is consistent with the findings of von Turkovich and Erwin
[29], who suggested that dilute-suspension models of fiber buck-
ling can account for observed data on fiber breakage.

Prior research into the effect of hydrodynamic loadings on fi-
bers in suspension has largely been focused on calculating bulk
stress and suspension viscosity. In this context, Dinh and Arm-
strong [30] used continuum mechanics arguments to develop a
model for the effects of hydrodynamic loading of fibers on bulk vis-
cosity. Shaqfeh and Fredrickson [31] also developed a stress model
using particle scattering theory, and this model has been preferred
in more recent studies [27]. However, we are most concerned with
a model for intra-fiber forces, and the classical work of Dinh and
Armstrong is convenient for our needs.

Consider a fiber of length ‘i whose long axis is oriented parallel
to the unit vector p. Following Dinh and Armstrong [30] and other
fiber suspension models, the fiber will be loaded in tension or com-
pression, in proportion to the stretching or contraction rate parallel
to the fiber axis. This rate is given by D: pp, where D is the rate-of-
deformation tensor, Dmn ¼ 1

2 ð@vm=@xn þ @vn=@xmÞ.
In regions of simple shear flow, like the shell region of injection-

molded composites, individual fibers in suspension reach a near
steady-state orientation where the axis of the fiber is canted
slightly in relation to the flow direction, and where D:pp > 0. In this
orientation, the fiber is in tension. Then, through a process known



Fig. 2. Sphere of all possible fiber directions p, colored by the value of (D: pp) for
the simple shear flow vx ¼ _cz. Negative values (red to yellow colors) indicate
orientations where the fiber is in compression. Points on the sphere are a sample of
fiber orientations at steady state for this flow, calculated using the Folgar–Tucker
model.
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as a Jeffery orbit, the individual fibers periodically flip, and may ro-
tate through a region in orientation space where D:pp < 0, placing
the fiber in compression. Thus, collections of suspended fibers
undergoing simple shear deformation are primarily loaded in ten-
sion, but individual fibers will periodically be placed in compres-
sion. This is the mechanism by which fibers buckle in a simple
shear flow [29,32–35]. For a brittle fiber, buckling will cause the fi-
ber to break.

Using the slender-body analysis of Dinh and Armstrong [30],
one can show that the magnitude of the compressive force at the
center of a fiber oriented in direction p is

FiðpÞ ¼
fgm‘

2
i

8
ð�D : ppÞ ð10Þ

Details are given in Appendix A. Here f is a dimensionless drag coef-
ficient and gm is the viscosity of the polymer matrix. Note that Fi(p)
is positive when D: pp < 0 and the fiber is in compression.

From classical Euler buckling theory, the critical force to cause
an end-loaded fiber to buckle is

Fcrit ¼
p3Ef d

4
f

64‘2
i

ð11Þ

Here Ef is the elastic modulus of the fiber and df is the fiber
diameter.

We expect that a fiber will buckle if Fi > Fcrit. Combining Eqs.
(10) and (11), we expect buckling if

FiðpÞ
Fcrit

¼ Bið�2bD : ppÞP 1 ð12Þ

Here Bi is a dimensionless variable for fiber buckling, dependent on
the fiber length ‘i and defined as

Bi �
4fgm

_c‘4
i

p3Ef d4
f

ð13Þ

Also, _c is the scalar magnitude of D, and bD is a dimensionless rate-
of-deformation tensor,bD � D= _c ð14Þ

We can see in Eq. (12) that Bi combines many of the physical param-
eters of the problem into a single dimensionless variable. Note that
the shear stress ðgm _cÞ appears in the numerator, and that the fiber
aspect ratio ‘i/df is raised to the fourth power. The elastic modulus Ef

is the only fiber property that appears, because buckling is an elastic
instability governed by the stiffness of the fiber, rather than by its
strength.

The ð�2bD : ppÞ term in Eq. (12) depends on of the type of
deformation (shear flow, elongational flow, etc.) and the orienta-
tion of the fiber relative to that deformation. The orientation
dependence of this term for simple shear flow is shown in Fig. 2.
Fibers experience maximum compression when p lies in the
flow/gradient plane and is oriented at �45� or 135� to the flow
direction (the red zones in the figure). The value of ð�2bD : ppÞ
at this orientation is unity. Thus, for Bi < 1, there is no direction p
in which the fiber satisfies the buckling criterion, and the fiber can-
not be broken. For any given set of parameters, the fiber length be-
low which Bi < 1 is an unbreakable length.

The more interesting case occurs when Bi > 1. Now there is a set
of orientations at which a fiber can be broken. The size of this re-
gion in Fig. 2 will increase as Bi increases, though the region never
occupies more than half the area of the sphere.

With this in mind, there are several ways to interpret Bi physi-
cally. If we imagine varying the shear rate while holding all other
parameters constant, then we can define the critical shear rate that
is just able to break a fiber of length ‘i as
_ccrit;i ¼
p3Ef d4

f

4fgm‘
4
i

ð15Þ

and we see that Bi is the ratio between the actual shear rate and this
critical shear rate,

Bi ¼ _c= _ccrit;i ð16Þ

Alternately, if we think of the fiber length as being variable while all
other parameters are held constant, then the longest fiber length
that cannot be broken in the flow (the ‘‘unbreakable length’’) is

Lub ¼
p3Ef d4

f

4fgm _c

" #1=4

ð17Þ

and Bi is determined by the ratio of the actual fiber length to this
unbreakable length,

Bi ¼ ð‘i=LubÞ4 ð18Þ

To translate these ideas about fiber buckling into a breakage prob-
ability, we first assume that Pi is proportional to the shear rate _c,
and to fi, which is the fraction of fibers of length ‘i that have an ori-
entation p such that Fi(p)/Fcrit P 1.

Pi ¼ ðconst:Þ _cfi ð19Þ

We adopt the proportionality to shear rate based on the following:
Consider two experiments at different shear rates, with the viscos-
ities adjusted so that the shear stress is the same in both experi-
ments. This gives the both experiments the same value of Bi, and
we would expect to see the same amount of breakage in the two
experiments if they have the same value of total shear strain. The
proportionality of Pi to _c ensures that the model will behave in this
way.

The function fi depends on the probability distribution function
for fiber orientation, w(p). To guide model development, we calcu-
lated fiber orientation distributions using a discrete version of the
Folgar–Tucker orientation model [36]. Details of the orientation
calculation are give in Appendix B. Several different values of the
rotary diffusion parameter were used, and the results are shown
here in terms of the steady-state alignment in the flow direction,
A11. We focus the analysis on steady-state distributions in simple
shear flow. This is reasonable, since most mold-filling flows are
very nearly simple shear flow, and the orientation near the mold
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walls, where stresses are highest and the most fiber breakage will
occur, is typically close to the steady-state orientation for simple
shear.

For each steady-state orientation distribution, and for each gi-
ven value of Bi, we examine each fiber in our discrete orientation
distribution function. Using Eq. (12), we evaluate the ratio of the
compressive force on the fiber to the critical force for buckling
force. The fraction of fibers for which this ratio is greater than or
equal to unity is the value of fi. This calculation is repeated over
a range of Bi values.

The results, shown in Fig. 3, indicate that fi equals zero for Bi

equal to unity, and that fi increases as Bi increases. fi saturates at
large values of Bi, with saturation values in the range of 0.10–
0.05, depending on the degree of fiber alignment at steady state.
This is consistent with our qualitative understanding from Fig. 2:
even for very large values of Bi, only a fraction of the fibers will
have an orientation in which the fiber is in compression. This frac-
tion will decrease as the degree of fiber alignment increases, and
fewer fibers are found in the regions of orientation space where
they are loaded in compression.

Fig. 4 replots this same data, scaling each curve by its saturation
value fmax and altering the horizontal axis to scaled fiber length
using Eq. (18). The data falls more closely together now, suggesting
that it would be reasonable to choose a single function fi/fmax ver-
sus Bi for different fiber volume fractions and aspect ratios (which
generate different steady-state values of A11). Note that fmax de-
pends on the fiber volume fraction and aspect ratio. In what fol-
lows we use a simple exponential function,

fi ¼ fmax½1� expð1� BiÞ� ð20Þ

This function is shown in Fig. 4 as the solid line. Clearly this function
reproduces only the general trend of the calculated fi values. While
a better fit of the calculated fi values could certainly be found, we
have used Eq. (20) for two reasons. First, at this early stage of model
development there is great uncertainty regarding many aspects of
fiber breakage phenomena, so it makes sense not to over-refine
the details of the model. And second, numerical experimentation
[26] shows that the overall model results are not sensitive to the de-
tails of this function.

Substituting Eq. (20) into Eq. (19), we combine fmax with the
remaining constant of proportionality, calling the product of these
two factors CB, the breakage coefficient. Our final model for the
breakage probability Pi for fibers of length ‘i is then
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�
ð21Þ
2.4. Child generation rates

Some assumptions must be made in order to develop a func-
tional form for the child generation rates Rik. First, the center of
the fiber is the most likely location for breakage. Thus, the function
Rik should be maximum at ‘i = ‘k/2. Second, due to the effects of fi-
ber–fiber interactions and material inconsistencies within the fi-
ber, other locations along the fiber should have non-zero
probabilities for breakage. From these requirements, it is reason-
able to assume a Gaussian breakage profile, or

Rik ¼ akNPDF ‘i;
‘k

2
; S‘k

� �
ð22Þ

where NPDF() is the normal probability density function for the var-
iable ‘i with mean ‘k/2 and standard deviation S‘k, and ak is a scale
factor. The scale factor ak is chosen to normalize Rik in order to sat-
isfy Eq. (8). This scales the child generation rates to match the
breakage rates, and ensures conservation of total fiber length.

The variable S is a dimensionless fitting parameter that controls
the shape of the Gaussian breakage profile. A small value of S cor-
responds to a high probability of breakage occurring near the fiber
center, while a large S value distributes the probable breakage
points more evenly along the fiber length. This completes the
development of our model for flow-induced changes in the fiber
length distribution.

2.5. Influence of model parameters

Our model has three parameters: CB, f, and S. The breakage coef-
ficient CB controls the overall rate of change of fiber length, how-
ever the shapes that the fiber length distribution takes over time
are independent of CB, at least at constant shear rate. f is a hydro-
dynamic drag coefficient. It influences the force on the fiber
through the expression for Bi, and thus it affects the length below
which fibers do not break. S affects the shape of the fiber length
distribution by affecting the distribution of child fibers produced
when fibers break.

The influence of these parameters is illustrated in Figs. 5 and 6.
Four different cases are shown here, and we use normalized
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weight-based length distributions to facilitate comparison. All fiber
lengths are normalized by Lmax, the maximum initial length. The CB

parameter is accounted for by reporting results in terms of a
dimensionless time, t� � CB _ct. S values of 0.2 and 1.0 bound the
most useful values for this parameter. The value of f is combined
with the flow stress and fiber properties to create a value for the
unbreakable length (see Eq. (17)). Lub/Lmax = 0.1 represents a severe
degradation of the initial fiber length, while Lub/Lmax = 0.5 is a very
modest degradation of fiber length. The initial condition for all
cases has a uniform weight distribution in the range 0.9Lmax to
Lmax.

Fig. 5 shows data at t⁄ = 2, an intermediate time at which the fi-
ber length distributions are changing rapidly. A portion of the ini-
tial distribution is apparent on the right side of the figure for all
four cases. This demonstrates that our model can readily capture
bimodal fiber length distributions. The influence of Lub is clear,
with peaks in the distributions developing around Lub for all cases.
The larger value of S tends to produce sharper peaks and a linear
rise in the early part of the distribution, while the smaller value
produces more rounded peaks. In our model fibers cannot break
if ‘i < Lub, so the fibers in that range are all child fibers accumulated
from the breakage of fibers with ‘i > Lub.

In Fig. 6 we see the fiber length distributions nearly at steady
state, t⁄ = 10. The initial condition has disappeared, and most of
the fibers now have lengths below Lub. The length distributions
look much more like experimental length distributions, and the ef-
fect of S is mainly visible for the case of Lub/Lmax = 0.5. For this case
most of the fibers have experienced only one breakage event. For
the other cases the fibers tend to have experienced a series of
breakage events, which leads to the smoother-shaped length
distributions.

As these examples show, f controls the location of the peak in
the near-steady-state fiber length distribution, while CB controls
the time required to reach that state. S influences the exact shape
of the fiber length distribution.
2.6. Relationship to model of Durin et al.

A fiber-length model very similar to the one presented here was
recently reported by Durin et al. [24]. The two models are very sim-
ilar, and indeed they share a common framework [26,37]. Both
models calculate the time evolution of the full fiber length distri-
bution, and both models assume that the mechanism of fiber
0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Scaled Fiber Length, l i / Lmax

w
i

Lub/Lmax = 0.1, S = 0.2

Lub/Lmax = 0.1, S = 1.0

Lub/Lmax = 0.5, S = 0.2

Lub/Lmax = 0.5, S = 1.0

Fig. 5. Weight-based fiber length distributions at intermediate time, t⁄ = 2, for
different values of the model parameters S and Lub in steady simple shear flow.
ðt� � CB _ctÞ.
breakage is buckling under hydrodynamic forces that load the fiber
in compression. A quantitative comparison of the two models is
beyond the scope of this paper, but we can outline the similarities
and differences between the models here.

� The model of Durin et al. starts with a conservation equation
that is equivalent to Eq. (9). Their main equation is posed in
terms of the weight-based fiber length distribution (wi in our
notation) rather than the number-based distribution Ni, but
conversion between the two forms is straightforward using
Eq. (3). Thus, any differences between the two models must
reside in the expressions for the breakage rate Pi and the child
generation rate Rij.
� Durin et al. build Rij using a Weibull distribution of breakage

probability along the fiber, while here we use a Gaussian distri-
bution. They recommend using rather large values of the Wei-
bull parameter, and in that range the Weibull distribution and
the Gaussian distribution have very similar shapes. Their rec-
ommended range of the Weibull parameter is m P 3, which
corresponds closely to S 6 0.8 for our Gaussian distributions.
Thus, the two models are actually quite similar in this aspect.
Both the Weibull and Gaussian distributions are somewhat
arbitrary choices; their use is justified by the fact that they pro-
duce fiber length distributions very similar to the ones observed
experimentally.
� The same analysis of hydrodynamic forces on the fibers and

fiber buckling is used in both papers. Durin et al. use a drag
coefficient f based the Burgers [38] slender-body theory for a
dilute suspension, while we maintain f as a model parameter.
Our choice seems more appropriate for a highly concentrated
suspension, but it does introduce an additional fitting parame-
ter to the model. In both models, the elastic modulus Ef is the
only mechanical property of the fiber that appears, and one
might ask why the fiber strength is not present. Durin et al.
[24] perform a detailed analysis of the stresses on a fiber with
an initial curvature, which could potentially break before reach-
ing the buckling load. They show that for properties typical of
glass fibers this does not happen. Thus, fibers fracture by buck-
ling, and the tensile strength of the fiber does not affect fiber
breakage.
� The overall rate of fiber breakage in the Durin model is gov-

erned by the Jeffery orbit period of a fiber in a dilute suspension.
This provides a physical motivation for making the breakage
rate Pi proportional to _c, just as it is in our model. The Jeffery
period ‘‘for an average fiber’’ also provides the overall breakage
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rate (roughly equivalent to CB in our model), though their
method of choosing the average fiber aspect ratio is not
explained in detail.
� In our model a fiber whose breakage parameter is less than

unity (Bi < 1, or ‘i < Lub) cannot break. In contrast, Durin et al.
assign a non-zero, probability of breakage to fibers with Bi < 1.
No explicit expression for Pi is given in their paper, but they cer-
tainly have Pi > 0 for some values of Bi < 1. This has little effect
on the short-time behavior, and both models should produce
rather similar results in the initial period of rapid degradation
of fiber length. After this rapid initial decrease, fiber length will
decrease more slowly in both models, but more rapidly in the
model of Durin et al. than in our model.

Overall the two models are very similar, and they provide a
sound framework upon which future efforts can build.

2.7. Implementation in a mold filling simulation

To implement our model in a mold filling simulation, one must
calculate the fiber length distribution (a full set of Ni values) at
each node in the mesh. We expect that fiber length will degrade
more rapidly near the cavity walls, where the stresses are high,
than near the midplane of the cavity, so fiber length data must
be calculated at each node or layer across the thickness of the
mold, as well as at each in-plane location.

A typical mold-filling simulation solves governing equations on
a fixed mesh or grid. Thus, in Eq. (9) the time derivative d/dt must
be replaced by the material derivative, and on a fixed grid we solve

@Ni

@t
þ v � rNi ¼ �PiNi þ

X
k

RikNk ð23Þ

At each time step the results of the flow simulation provide the lo-
cal shear rate, and viscosity. These are used to calculate the break-
age rates and child generation rates. The fiber length distribution is
typically updated using explicit time integration. This may be done
on a smaller time step than the filling step in the molding
simulation.

We have implemented our fiber length model in conjunction
with the ORIENT mold filling code [16]. This code uses the Hele-
Shaw formulation [39] and solves for filling, heat transfer, and fiber
orientation in two simple mold geometries: an end-gated strip and
a center-gated disk (Fig. 7). We use the suspension viscosity, deter-
mined from experimental measurements, in place of the matrix
viscosity gm when calculating breakage rates. At this stage of
development we ignore any changes in suspension viscosity due
to changes in fiber length. Thus, the fiber length calculations do
not affect the filling or fiber orientation calculations. Also, the fiber
Fig. 7. Geometry and dimensions of center-gated disk moldings prepared by Pacific
Northwest National Laboratory.
orientation results do not affect the calculation of fiber lengths.
This allows the fiber length calculation to be implemented as a
post-processor to ORIENT. In this study we use a crude fountain-
flow model, in which fiber-length data from the midplane node
at the flow front is copied into nodal locations near the wall when-
ever a new column of nodes is filled by the advancing front. This
algorithm probably overestimates the effect of the fountain flow.
Additional details of the mold filling and fiber length calculations
are given by Phelps [26].
3. Experimental

3.1. Molding geometries, materials, and conditions

LFT samples were injection molded by Dr. James Holbery of the
Pacific Northwest National Laboratory. The moldings feature
matrices of polypropylene with reinforcement of 40% by weight
glass fiber (MTI PP40G). These materials were compounded specif-
ically for this study by Montsinger Technologies. The geometries
were a 90 mm long � 80 mm wide end-gated ISO plaque [40]
and a 180 mm diameter center-gated disk.

We focus here on sample AF3D, which is a center-gated disk
molding with a fast filling speed. The geometry is shown in
Fig. 7, the filling time was 0.65 s, the melt temperature was
510 K, and the mold wall temperature was 344 K. Material proper-
ties necessary for mold-filling simulations were either measured
by Moldflow Plastics Labs, Kilsyth, Australia, or taken from the
Moldflow Plastics Insight material library. Details are reported by
Phelps [26]. Glass fiber properties for the breakage model are fiber
modulus Ef = 73 GPa and fiber diameter df = 17 lm.
3.2. Measurement of fiber length

The usual approach for measuring the fiber length distribution
is to burn off the polymer matrix, separate the fibers, and measure
the fibers under a microscope, usually with the aid of image anal-
ysis software. While this approach is standard, the means of select-
ing the sample of fibers from the molding has not been
standardized. It is likely that common methods, such as using
tweezers to extract a group of fibers from the fiber mat that re-
mains after burn-off, may preferentially sample the longer fibers
or fibers from some portion of the thickness of the part, and thus
produce a biased measurement.

To obtain an unbiased sample of fibers, we used a two-step
sampling technique [41]. In the first step, the polymer matrix is
burned away while the sample is constrained to its original sample
size is a perforated metal container. This constraint prevents the fi-
ber network from expanding, which it would otherwise do because
of stored elastic energy in bent fibers. A hypodermic needle is then
inserted into the constrained network, and a thin column of epoxy
resin is injected. The epoxy is allowed to solidify, after which the
surrounding fibers not encased in the epoxy column are gently re-
moved. This isolates a region that samples uniformly the entire
thickness of the molding. The epoxy column is then burned away
so that the fibers can be separated, and the sample fibers are ana-
lyzed as in the standard technique. Even this method can preferen-
tially select long fibers, since the diameter of the epoxy column is
smaller than the length of the longest fibers. To account for this, a
correction function is used in order to provide an unbiased fiber
length distribution [41].

For each sample, fiber length measurements are made at loca-
tions A, B, and C, as shown in Fig. 7. These positions are centered
approximately 15 mm, 45 mm, and 75 mm from the gate, respec-
tively. Each region is three millimeters thick (the full thickness as
the sample) and approximately 10 mm wide. At least 2300 individ-
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ual fibers were measured at each location. The resulting data are
averages of the fiber length distribution across the thickness of
the molding. Our model predicts the fiber length distribution at
multiple nodes across the cavity thickness, but in the comparisons
that follow we average the predictions across the cavity thickness.
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Fig. 9. Experimental (bars) and predicted (line with dots) fiber length distribution
at position B for sample AF3D. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Experimental (bars) and predicted (line with dots) fiber length distribution
at position C for sample AF3D. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
4. Results and discussion

The calculations use D‘ = 0.1 mm and n = 130 length values to
represent the fiber length distribution. This is a very detailed rep-
resentation, which come at the cost of longer computing times. We
use it here to ensure that the results are not distorted by a coarse
discretization of the length distribution.

The length distribution Eq. (23) needs an inlet boundary condi-
tion for Ni. Here we use the experimental length data at location A
(x = 1.5 cm from the gate) as the inlet condition at all points across
the cavity thickness, and predict the results downstream of that.
This is done because the ORIENT code cannot model flow in the
gate region. A more sophisticated filling code could start the fiber
length calculation further upstream, perhaps at the beginning of
the runner system, using some information about the length distri-
bution exiting the screw and nozzle.

All of the following results use f = 0.55, CB = 0.025, and S = 1.0.
These values were determined empirically by adjusting them to
produce a reasonable fit to the experimental data. The values
themselves are physically reasonable in that we expect f 	 1 and
CB
 1. Also, S = 1.0 distributes the breakage location along each fi-
ber, while retaining a preference for breaking fibers near their
centers.

Fig. 8 shows a portion of the fiber length data calculated by our
model for this molding. In this figure, the length distribution at
each node has been used to calculate nodal weight-average lengths
Lw according to Eq. (5). The resulting values are used to draw the
contours in the figure. We see that the fibers remain long (red col-
ors in the figure) near the midplane (z = 0), due to the low shear
stress and low accumulation of shear strain there. Closer to the
mold wall we see shorter fiber lengths (blue colors), owing to the
higher shear stresses and greater accumulated shear strain. The re-
gion with shorter fibers becomes thicker with increasing distance
from the gate. Very close to the cavity wall the fibers remain fairly
long; this is material that traveled along the midplane, caught up
to the flow front, and was then pushed to the mold walls by the
fountain flow. It froze there quickly, so that it experienced very lit-
tle shear strain at the high stress levels near the wall. The thickness
of this region is also greater the farther away one is from the gate.

Figs. 9 and 10 compare the measured fiber length distributions
at positions B and C with the predictions of the model. The pre-
dicted length distributions are very similar in character to the mea-
sured distributions. Note that both the experimental and predicted
distributions are averaged across the cavity thickness.

As Figs. 1, 9 and 10 show, our samples have very few fibers that
are longer than 6 mm, and the average fiber lengths range from 1.5
Fig. 8. Contours of weight-average fiber length Lw versus position in the mold cavity, pred
path, starting just downstream of the gate. z measures distance from the cavity midplan
to 3.0 mm. This indicates that the fiber length is highly degraded in
this particular molding. In other injection-molding experiments, to
be reported at a later date, we have seen significant numbers of
longer fibers. The fiber length distributions in these samples are bi-
modal, a feature that is readily reproduced in our model, as dem-
onstrated in Fig. 5.

A quantitative comparison between the experiment and our
predictions appears in Fig. 11, which shows the average lengths
icted for sample AF3D. Colorbar gives Lw in mm. x measures distance along the flow
e. The arrows indicate the velocity profile at x = 4 cm.
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as a function of distance along the flow path. The predicted curves
are flat for x < 1.5 cm, because the fiber length calculations actually
start at this location, which is point A. Average fiber length (again,
averaged across the part thickness) initially decreases with flow
length. This is because fibers farther down the flow path have
experienced greater shear strains, and thus have had more oppor-
tunity to break. The weight-average length decreases more rapidly
than the number-average length, because it is more sensitive to the
number of very long fibers, and these fibers are the most likely to
break. Closer to the end of the flow path both of the average
lengths increase. This is a result of the fountain effect, as discussed
in connection with Fig. 8. The model is quite a good fit for this
experimental data, though the changes in average fiber length
are fairly modest in this particular example.
5. Conclusions

In long-fiber thermoplastic composites, changes in the fiber
length distribution due to processing can be significant, and can af-
fect the mechanical properties of the final material. We have devel-
oped a quantitative model than can predict these changes. Local
microstructure is represented by a discrete version of the fiber
length distribution. A balance equation for the length distribution
is written. A model for the breakage rate is then developed, using
the concept that fibers break by buckling under hydrodynami-
cally-induced compressive forces in certain unfavorable orienta-
tions relative to the flow. The resulting model can be
implemented in a conventional injection mold filling simulation.
Preliminary results show very good agreement with experiments
on a glass fiber/polypropylene LFT, molded in a center-gated disk
geometry.

In the experiments presented here, the effect of changes in fiber
length on the stiffness of the molded part is quite modest. Using
the micromechanics calculations described in Nguyen et al. [25],
the difference in elastic modulus between the maximum fiber
length of 13 mm and the observed average fiber length of approx-
imately 1.5 mm is only about 5%. This difference is small because
even at 1.5 mm average fiber length the average fiber aspect ratio
is approximately 90, and elastic modulus is not sensitive to fiber
aspect ratio in this range. However, tensile strength does continue
to improve with fiber length in this range, and toughness improves
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Fig. 11. Experimental and predicted average fiber lengths as a function of flow
distance for sample AF3D. Predictions begin at point A (x = 1.5 cm), using the
measured length distribution there as the initial condition. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
even more [11]. This highlights the value of a model that calculates
the entire fiber length distribution, and can capture any very long
fibers that survive the processing.

Our present model is very promising. Many refinements of the
model are possible within the framework that we have developed
here. The basic conservation equation will not change, but one
could introduce more detailed modeling and perhaps additional
physics into the breakage rate model for Pi. Breakage rate could in-
clude a dependence on the fiber orientation state relative to the
flow, or it could incorporate the loading from fiber–fiber contacts.
Some careful, basic experiments to measure directly the breakage
rates in a well-defined flow would be highly desirable, and such
empirical knowledge could be incorporated into the theoretical
framework developed here.

The model we have developed also provides some insights into
the way that simpler models like those of Shon et al. [23], Inceoglu
et al. [21] might be improved. In our model, the overall rate of
reduction of fiber length scales with CB _c. Replacing the terms kf

or K00SME in Eqs. (1) and (2) with an expression like CB _c would pro-
vide the desired scaling with shear rate. The effect of flow stress
could then be introduced by making the equilibrium lengths L1
or Lw1 depend on stress in a manner similar to Lub in Eq. (17). Of
course these models only predict an average fiber length, whereas
our model and the model of Durin et al. [24] predict the entire fiber
length distribution.

Our model as it stands can be implemented with almost any
flow solver, whether for injection molding (Hele-Shaw or true 3-
D), or in software for other processes such as extrusion compound-
ing. The large number of variables at each node used to represent
the length distribution does make the computations expensive,
particularly for large parts. One approach to resolving this issue
is to use a coarser discretization of the length distribution, leading
to fewer Ni values at each nodel. Another possibility is to develop
an approach similar to that used for fiber orientation, where a
few parameters are used to characterize the distribution function,
and equations are derived for those parameters starting from the
governing equations of the distribution function [15]. This remains
as a potential task for future research.
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Appendix A

To derive Eq. (10) for the hydrodynamic force acting to com-
press a fiber, consider a fiber with a unit orientation vector p and
a local coordinate s along the fiber length. Let s = 0 at the centroid
of the fiber, so s ranges from ‘i/2 to �‘i/2. Following Dinh and Arm-
strong [30], the increment of force df on an increment of fiber
length ds due to hydrodynamic loading is

df ¼ feff � ðv � _rÞds ð24Þ

where feff is a tensorial anisotropic drag coefficient, v is the unper-
turbed fluid velocity at the given point along the fiber axis, and _r is
the rate of change of the position vector r, which extends from the
origin to the given material point on the fiber.



Table 1
Correspondence between orientation perturbation parameter Q, steady-state orien-
tation in the flow direction, and corresponding interaction coefficient CI using the ORE
closure, for the fiber orientation distribution calculations in Appendix B.

Q2= _c Dt Q A11,steady CI,ORE

0.30 0.1225 0.6051 0.0443
0.10 0.0707 0.7111 0.0184
0.03 0.0387 0.7958 0.00776
0.01 0.0224 0.8504 0.00377
0.003 0.0122 0.8938 0.0176
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Defining rc to be the position vector of the centroid of the fiber,
we can write r as:

r ¼ rc þ sp ð25Þ

Allowing vo to represent the velocity of the (arbitrarily selected) ori-
gin, the unperturbed fluid velocity v at any point along the fiber is
then

v ¼ vo þ L � r ð26Þ

where L is the velocity gradient tensor (Lij = @ vi/@xj), and we have
assumed that v is approximately linear in r over the fiber length.

If only hydrodynamic forces act then the centroid of the fiber
moves with the unperturbed fluid velocity of rc [30], so the rate
of change of rc is

_rc ¼ vo þ L � rc ð27Þ

Combining Eqs. (25)–(27) and simplifying gives

v � _r ¼ sðL � p� _pÞ ð28Þ

Note that _p describes the rate of rotation of the fiber axis. For this
we use Jeffery’s equation,

_p ¼W � pþ nðD � p� D : pppÞ ð29Þ

where W ¼ 1
2 ðL � LTÞ is the vorticity tensor and D ¼ 1

2 ðL þ LTÞ is the
rate-of-deformation tensor. The scalar n is the shape parameter,
which approaches unity for slender fibers. In the limit of n ? 1,
Eq. (29) may be recast in terms of L, to give

_p ¼ L � p� L : ppp ð30Þ

Note that W: pp = 0, owing to the anti-symmetry of W.
Combining (30) with Eqs. (24) and (28) gives the increment of

force on a slice ds of the fiber as

df ¼ ðfeff � pÞðD : ppÞ s ds ð31Þ

Dinh and Armstrong [30] note that the drag tensor feff may be
decomposed into a component transverse to the fiber axis and a
component parallel to the fiber axis, or:

feff ¼ ftðI� ppÞ þ fppp ð32Þ

where ft and fp are scalar drag coefficients. Substituting this into Eq.
(31) shows that only the parallel drag coefficient fp matters for force
on the fiber. Again following Dinh and Armstrong, both drag coeffi-
cients scale with the matrix viscosity gm, so we write fp = fgm,
where f (no subscript) is a dimensionless drag coefficient. Using this
in (31) gives an explicit expression for the increment of force on a
segment of a fiber,

df ¼ fgmpðD : ppÞ s ds ð33Þ

The force df acts parallel to the fiber axis; it is proportional to the
fluid stretch rate parallel to that axis, (D: pp), and to the distance
s from the centroid of the fiber.

Since the fiber center is the most likely location for buckling to
occur, we integrate from s = 0 to s = ‘i/2 to find the force vector fc at
the fiber centroid.

fc �
Z s¼‘i=2

s¼0
df ð34Þ

Substituting Eq. (33) and evaluating the integral, we find

fc ¼
fgm‘

2
i

8
p ðD : ppÞ ð35Þ

For the analysis of fiber buckling we need a scalar value of force at
the centroid Fi, defined such that Fi is positive when the fiber is in
compression. Since fc is directed along the p axis, this means that
Fi � �fc � p, and we have
Fi ¼
fgm‘

2
i

8
ð�D : ppÞ ð36Þ

which is Eq. (10).

Appendix B

To evaluate fi in Eq. (19) we use a discrete approximation to the
fiber orientation distribution, wi(p). This is formed using a large
number of unit orientation vectors pk, with k = 1 to np. Typically,
np = 10,000. These vectors are initialized in some convenient way,
in this case random in 3-D space, and are then subject to a time
history that corresponds to their motion in simple shear flow. After
a sufficient amount of time the family of vectors reach a statistical
steady state, and they form a representative sample of the orienta-
tion distribution wi(p).

Here we use the original model of Folgar and Tucker [36], which
has an isotropic rotary diffusivity, and use the limit of high particle
aspect ratio, n ? 1. In this limit the deterministic part of the fiber
motion gives a new orientation for any finite time step Dt as

p�k ¼
F � pk

jF � pkj
ð37Þ

where F is the deformation gradient tensor over the time step. For
1–3 simple shear flow, this is

F ¼
1 0 _cDt

0 1 0
0 0 1

264
375 ð38Þ

Our calculation uses a small time step ð _cDt ¼ 0:05Þ, and introduces
the rotary diffusion term stochastically by adding a small random
perturbation Dpk to each orientation vector. Thus, in our calculation
the new value of orientation at each time step is calculated from the
previous value pk by first calculating p�k using Eq. (37), and then
adding a random component Dpk according to

pnew
k ¼ p�k þ Dpk

jp�k þ Dpkj
ð39Þ

The random perturbation Dpk is chosen to be uniformly distributed
on a small circular disk normal to the original vector. For each pk we
determine mutually orthogonal unit vectors sk and tk, and then find
the perturbation as

Dpk ¼ rkðcos /ksk þ sin /ktkÞ ð40Þ

Here the angles /k are uniformly distributed on [0,2p) and the sca-
lar magnitudes rk are given by

rk ¼ Q
ffiffiffiffiffi
qk
p ð41Þ

Q is a scale factor that is constant for the entire calculation, and each
qk is uniformly distributed on [0,1). With this calculation we expect
that the rotary diffusivity CI _c will scale approximately with Q2/Dt.

Our calculations use 10,000 p vectors and _cDt ¼ 0:05. The initial
orientation state is random in 3-D, and the calculation is run for
1500 steps (75 strain units) to reach a steady state orientation. An
additional 500 time steps are run, and the results of all 500 steps
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are combined to get the steady-state orientation tensor. A series of Bi

values are then considered, and the set of orientation vectors from
the final time step are used to compute fi, the fraction of fibers that
could buckle and break, for each Bi according to Eq. (12).

The results are shown in Fig. 3, labeled according to the steady-
state orientation in the flow direction, A11. Table 1 shows the cor-
respondence between the Q values used in each calculation and the
steady-state values of A11. Also shown here are the CI values that
give the same steady-state value of A11 when used in the mo-
ment-tensor equations for fiber orientation [15], with the ORE ver-
sion of the orthotropic closure approximation [42,43]. Note that
other closure approximations will require different values of CI to
get the same A11 value.
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