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Assessment of Dimensional
Integrity and Spatial Defect
Localization in Additive
Manufacturing Using Spectral
Graph Theory
The ability of additive manufacturing (AM) processes to produce components with virtu-
ally any geometry presents a unique challenge in terms of quantifying the dimensional
quality of the part. In this paper, a novel spectral graph theory (SGT) approach is pro-
posed for resolving the following critical quality assurance concern in the AM: how to
quantify the relative deviation in dimensional integrity of complex AM components. Here,
the SGT approach is demonstrated for classifying the dimensional integrity of standar-
dized test components. The SGT-based topological invariant Fiedler number (k2) was
calculated from 3D point cloud coordinate measurements and used to quantify the dimen-
sional integrity of test components. The Fiedler number was found to differ significantly
for parts originating from different AM processes (statistical significance p-value <1%).
By comparison, prevalent dimensional integrity assessment techniques, such as tradi-
tional statistical quantifiers (e.g., mean and standard deviation) and examination of spe-
cific facets/landmarks failed to capture part-to-part variations, proved incapable of
ranking the quality of test AM components in a consistent manner. In contrast, the SGT
approach was able to consistently rank the quality of the AM components with a high
degree of statistical confidence independent of sampling technique used. Consequently,
from a practical standpoint, the SGT approach can be a powerful tool for assessing the
dimensional integrity of the AM components, and thus encourage wider adoption of the
AM capabilities. [DOI: 10.1115/1.4031574]

Keywords: additive manufacturing (AM), fused filament fabrication (FFF), dimensional
integrity, geometric deviations, 3D point cloud data, defect localization, spectral graph
theory, Fiedler number

1 Introduction

1.1 Objective and Motivation. The objective of this work is
to quantify the relative deviation in dimensional integrity of com-
ponents made using AM processes, and subsequently, rank/clas-
sify AM components in terms of their dimensional integrity. We
propose a novel spectral graph theoretic (SGT) approach, which
uses 3D point cloud data obtained from laser line scans of AM
components to realize this objective. The SGT approach compares
the dimensional integrity of AM parts. In other words, using the
proposed SGT approach, the dimensional integrity of two or more
AM parts can be ranked relative to each other; an absolute mea-
surement, e.g., in terms of geometric dimensioning and toleranc-
ing (GD&T) callouts, is not proffered.

AM processes can create components with complex facets,
which are difficult, if not impossible, to craft using conventional
subtractive and formative manufacturing techniques [1,2]. How-
ever, the lack of quantitative approaches for assessing dimen-
sional integrity deters the use of AM components, despite several

functional advantages, into mission critical assemblies [3]. It is
therefore essential to overcome this limitation in order to realize
the benefits offered by the AM [4,5]. This work aims to address
the foregoing research gap in the context of dimensional integrity
quantification in AM.

1.2 Research Challenges. The imperative need for novel
quantitative approaches to assess dimensional integrity in AM is
further motivated in terms of the experimental data from this
research as depicted in Fig. 1. The laser scan probe 3D point cloud
data of geometric deviations for three AM components produced
at Oak Ridge National Laboratory (ORNL) (see also Sec. 3.1) are
represented as flooded contour plots in Fig. 1. These components
are standardized AM test artifacts proposed by NIST [6].

The three components in Fig. 1 are produced using a polymer
extrusion AM process called fused filament fabrication (FFF)1 [1].
They are made with two different materials, namely, acrylonitrile
butadiene styrene (ABS) thermoplastic (Figs. 1(a) and 1(b)) and
carbon fiber (CF) impregnated thermoplastic ABS composite
(CF-ABS) (Fig. 1(c)), and varying process conditions on two sep-
arate build platforms [7]. The process conditions are described in
further detail in Sec. 3.1.1. The objective of this study was to clas-
sify the components in Figs. 1(a)–1(c) based on their dimensional
integrity using a rigorous quantitative approach. The desired out-
put was a statistically relevant ranking of the components based
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on the deviations of the measured dimensions from the original
design specifications.

Visually prominent qualitative differences in dimensional in-
tegrity of the components can be discerned from their point cloud
data as shown in Fig. 1. Closer examination of Fig. 1 reveals that
the CF composite component in Fig. 1(c) is expected to most
closely match the design specifications (i.e., have the best dimen-
sional integrity), given that large areas of the part have almost
zero deviation. The component in Fig. 1(a) seems to have the next
best correlation to the design specifications. The component in
Fig. 1(b) has perhaps the worst dimensional integrity given the
predominance of areas with negative deviations. These observa-
tions corroborate our recent research findings at ORNL (see Ref.
[7]) where it was demonstrated that CF-containing raw materials
not only improve the mechanical performance of AM parts, but
also significantly reduce geometric distortion during material
deposition.

However, as demonstrated in Sec. 3.1.3, quantifying the differ-
ences in dimensional integrity of the components shown in Fig. 1
using statistical parameters, such as mean and standard deviation
of 3D point cloud deviations, and conventional facet/landmark
measurements was ineffective. It was not possible to detect a sig-
nificant difference (p-value< 10%) in dimensional integrity for
the three components in Fig. 1 based on conventional statistical
feature mining and facet examination techniques. This difficulty
in quantifying geometric integrity of the AM components has also
concerned other researchers (see, e.g., Refs. [8–14]).

1.3 Novelty and Significance. The intractability in character-
izing the dimensional integrity of the AM parts using traditional
descriptive statistical features and facet measurement techniques
from 3D point cloud data, as illustrated in Fig. 1, and also further
documented in Sec. 3.1.3, has motivated us to pursue an alterna-
tive approach. The main contribution of this work is in a novel
SGT approach that captures the relative geometric deviation (i.e.,
difference or imprecision with respect to the CAD blueprint) in
dimensional integrity of AM parts from 3D point cloud measure-
ments with one effective quantifier derived from SGT, namely,
the Fiedler number (k2) [15,16]. The effectiveness of the Fiedler
number to overcome much of the limitations with traditional sta-
tistical feature mining and facet examination is demonstrated in
this work using experimentally acquired, as well as computer gen-
erated 3D point cloud data. The proposed SGT-based approach
for quantification of AM dimensional integrity is practically ad-
vantageous in the following aspects:

(1) The approach uses 3D point cloud data as an input, which
is a noncontact measurement technique unlike using a

coordinate measuring machine (CMM). Additionally, the
approach uses an analysis technique that is not scale lim-
ited. Consequently, the measurement and analysis process
is quicker and flexible as coordinates and facets are not
required to be predefined as in the CMM.

(2) The dimensional integrity of free-form surfaces is tracked
on the basis of one scalar quantifier, namely, the Fiedler
number (k2).

(3) Apart from classifying the overall dimensional integrity,
the Fiedler number (k2) can be used to monitor the status of
specific spatial locations on the component. This can facili-
tate redesign of troublesome component features or read-
justment of process conditions in the future.

We note that the Fiedler number (k2) is akin to a compara-
tive gage, it can classify the relative quality of the AM parts.
However, the main shortcoming of the proposed approach is
that the Fiedler number (k2) has not been correlated with
GD&T measurements. Thus, we cannot infer, at this juncture,
the GD&T aspects of an AM component given the Fiedler
number (k2). We reiterate that the proposed SGT approach is a
ranking method for assessing the dimensional integrity of AM
components, and as such is not intended to tender an absolute
measurement in terms of GD&T. Our future research objective
is to quantify the Fiedler number (k2) trends with specific
GD&T measurements.

The rest of this paper is structured as follows: previous
research in metrology using 3D point cloud data is briefly
reviewed in Sec. 2; the research methodology and development
of the SGT approach for quantifying dimensional integrity of
the AM parts is described in Sec. 3; followed by application
of the SGT approach to experimental AM point cloud data
and further verification using artificially generated components
in Sec. 4; and finally, concluding remarks are summarized in
Sec. 5.

2 A Brief Review of Related Research

Dimensional integrity studies in the AM have thus far largely
relied on either: (i) categorical/visual evaluations [17]; (ii) mea-
surement of salient characteristics of specific facets/landmarks on
the component [18]; or (iii) GD&T measurements using CMM
[19]. These approaches provide only a partial perspective of the
overall dimensional integrity of the component, and are noted to
be fraught with limitations stemming from their subjective nature
and inability to distinguish subtle geometrical differences [20].
Furthermore, conventional GD&T and facet examination techni-
ques are primarily intended for regular Euclidean features, and are

Fig. 1 Plots showing surface geometry deviations (inches) obtained from 3D point cloud data for three different AM sam-
ples (see Sec. 3.1 for further details). The AM samples shown here measure 100 mm 3 100 mm 3 8 mm (4 in. 3 4 in. 3 0.3 in.).
(a) and (b) Components produced using ABS thermoplastic but different processing conditions (see Sec. 3.1, Table 1). (c)
Component produced using CF impregnated thermoplastic composite (CF-ABS).
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therefore not amenable for assessment of AM parts with complex
free-form geometries [4,20]. Hence, quantification of dimensional
integrity of AM parts remains an imposing challenge [3,8,21]. An
alternative approach is to maintain the dimensional integrity of
AM components by avoiding errors during the build process. In
this context, adaptive slicing techniques [22,23], and feedback
control approaches have been recently suggested [24,25].

Metrology of free-form geometry parts, particularly using 3D
point cloud data, has recently garnered substantial research attention,
primarily driven by the emergence of AM techniques. A number of
review articles have been published recently in the area of free-form
dimensional metrology using noncontact techniques, such as laser
scanning and computed tomography (CT) [4,26–28]. Point cloud
data have previously been used in dimensional metrology of auto-
motive parts, buildings, biomedical prosthetics, geospatial applica-
tions, etc. [4,28,29]. For instance, Raja et al. [30] evaluated six
different AM methods, viz., stereolithography, selective laser sinter-
ing, laser melting, 3D plotting with thermoform material, material
jetting, and fused deposition modeling (FDM) for production of two
aerospace components. The AM parts were scanned with a laser-
based profile scanner, and subsequently, the component geometry
was reconstructed from the acquired 3D point cloud data. The parts
were quantified based upon morphological aspects, such as surface
finish, geometric accuracy, and functional fitness using the recon-
structed geometry. The following inferences pertinent to our work
can be drawn from the results reported by Raja et al. [30]:

� Surface finish and dimensional integrity of the AM parts
were independent. For instance, while the multimaterial jet-
ting process affords good surface finish, the produced com-
ponents had one of the worst geometric accuracies. Thus, a
quality variable, such as surface finish, should not be used as
surrogate indicator for dimensional integrity.

� AM components showed the presence of location dependent
anomalies, i.e., specific areas of the part, e.g., edges, were
not accurately reproduced, whereas the other areas were sat-
isfactory. Hence, it is important to not only quantify the over-
all dimensional integrity but also localize dimensional
variations contingent on the spatial geometry of the part. In
other words, it is relevant to indicate the faulty locations on
the component.

� Difficulty in quantitatively gauging the dimensional integrity
of AM components; indeed, the majority of results reported
by Raja et al. are based on qualitative criteria.

There is a bourgeoning need for the use of point cloud data as
an analytical tool to assess geometric deviations in AM, and sub-
sequently, relating the result to the process for diagnostic pur-
poses. The SGT approach forwarded in this work attempts to
bridge the foregoing gap.

3 Research Methodology

Figure 2 distills the three main parts of the proposed research
work, namely:

(1) Experimental procedure (Sec. 3.1): The NIST standard
AM test artifact was used as the geometric reference for
this investigation. Test components were manufactured at
ORNL using three different combinations of deposition
technique and materials [6]. The three components are la-
beled as ABS chamber, ABS platform, and CF-ABS plat-
form. Further details of their manufacture are provided in
Sec. 3.1.1.
Subsequently, in Sec. 3.1.2, the component geometry was
assessed with a linear laser scanning probe (FaroArm Plati-
num) and stored as a 3D point cloud. The test component
coordinate measurements (T N�d) were compared to the
corresponding design reference coordinates (RN�d) from
the.stl computer-aided design (CAD) file; where N is the
number of measurement points and d is the dimension of

the coordinate axes (Cartesian). In our case, N is �500,000
and d ¼ 3. The difference between the test component and
design reference coordinates, T �R ¼ XN�d, is termed
the point cloud deviation matrix. Our aim is to classify the
quality of AM test parts based on their dimensional integrity,
as measured in terms of the 3D point cloud coordinate devia-
tions contained inX .

(2) SGT approach for quantifying dimensional integrity of
AM components (Sec. 3.2): A SGT approach is presented
for monitoring the dimensional integrity of AM test compo-
nents based on the 3D point cloud deviation matrix X
obtained in Sec. 3.1. The main outcome of Sec. 3.2 is the
representation of the deviation matrix X as a network
graph G (Sec. 3.2.1), and subsequent quantification of the
topology of the network G using an SGT invariant, namely,
Fiedler number (k2) in 3.2.2. The graph theoretic topologi-
cal invariant Fiedler number (k2) is used in this work for
quantifying the dimensional integrity of AM test parts. Fur-
thermore, in order to make the computation of the Fiedler
number (k2) practically tenable, two different sampling
methods are proposed to the SGT approach in Sec. 3.2.3.

(3) Application of SGT to AM parts and verification with
artificially generated surfaces (Sec. 4): The above two-
step SGT approach is applied to AM test parts (Sec. 4.1),
and subsequently verified with artificially generated test
parts (Sec. 4.2).

3.1 Experimental Procedure. The test artifact printed for
this study was designed and developed by Moylan et al. [6] at
NIST. This so-called NIST test artifact has become the industry
standard for comparison among various AM processes and mate-
rial combinations. Figure 3 illustrates the various part features,
including cylinders, holes, ramps, fine features, edges, staircases,
pins, holes, and flat surfaces. The part measures
�100 mm� 100 mm� 8 mm (4 in.� 4 in.� 0.3 in.). Each feature
is designed to evaluate a specific capability of the AM process
based on the limits of dimensional accuracy [6].

3.1.1 Manufacture of Test Components. The components
examined in this study were manufactured using a polymer-based
material extrusion AM process, called FFF [1]. The process is often-
times referred as FDM

TM

, which is a protected trademark of Stra-
tasys, Inc. In FFF, typically, a thermoplastic material is heated past
the glass transition temperature and extruded through a nozzle in a
controlled manner [1]. The three component types studied in this
work are designated by the type of material used for deposition and
the primary heat source for controlling thermal distortion during
manufacture. These were shown previously in Sec. 1, Fig. 1. For
instance, the first component (Fig. 1(a) is made with ABS plastic in
a machine having a thermally controlled build chamber, and is thus
labeled as ABS chamber. Table 1 summarizes the conditions for the
manufacture of the three different types of AM components,
namely, ABS chamber, ABS platform, and CF-ABS platform.

3.1.2 Description of Measurement Procedure and Data. The
three samples were scanned with a FaroArm Platinum linear scan-
ning laser probe to generate a three-dimensional point cloud. A rep-
resentative sample scan consisting of �500,000 data points is
shown in Fig. 3. The laser scanner records reflected light from the
surface of a component as a point in 3D space, with a maximum
volumetric deviation of 643 lm. The point cloud for each part was
then imported into a commercial software package (GEOMAGIC by
3DSystems) for analysis. Standard functions within the software are
used to remove outlier points and disconnected components. The
error-corrected 3D point cloud data is subsequently converted to a
polygon mesh for comparison against the reference CAD model in
order to assess the geometric accuracy of the component.

The polygon mesh and CAD model were numerically compared
by measuring the normal distance from a point on the mesh to the
closest surface of the CAD model. The geometric 3D point cloud
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data thus obtained is structured as a matrix consisting of nine col-
umns, which are: (i–iii) Cartesian coordinates of the reference
point on the CAD model RN�3 ¼ fXref;Yref; Zrefg; (iv–vi) the
coordinates of the reference point from the measured polygon

mesh T N�3 ¼ fXmesh; Ymesh; Zmeshg; and (vii–ix) the devia-
tion T �R ¼ XN�3 between the measured and CAD coordinate.
Consequently, the point cloud deviations contain information of
various aspects of the part, e.g., profile, line, and GD&T (but not

Fig. 2 Summary of the research methodology

Fig. 3 (a) 3D Point cloud of NIST part (100 mm 3 100 mm 3 8 mm; 4 in. 3 4 in. 3 0.3 in.)
obtained using the FaroArm laser scanning probe. (b) Zoomed in section showing fine fea-
tures (4 3 zoom).

Table 1 Material and processing conditions for the three types of test components studied in this work

Component type

Build characteristics # ABS chamber Fig. 1(a) ABS platform Fig. 1(b) CF-ABS platform Fig. 1(c)

Material ABSplus-P430 (Stratasys) Generic 1.75 mm ABS fila-
ment (makergeek.com)

Tailored CF-ABS. See
Ref. [7]

Machine Stratasys uPrint SE Plus
FDM

TM

machine
Solidoodle 3 desktop FFF
machine

Modified Solidoodle 3 desk-
top FFF machine

Thermal distortion control Heated build chamber (77 �C) Heated build platform (85 �C) Heated build platform (85 �C)
Extrusion Temperature 310 �C 205 �C 215 �C
Layer height 0.330 mm 0.20 mm 0.40 mm
Toolpath and direction Two perimeter contours, 45 deg sparse raster fill. Slicing algorithm was similar for each system.
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the finer surface texture, because of the resolution of the laser
scanner, viz., 6 43 lm).

The deviations from the reference geometry can be visualized as
flooded contour plots as shown previously in Fig. 1. Although the
flooded contours of the geometric variations are an intuitive way to
visualize the integrity of the part, quantification of these variations
is challenging. In Sec. 3.1.3, the limitations of conventional statisti-
cal analysis and facet examination techniques in quantifying geo-
metric integrity of complex AM parts from 3D point cloud data
measurements is demonstrated.

3.1.3 Selection of Benchmark Methods for Evaluation of AM
Test Components. This section demonstrates that statistical fea-
ture mining of 3D point cloud data and facet examination
approaches are not effective for assessment of the AM parts with
complex free-form geometries [4,20]. These will serve as bench-
marks to compare against the SGT approach proposed in this
work. As noted previously in the literature review (Sec. 2), these
are the most popular approaches currently used for dimensional
integrity monitoring from 3D point cloud data [31].

Benchmark method 1—Analyzing basic statistical moments of
3D point cloud deviations. An intuitive method for analyzing the
3D point data would be to estimate the statistical moments of the
point cloud data, e.g., mean and standard deviation. For instance,
the mean absolute deviation in all Cartesian directions (x, y, z) is
compared to the three test parts in Fig. 4(a) (for varying sample
sizes). From Fig. 4(a), it becomes apparent that the ABS chamber
and CF-ABS platform samples have statistically less geometric
deviation than the ABS platform sample—a trend that becomes
more obvious as the sample size increases.

However, if deviations only in the z-direction are evaluated, as
in Fig. 4(b), both of the platform-heated samples (ABS platform
and CF-ABS platform) appear to be much less accurate than the
ABS chamber sample. Thus, it is possible to arrive at contradic-
tory conclusions when applying similar statistical moments to dif-
ferent portions of the overall 3D point cloud data. Contradictory
results were obtained using other descriptive statistics, such as
standard deviation, skewness, and kurtosis. Therefore, from the
comparison of Figs. 4(a) and 4(b), statistical feature mining of 3D
point cloud data could ineffectual and fraught with ambiguity for
dimensional integrity classification.

Contemporary distribution fitting approaches, such as mixture
Gaussian models, and supervised learning algorithms, e.g., neural
networks will most probably be able to overcome these limita-
tions, and provide an unambiguous classification of an AM dimen-
sional integrity from 3D point cloud data. However, these
concepts are difficult to translate to an operational environment,

in terms of one simple quantifier. In contrast, the SGT approach
proposed in this work characterizes the relative dimensional integ-
rity with one quantifier, namely, the Fiedler number. We will cor-
roborate this assertion in Sec. 4 in the context of the AM part
quality quantification.

Benchmark method 2—Examination of specific component
facets/landmarks. The geometric deviations of specific compo-
nent facets/landmarks within corresponding planar cross sections
of the part were also analyzed. For this purpose, as shown in Fig.
5(a), individual line scans were used to isolate geometric devia-
tions for specific facets. These are: (i) edge distortions as indi-
cated by red lines in Fig. 5(a); (ii) fine features demarcated by
green lines; and (iii) flatness of the surface planes represented
with blue lines. A positive deviation indicates the point lies out-
side the CAD model, whereas a negative deviation indicates the
point lies in the interior of the model. The results are summarized
in Table 2 and plotted for comparison in Fig. 5(b). The following
general trends may be observed:

(1) The magnitude of geometric deviations (positive and nega-
tive deviations) appears to be roughly equal for the ABS
chamber and CF-ABS platform samples.

(2) The ABS platform sample has about 30% higher deviation
on average than the other two components, highlighting the
positive effect of the heated chamber on geometric struc-
tures for the ABS materials.

(3) The edge and flatness facets show that the ABS chamber
sample has less overall deviation than the other two sam-
ples, and less negative deviations in each case.

(4) Comparing the magnitude of the deviations between the
ABS platform and the CF-ABS platform indicates that the
reinforced CF filament material holds geometric tolerance
�30% better than the ABS material on the same build
system.

(5) Although it is possible to use facet examination to make
some general observations, it must be noted that the
standard deviation for the data in Table 2 is �180 lm.
Therefore, the foregoing observations are not statistically
tenable. We found that the facet measurements for the
three samples were statistically indistinguishable (p-
val.� 10%).

These observations show that the quantification of part quality
for a complex geometry, which has been a long-standing and in-
herent problem in AM, cannot be resolved using traditional statis-
tical feature mining and facet examination techniques. A different
method for assessing part quality is therefore needed to address
qualification of complex AM components in critical applications.

Fig. 4 (a) Average deviation of point cloud data in x, y, and z directions (overall deviation). (b)
Average deviation in the vertical (z) direction. The ambiguity of statistical feature mining
approaches for quantifying dimensional integrity is observed in comparison of (a) and (b).
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The SGT approach developed in this work, and discussed here-
with, presents an opportunity for fulfilling this need.

3.2 Graph Theoretic Approach for Component Dimen-
sional Integrity Monitoring in AM. In this section, the proce-
dure for converting a 3D point cloud dataset into a network graph
is explained (Sec. 3.2.1). Thereafter, the network graph is quanti-
fied using topological invariants (Sec. 3.2.2). The section ends by
describing different methods for adapting the SGT approach in a
practical scenario (Sec. 3.2.3).

3.2.1 Mapping the 3D Point Cloud (X ) as a Network Graph
(G). The objective of this section is to represent a sequence X of
3D point cloud data as a network graph G, i.e., achieve the map-
ping X 7! G. Consider a sequence, X ¼ x1; x2 � � � xN, where each
xi is a 1� d vector. Essentially, X can be recast in matrix form
with its rows indexed by x as follows:

X ¼

x1
1 � � � xd

1

� . .
.

�

x1
N � � � xd

N

26664
37775 (1)

From a 3D point cloud perspective, in Eq. (1) each row of X
corresponds to a coordinate location along the Cartesian plane
{x, y, z}, i.e., d ¼ 3. At this juncture, no sampling conditions
have been imposed on X and it is assumed that X is an arbitrary
sample of size N. Different sampling conditions will be progres-
sively imposed on X in Sec. 3.2.3.

As a further note, in this work, unless otherwise stated, the ma-
trix X contains deviations of test parts from the ideal designed
dimensions. The individual deviations xi are obtained by subtract-
ing the reference geometryR of the component from the originat-
ing CAD.stl file from the geometry T of test part (measured using
a laser scanner), T �R ¼ XN�3. The coordinates of the test part
are aligned with the.stl file using coordinate registration software
(Geomagic by 3D Systems). For the N rows of X , pairwise com-
parison metrics wij are computed using a kernel function X. In
this work, the following radial basis kernel is used. The constitu-
tive equations of our approach are as follows:

wij ¼ X xi; xjð Þ ¼ e
� kxi�xjk2

r2E

� �
8 i; j 2 1 � � �Nf g: (2a)

EN�N ¼ kxi � xjk2
(2b)

HðwijÞ ¼ wij ¼
(

1; wij 	 r

0: wij > r
(3a)

SN�N ¼ ½wij
 (3b)

xi is essentially a row from the matrix X ; wij is a pairwise radial
basis distances between two rows i and j; r ¼ ð

PN
i¼1

PN
j¼1

wij=N2Þ; and r2
E is the overall statistical variation of the Euclid-

ean distance matrix E. Equations (2) and (3) are the keystones of
the SGT method. Equations (2) and (3) are particularly important
because they convert a 3D point cloud data into an unweighted
undirected graph.

3.2.2 Quantification of Graph Network Topology. Once the
point cloud data X is represented as a graph G, relevant topologi-
cal information is extracted from G, which is subsequently used
for quantifying X . For this purpose, the degree di of a node i is
computed, which is a count of the number of edges that are inci-
dent upon the node, and the diagonal degree matrix D structured
from di is obtained as follows:

di ¼
Xj¼N

j¼1

wij 8 i; j 2 f1 � � �Ng (4)

DN�N ¼def
diagðd1;…; dNÞ (5)

Next, the volume V and the normalized Laplacian L of the graph
G is defined as

vðGÞ ¼def
Xi¼N

i¼1

di ¼ trðDÞ (6)

Fig. 5 (a) Line scan locations for analysis of specific facets. (b) Feature deviations for facet-
specific line scans.

Table 2 Geometric deviations for line scans for different com-
ponents (all units in micrometers (lm))

ABS chamber
Deviations! Positive deviation Negative deviation Difference
Facets Edge 206 �81 287

Flatness 211 �66 277
Fine features 251 �125 376

ABS platform
Deviations! Positive deviation Negative deviation Difference
Facets Edge 132 �224 356

Flatness 211 �241 452
Fine features 218 �236 454

CF-ABS platform
Deviations! Positive deviation Negative deviation Difference
Facets Edge 178 �165 343

Flatness 168 �155 323
Fine features 165 �160 325
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LN�N ¼defD
�

1

2 � ðD� SÞ �D
�

1

2

whereD
�

1

2 ¼ diag
1ffiffiffiffiffi
d1

p ;…;
1ffiffiffiffiffiffi
dN

p
� � (7)

L is analogous to Kirchhoff matrix encountered in electrical net-
works [15] : Thereafter, the eigen spectrum of L is computed as

Lv ¼ k�v (8)

Note that L is symmetric positive semi-definite, i.e., L � 0, its
eigenvalues (k�) are non-negative, and bounded between 0 and 2,
i.e., 0 	 ki 	 2. The smallest nonzero eigenvalue (k2) is termed
the Fiedler number and the corresponding eigenvector (v2) as the
Fiedler vector [15,16]. Barring pathological scenarios that rarely
occur in practical circumstances, the Fiedler number is strictly
bounded between 0 and 1, i.e., 0 < k2 < 1 [15,16]. The graph top-
ological invariant Fiedler number (k2) is used as a quantifier for
X . Further physical interpretations of the Fiedler number ðk2Þ
are explained in our recent publication [32,33].

The point cloud deviations X contain information from various
aspects of the part, e.g., profile, line, and GD&T; consequently, the
Fielder number (k2) is able to capture subtle aspects in the compo-
nent dimensional integrity that are not discernable from statistical
analysis and facet-based benchmarking alone. Essentially, the Fiedler
number is a convolution of many aspects of dimensional integrity.

More pertinently, it is inferred that further the dimensions of a
component deviate from the reference, the higher is the Fiedler
number (k2). Hence, a comparatively larger Fielder number (k2)
signifies parts with poor dimensional integrity. This will be dem-
onstrated in Sec. 4 using experimental, as well as numerical, simu-
lations. In Sec. 3.2.3, two different methods are described that are
designed to accommodate the SGT approach in a practical
scenario.

3.2.3 Methods for Practical Application of SGT. In this sec-
tion, three different sampling schemas are developed for analyz-
ing the 3D point cloud data X . This is necessary for the following
reasons: it is computationally intractable to obtain the Fiedler
number over the complete part. For instance, given 3D point
measurements (X ) over 500,000 spatial locations in Eq. (1),
would entail 25� 1010 pairwise comparisons to obtain S (Eqs. (2)
and (3)). We will explore methods to make the approach computa-
tionally tractable using different techniques to sample the 3D
point cloud data.

SGT-method 1: Random sampling of point cloud measurements.
This method randomly samples the acquired 3D point cloud devi-
ations XN�d, where N is the number of data points and d is the
number of dimensions (x, y, and z Cartesian coordinate axes),
with contiguous, nonoverlapping windows. The method consists
of the following steps:

� Step 1: From the point cloud sequence XN�d random sample
m points without replacement, i.e., obtain x

m�d , x  X .
Essentially, randomly pick m rows from the matrix X . The
sample size m is taken to be �2/3rd of the total data size N.
In this work, m translates to 300,000 data points.

� Step 2: Apply a windowing procedure (Fig. 6) to the subsam-
ple space x, as follows. Split xm�d into n smaller matrices
Xk�d

h ; h ¼ f1::ng, such that k� n ¼ m. The procedure is
equivalent to operating a (nonoverlapping) sliding window
of size k on a signal x along the time domain. In block ma-
trix form, this can be written as

x
m�d ¼ ½½Xk�d

1 
; ½Xk�d
2 
;…½Xk�d

m 

m�1
T (9)

The key challenge is to select a sufficiently large window size k,
that does not impose computation constraints; unfortunately, this

is a heuristic choice. Based on the trials, an appropriate value of k
was observed to be in the vicinity of 0.05% to 0.1% of the length
of total data N, which in our case is �500,000 data points.
Accordingly, k was set to 500 for all subsequent analysis.
� Step 3: Estimate the Fiedler number kh

2 using Eqs. (2)–(8) for
each subsample Xh in Eq. (9). This step can be distilled as

K2 ¼ ½ k1
2 k2

2 � � � km2 

T

(10)

The key advantages of this method are that it is simple and elimi-
nates inherent instrument and measurement bias, and is computa-
tionally efficient as it requires only a sample of the whole data.
These steps are summarized in pseudocode form in Fig. 6. This
windowing procedure is used again in Method 2.

SGT-method 2: Spatial localization of geometric deviation from
point cloud measurements. The previous approach did not con-
sider the spatial sequence of the data. Hence, it cannot be used for
identifying the specific location of a defect on the component. In
contrast, the present method preserves the spatial information by
following these steps:

� Step 1: Sort the point cloud data deviations XN�d in either
the x or y direction based on the corresponding reference
coordinates R. It is implicitly assumed that the material
layers are deposited in the z direction. Let X be the sorted
point cloud deviations matrix. X therefore preserves spatial
information.

� Step 2: Split the sorted deviation matrix X into n equal win-
dows by applying the windowing procedure described in
SGT-Method 1 (Fig. 6).

However, in this method, the windowing procedure is slightly
modified. Instead of fixing the window size k as done in SGT-
Method 1, in SGT-Method 2 the number of windows n is fixed
and then we compute the window size k. This has the effect of
slicing the component into n strips of identical width. An example
of such spatial sampling is shown in Fig. 9(a). If n is set at 500, as
is done for all instances in this work, then each sampling window
is approximately 10 mils (0.010 in.) in width (250 lm), and 0.3 in.
(8 mm) in height for the NIST sample (Fig. 3). Because of such
spatial sampling, the sequence K2ðnÞ ¼ ½ k1

2 k2
2 � � � kn2 


T
is

mapped to a particular area on the component. Consequently, it is
possible to track which facet has deviated relative to the design
blueprint dimensions.

4 Discussion of Results

The SGT approach is now applied, first to the experimentally
acquired point cloud data (Sec. 4.1), followed by analysis of artifi-
cially generated samples (Sec. 4.2). These numerical studies aug-
ment the experimental results by seeking to quantify the change in
Fiedler number with controlled variation in dimensional integrity.
Computer generated case studies are necessary for this purpose
because, from a practical standpoint, dimensional integrity is not a
precisely controllable set point.

4.1 Application to AM Surfaces. Results from application
of the SGT approach to experimental 3D point cloud data using
the two different sampling methods discussed in Sec. 3.2.3 are
shown in Fig. 7 and Table 3. The following inferences are made
based on these results:

(1) Referring to Figs. 7(a1) and 7(b1), which shows the mean
Fiedler number (k2) (from the Fiedler number sequence K2)
for different test parts obtained using the two SGT-methods
developed in Sec. 3.2.3, the Fiedler number (k2) demon-
strates a consistent trend, namely, k2 (CF-ABS
platform)< k2 (ABS chamber)< k2 (ABS platform). This
trend is unambiguous regardless of the sampling method
applied. The error bars in Figs. 7(a1) and 7(b1) indicate a

Journal of Manufacturing Science and Engineering MAY 2016, Vol. 138 / 051007-7

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org/ on 11/24/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



two-sided 95% confidence interval (CI) on the mean
Fiedler number (k2). In contrast, the benchmark methods
one (statistical feature mining, Fig. 4) and two (facet exam-
ination, Fig. 5) techniques were not able to reliably capture
differences between the test parts.

(2) Referring to Table 3, which presents results from statisti-
cal analysis of the SGT method, such as CIs and ANOVA,
it is observed that the difference in Fiedler number across
different test components is statistically significant (p-value
<1%) irrespective of the sampling method used for

estimation. Tukey’s comparison test revealed that the pair-
wise difference in Fiedler number for the various test com-
ponents is also statistically significant (p-value <1%); the
statistical significance was< 1% for all pairwise compari-
sons between test components. Therefore, it can be statisti-
cally confirmed that k2 (CF-ABS platform)< k2 (ABS
chamber)< k2 (ABS platform) with 99% confidence.

(3) In light of the foregoing observations (1) and (2), the
dimensional integrity of the test components can be classi-
fied quantitatively in the following order: CF-ABS platform

Fig. 6 Pseudocode for the windowing procedure

Fig. 7 Results from applying the SGT approach to experimental test components. (a1) and
(b1) The Fiedler number for the three different components using two different sampling meth-
ods described in Sec. 3.2.3. The difference in Fiedler number across test components is statis-
tically significant (p-value < 0.01) The trends in Fiedler number are similar irrespective of the
sampling method. The error bars represent the two-sided 95% CI on the mean. (a2): The
Fiedler number vs. sample size (m) for Method 1. The Fiedler number converges for m>50; 000.
(b2): The Fiedler number vs. spatial location on component using Method 2 notice the gener-
ally smaller magnitude of the CF component.
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(best adherence to specifications), ABS chamber (midway),
ABS platform (worst dimensional integrity).

(4) Referring to Fig. 7(a2), which depicts the mean of the Fie-
dler number sequence K2ðmÞ for each of the three test com-
ponents obtained from Method 1, Sec. 3.2.3. The 3D point
cloud sample size is varied from m ¼ 2000 to
m ¼ 400; 000. For small samples sizes, m < 10; 000, the
Fiedler number has an ambiguous trend for the three test
components. Nonetheless, the Fiedler number estimates
begin to show a clearer demarcation for sample sizes
beyond m > 10; 000, converging to a stable value for m >
50; 000 (the Fiedler number estimates for m ¼ 300; 000 is
shown in Fig. 7(a1)). This result is in agreement with our
previous inferences—the Fiedler number (k2) has a consist-
ent trend, namely, k2 (CF-ABS platform)< k2 (ABS
chamber)< k2 (ABS platform).

(5) Referring to Fig. 7(b2), which shows the Fiedler number
sequence K2ðnÞ ¼ ½ k1

2 k2
2 � � � kn¼500

2

T across n ¼ 500

spatial locations of equal area sorted along the x direction
as described in SGT-Method 2, Sec. 3.2.3. The bold lines in
Fig. 7(b) are smoothed approximations of the sequence
K2ðnÞ obtained using a Savitsky–Golay filter. This is done
in order to eliminate transient outliers in the data. It is
observed that the Fiedler number sequence K2ðnÞ for the
three test components is significantly different. In general,
the CF-ABS platform component has the least Fiedler num-
ber (k2), while the ABS platform component has the larg-
est. From a physical perspective, this again confirms that
the CF component (CF-ABS platform) adheres closest to
the specified dimensions.

(6) Referring to Fig. 7(b2), a more pertinent pattern is
reported at the edges (of Fig. 7(b2)), where the Fiedler
number tends to increase for all components, which indi-
cates possible warping near the edges of the component, as
oftentimes observed in polymer extrusion AM techniques.
The trend is perceptibly most acute for the ABS platform
component. This observation exemplifies the utility of
SGT-Method 2 for localizing defects, which will be further
investigated in Sec. 4.2.2 using numerically generated point
cloud data.

These results are indicative of the effectiveness of the Fiedler
number (k2) for tracking the dimensional integrity of AM compo-
nents from 3D cloud data. In Sec. 4.2, we will use computer-
simulated components, where the level of dimensional deviation
and measurement errors are closely controlled, to further corroborate
the effectiveness of the Fiedler number.

4.2 Verification With Numerically Generated Point Cloud
Data. In this section, point cloud data of test components are
simulated with varying levels of geometric integrity. In order to

ensure that the test data are in close accordance with experimental
results, the 3D point cloud deviations (X ) from the ABS chamber
component are used as a baseline or seed for generating new sam-
ples, this resembles a statistical bootstrapping procedure. Two
case studies based on such simulated data are described below.

� case 1: Components having Gaussian distributed isotropic
manufacturing errors with different levels of geometric devi-
ation (R) (Sec. 4.2.1)

� case 2: Components having Gaussian distributed manufactur-
ing errors with different levels of geometric deviation (R) at
specific locations of the component (Sec. 4.2.2)

4.2.1 Case 1: Components Having Gaussian Distributed
Manufacturing Errors With Different Levels of Geometric Devia-
tion (R). This study aims to quantify the sensitivity of the Fiedler
number (k2) to variations in dimensional integrity of components.
For this purpose, it is assumed that components are produced with
varying levels of overall dimensional integrity; and that the geo-
metric deviations are isotrpically/homogeneously distributed over
the entirety of the component, as opposed to a specific location. In
order to control the level of deviations from the normal process
condition, new 3D point cloud data fX are randomly generated
from the empirically obtained 3D point cloud X (from the ABS
chamber component) in the following manner:

eX ¼ Nðx1
1 þ r1Þ � � � Nðxd

1 þ rdÞ

� . .
.

�

Nðx1
N þ r1Þ � � � Nðxd

N þ rdÞ

2664
3775 (11)

If one assumes r1 ¼ r2 ¼ � � � ¼ rd ¼ R, then eX ¼ X
þNð0;RÞ, where N is the matrix Gaussian distribution with mean
0 and standard deviation R. Essentially, for a point in X , say
xi ¼ fxi; yi; zig, a new point is randomly sampled from a Gaussian
distribution centered on xi with standard deviation R. Physically,
the parameter R represents the level of geometric deviations; R ¼
0 symbolizes the normal condition, i.e., original experimental
point cloud data for the ABS chamber component.

The ABS chamber test part is implicitly assumed to be the nor-
mal condition, given that it is the seed data set X wherefrom eX
is generated. No other statistical moments except the standard
deviation are changed. Hence, all other the statistical moments,
namely, mean, skewness, and kurtosis of the bootstrapped dataseteX will remain identical to X . This assertion was verified using
statistical tests (ANOVA).

As R increases, the generated point cloud deviations eX will
veer farther away from X . In other words, as R increases, the geo-
metric integrity of the component worsens. Based on the physical
insights [32,33] and previous empirical results (Sec. 4.1), a posi-
tive correlation is expected between R and Fiedler number (k2).

Table 3 Descriptive statistics and quantitative ANOVA results for the Fiedler number (k2) obtained using different methods. SSE:
sum of squared errors; dfe: degrees of freedom for error; MSE: mean squared error; SST: treatment sum of squares; dft: treatment
degrees of freedom; MST: mean of treatment sum of squares

Analysis Method! SGT-Method 1 SGT-Method 2

m ¼ 300; 000; k¼ 500 n ¼ 500

Test component # Mean k2 Std. error 6 95% CI on mean Mean k2 Std. error 6 95% CI on mean

CF-ABS platform 0.7638 0.00077 0.0015 0.7724 0.0015 0.0029
ABS chamber 0.8160 0.00057 0.0011 0.7992 0.0018 0.0036
ABS platform 0.8250 0.00070 0.0014 0.8297 0.0017 0.0034
SSE/dfe¼MSE 0.5123/1794¼ 0.000285 2.1198/1491¼ 0.0014
SST/dft¼MST 1.30353/2¼ 0.6527 0.8186/2¼ 0.4093
Pooled Std. Dev 0.0169 0.0377
F-statistic¼MST/MSE 2285.5 287.89
F-critical (0.95, dft, dfe) 3.0007 3.0018
Tukey-pairwise distance 0.0023 0.0056
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By generating 3D point cloud data with differing geometric devia-
tions R; each Ru can be considered to represent a different pro-
cess condition indexed by the integer u. Additionally, results are
reported from a fivefold replication procedure, i.e., given a pro-
cess condition t, there will be five repetitions of R:
R1

t � � �R5
t ; t 2 f1…ug. R is a set based on the statistical standard

deviation of the empirical 3D point cloud data X . For instance, if
the overall standard deviation of X is estimated to be rX , then
R ¼ arX , where 0 	 a. For the ABS chamber component, rX
was computationally estimated to be �0.005 in. (�130 lm). In
this study, R is varied from 1% to 25% of rX ; i.e., a is maintained
in the range of 0:01 	 a 	 0:25. The results from the analysis are
shown in Fig. 8.

The mean Fiedler number (k2) from the fivefold cross valida-
tion is shown in Fig. 8(a), whereas results from one particular rep-
lication are shown in Fig. 8(b) along with the 95% CI on the
mean. The sampling/windowing parameters for each of the two
methods are identical to those used for analyzing the experimental
data (see Table 2). The window parameter (k) for SGT-Method 1
the sample size m¼ 300,000 and window length k¼ 500; and for
SGT-Method 2 the number of partitions n¼ 500.

From Figs. 8(a) and 8(b), it is shown that the Fiedler number
(k2) is positively correlated with deviation R. This confirms that
the Fiedler number is related to the dimensional integrity of the
component—the Fiedler number increases as the component

dimensions deviate farther away from the nominal (which in our
case is the ABS chamber test part). As before, SGT-Method 1 has
the tighter CI bound on the mean Fiedler number (k2) compared
with SGT-Method 2. This implies SGT-Method 1 could be the
preferred approach for classification applications.

Continuing with the analysis, the Tukey’s pairwise comparison
test was conducted with these results. In general, the Fiedler num-
ber is statistically different (p-value <1%) for about 2% change in
deviation (R). The result improves considerably if Method 1 is
exclusively applied for classification purposes, in such a case a
change in deviation as small as R¼ 1% can be captured. In con-
trast, statistical moments of the point cloud deviation eX , such as
mean, skewness, kurtosis, in all of the three axis were not sensi-
tive to change in R. This is to be expected, because the data was
generated by keeping all other statistical moments constant except
the standard deviation. In closing, it is noted that the ability of the
SGT approach in detecting geometric deviations is physically con-
strained by the fidelity of the measurement. The FaroArm laser
scanner used in this study has an accuracy of 6 43 lm.

4.2.2 Case 2: Spatial Localization of Anomalies. The aim of
this study is to verify that the Fiedler number can indeed identify
anomalous areas of an AM component. Whereas, in the previous
case (Sec. 4.2.1), it had been assumed that the dimensions of the
component vary homogenously throughout; in contrast, in this

Fig. 8 Fiedler number obtained from the simulated point cloud data using SGT methods 1
and 2 at different levels of deviation (R). (a) Mean Fiedler number from five-fold cross valida-
tion (five replications). The difference between replications is statistically indistinguishable;
the mean Fiedler numbers are estimated across replications after averaging over sample win-
dows for a particular replication. (b) The Fiedler number shown along with the 95% CI interval
for one particular replication. The mean Fiedler numbers are estimated across sample
windows.

Fig. 9 Localizing component anomalies to specific areas using the Fiedler number. (a) The sorted point cloud data in
x-direction. Each differently colored strip represents a sampling area or spatial location. There are 500 such location on the
part, each containing approximately of 1000 data points, and measuring �10 mils (250 lm) in width and �0.3 in. (8 mm) in
height. The portion marked in the middle is the location of interest in this case study, and is purposely perturbed. (b) The Fie-
dler number vs. the sampling location. The blue line is from the experimental ABS chamber part (R 5 0, normal condition), a
clear departure from the norm is observed as R increases. (c) Magnified view of the portion highlighted in (b).
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study, location specific deviations will be deliberately created
while the rest of the component remains unchanged.

For this purpose, the ABS chamber point cloud deviations X
will be used, and subsequently, sorted along either the x or y direc-
tions, thus obtaining the sorted deviation matrix X as done previ-
ously in Method 2, Sec. 3.2.3. However, instead of generating
point cloud transformations uniformly for all locations as done in
the previous case, only a specific area will be perturbed, in this
case the middle portion highlighted in Fig. 9(a).

Each differently colored strip in Fig. 9(a) represents a spatial
sampling window from the sorted point cloud matrix X . There
are 500 such sampling windows or locations on the component (n
¼ 500), each containing close to 1000 data points. Each sampling
window physically measures 10 mils in width (250 lm, x-axis),
and �0.3 (8 mm, z-axis) inch in height. The point cloud data only
in the middle 20% (amounting to about 100 windows, or
�100,000 data points, 25 mm) of the component corresponding to
the marked strip in Fig. 9(a) will be perturbed under different lev-
els of R in this study. Again, a is maintained in the range 0.01 	
a 	 0.25.

The point cloud data is analyzed as suggested in SGT-Method
3, Sec. 3.2.3. The Fiedler number sequence K2ðnÞ for each spatial
location is shown in Fig. 9(b). The highlighted portion of Fig. 9(b)
corresponds to the perturbed area in Fig. 9(a); Fig. 9(c) is a mag-
nified view of this perturbed area. From Figs. 9(b) and 9(c), it is
observed that the Fiedler number identifies location specific devia-
tions. As the dimensional integrity of a specific portion of the
component worsens (R increases), the Fiedler number (k2) for that
portion also increases, as seen in Fig. 9(c). Consequently, there
will be a marked departure in the Fiedler number sequence K2ðnÞ
corresponding to the anomalous area of the workpiece.

For instance, the blue line in Figs. 9(b) and 9(c) is the Fiedler
number sequence for the part with R¼ 0, which in our case is
obtained from the experimental ABS chamber component (see
also Fig. 7(c2)); the black lines correspond to different values of
R (1–25%). Only half of the lines are shown in Fig. 9(c) for the
sake of clarity. This result allows us to compare the measured
trend against the baseline control (R¼ 0), and thus pinpoint the
location, as well as magnitude of deviations from the nominal
state.

5 Concluding Remarks and Future Work

A novel SGT approach for quantifying the dimensional integ-
rity of complex geometry AM components has been developed
and validated. Using the SGT-based topological quantifier, i.e.,
Fiedler number (k2), subtle variations in dimensional integrity for
AM components fabricated under different test conditions can be
effectively captured. Specific contributions from this work are as
follows:

(1) The primary objective of this work was to quantify the geo-
metric integrity of components fabricated with AM techni-
ques. For illustrative purposes, three test components
produced using different AM processes and/or materials
were used in our comparison study. The SGT approach was
able to succinctly classify the dimensional integrity of the
test components in the following order: CF-ABS platform
(best adherence to specifications), ABS chamber (midway),
ABS platform (worst). This corresponds to ordering of the
Fiedler number (k2), viz., k2 (CF-ABS platform)< k2 (ABS
chamber)< k2 (ABS platform).

(2) Two different sampling methods were proposed in which
the Fiedler number (k2) could be generated from point
cloud data. The results were found to be consistent irre-
spective of the applied sampling methods, i.e., k2 (CF-ABS
platform)< k2 (ABS chamber)< k2 (ABS platform).

(3) The proposed two SGT methods were verified by evaluat-
ing two case studies in which statistical variability was
simulated by superimposing a certain amount of variation

onto the scanned point cloud data. In the first case study,
the statistical variation was gradually increased from its
normal state, which amounted to a degradation in compo-
nent dimensional integrity. The Fiedler number trends dem-
onstrated an approximate positive correlation with
statistical variation. This substantiates results from the
experimentally acquired 3D point cloud data—the Fiedler
number increases as dimensional integrity worsens.

(4) Furthermore, using SGT-Method 2, a spatial sampling
approach, changes in dimensional integrity from its normal
state corresponding to specific locations on the component
can be isolated. This is advantageous from an application
perspective, particularly for process diagnosis purposes.
For instance, by identifying which locations on a compo-
nent are consistently produced out of specification, a read-
justment of process conditions or redesign of troublesome
features can be considered.

The main shortcoming of the SGT approach is that the Fiedler
number (k2) has not been correlated in this work with GD&T
measurements. In the absence of such a correlation, it is not possi-
ble to infer the dimensional integrity of landmark features in terms
of absolute GD&T measurements. Our future research objective is
to relate the Fiedler number with specific GD&T measurements.
Essentially, the proposed SGT method is a relative classifier of
dimensional integrity of AM parts, i.e., akin to a differential com-
parator. In general, the proposed SGT method has been demon-
strated to be an effective technique for characterizing the
dimensional integrity of an AM component, which has been a
long-standing and inherent problem for the AM community. This
research therefore addresses the bourgeoning need in the AM
community to address qualification and certification of complex
components in future applications.
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