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ABSTRACT: This article proposes a model to predict the elastic–plastic response
of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic
fibers embedded in a thermoplastic resin that exhibits the elastic–plastic behavior
obeying the Ramberg–Osgood relation and J-2 deformation theory of plasticity.
It also accounts for fiber length and orientation distributions in the composite
formed by the injection-molding process. Fiber orientation was predicted using an
anisotropic rotary diffusion model recently developed for LFTs. An incremental
procedure using Eshelby’s equivalent inclusion method and the Mori–Tanaka
assumption is applied to compute the overall stress increment resulting from an
overall strain increment for an aligned-fiber composite that contains the same fiber
volume fraction and length distribution as the actual composite. The incremental
response of the latter is then obtained from the solution for the aligned-fiber
composite by averaging over all fiber orientations. Failure during incremental
loading is predicted using the Van Hattum–Bernado model that is adapted to the
composite elastic–plastic behavior. The model is validated against the experimental
stress–strain results obtained for long-glass-fiber/polypropylene specimens.
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INTRODUCTION

R
EDUCING VEHICLE WEIGHT to reduce energy consumption and engine emissions is
one of the major objectives of the automotive industry. To this end, intensive research

has been devoted to enable the use of lightweight materials for important structural
applications. Long-fiber reinforced thermoplastics (LFTs) are among the prime candidate
materials to be used as a substitute for steels. These composites, which can be produced by
injection molding, present the advantage of relatively low-cost production and offer good
mechanical performance in terms of stiffness, strength, creep and fatigue endurance.
They are therefore suitable for structural applications. In a recent article, Nguyen et al. [1]
pointed out that to use LFTs efficiently and safely for structural applications, it is essential
to be able to (i) predict their microstructure as a function of the constituents’ properties
and characteristics as well as processing parameters, (ii) predict their thermoelastic
properties and nonlinear responses as a function of the as-formed microstructure, and
(iii) establish reliable characterization methods for obtaining all the necessary micro-
structural features for the model validation. Reference [1] described the effect of fiber
length and orientation distributions on the elastic properties of LFTs. It also showed the
limitation of existing fiber orientation models [2], and emphasized the need to develop
a better model to predict fiber orientation in LFTs.

The present article extends the methodology developed in Ref. [1] to the computation of
the nonlinear stress–strain response of LFTs up to the point of failure. There are two main
causes of material nonlinear response in LFTs: plastic deformation of the thermoplastic
matrix, and progressive damage due to matrix cracking, fiber/matrix debonding, fiber
pull-out and rupture. This article addresses the material nonlinearities due to plastic
deformation of the thermoplastic matrix. Progressive damage coupled with plasticity will
be addressed in our future work on LFTs.

Previously, the elastic-damage behavior of discontinuous fiber polymer composites
was modeled by Nguyen and Khaleel [3,4], and Nguyen et al. [5] using a mecha-
nistic approach that combines micromechanics with continuum damage mechanics.
In Refs [3–5], a reference composite was defined containing aligned fibers, and matrix
microcracks that were modeled as ellipsoidal inclusions with zero stiffness. Fiber/matrix
debonding was also accounted for in Ref. [5]. Next, the virgin and reduced elastic
properties of the reference composite were computed using micromechanical models [6–9]
and were then distributed over all possible orientations to obtain the properties of the
random fiber composite containing random matrix microcracks. Finally, the macroscopic
response of the random fiber composite subject to matrix cracking [3,4], or both matrix
cracking and fiber/matrix debonding [5] was determined by means of a continuum damage
mechanics formulation.

Thermoplastic resins such as polypropylene (PP) or polyethylene (PE) are semi-
crystalline polymers whose microstructures possess an amorphous phase interleaved with
crystalline lamellae, with macromolecular chains engaged in both phases. Plastic
deformation in semi-crystalline polymers is a complex phenomenon occurring in both
crystalline and amorphous phases [10]. For a polymer composite subjected to increasing
load, the stress that is transferred to the matrix material induces plastic flow in the matrix,
and as a consequence, causes irreversible inelastic strain for the composite.

The elastic–plastic behavior of short-fiber metal matrix composites was previously inve-
stigated using Eshelby’s equivalent inclusion method [6] and the Mori–Tanaka mean-field
approach [7] (see also Refs [11–15]). In this article, the combination of Eshelby’s equivalent
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inclusion method with the Mori–Tanaka model is termed the Eshelby–Mori–Tanaka
approach (EMTA). Arsenault and Taya [11] used the EMTA to calculate residual stresses in
metal matrix composites containing aligned elastic short-fibers in an elastic–plastic matrix
that was described by a bilinear model. About the same time, Tandon and Weng [12]
developed an EMTA-based theory to predict the elastic–plastic behavior of particle
reinforced materials. The particles considered in Ref. [12] were elastic while the matrix was
elastic–plastic and obeyed the modified Ludwik equation. Also, explicit expression of the
matrix secant modulus was defined and used in the EMTA homogenization to compute
the composite response. Dunn and Ledbetter [13] used a similar model and the expression of
the matrix effective stress established by Qui and Weng [14] (which was based on an energy
approach) to compute the elastic–plastic stress/strain response of textured short-fiber
composites. In Ref. [14], fiber orientation was described by orientation distribution
functions of Euler’s angles. Later, Pettermann et al. [15] developed an incremental EMTA
procedure to predict the thermo-elastic-plastic behavior of composites containing aligned
thermo-elastic spheroidal inclusions in a thermo-elastic-plastic matrix whose behavior was
described by the J-2 flow theory with isotropic hardening. These authors calculated the
instantaneous Eshelby tensor numerically by amethod developed byGavazzi and Lagoudas
[16] to account for the anisotropic structure of the matrix material in the plastic regime.
Doghri and Ouaar [17] developed homogenization schemes and numerical algorithms for
two-phase elastic–plastic composites. In particular, these authors investigated the issue of
tangent operators used in constitutive laws. Their composite stress–strain results which were
obtained using the isotropic part of the matrix tangent stiffness tensor to compute the
instantaneous Eshelby’s tensor agreed well with their predictions based on a unit cell finite
element analysis. Doghri and Tinel [18,19] proposed a two-step incremental formulation for
a mean-field homogenization approach to predict the stress–strain response of multiphase
elastic–plastic materials reinforced with non-spherical and non-aligned inclusions
whose orientation was described using an orientation distribution function. In the first
step, the composite reference volume element is decomposed into a set of pseudo-grains,
homogenization is then carried out for each pseudo grain using a Hill-type incremental
formulation. The second step conducts homogenization over all pseudo-grains. More recently,
Pierard et al. [20] confirmed Doghri and Ouaar’s findings [17] regarding the use of an isotropic
Eshelby’s tensor when assessing the accuracy of the prediction of the composite elastic–
plastic response using the secant or incremental approaches. They have found that the
second-order secant approach and the incremental approach that used the Eshelby’s tensor
computed based on the isotropic part of the matrix tangent stiffness tensor provided the best
approximations of their numerical stress–strain results. These were obtained by numerical
simulations of a composite representative volume element containing ellipsoidal inclusions.

In view of all the previous studies, this article applies an incremental EMTA procedure to
predict the elastic–plastic stress–strain response of long-fiber thermoplastics. It is assumed
that the fibers are linear elastic while the elastic–plastic matrix is isotropic and obeys the
Ramberg–Osgood relation [21] and the J-2 deformation theory of plasticity. An incremental
EMTA procedure is then developed to compute the (homogenized) overall stress increment
resulting from an overall strain increment for a unidirectional (UD) fiber composite, which
is termed the reference composite. The key idea is to replace the elastic modulus of the matrix
material in the elastic problem by its instantaneous tangent modulus, as determined from
the Ramberg–Osgood relation and J-2 deformation theory. Next, the elastic–plastic
response of the actual LFT composite is obtained by averaging the behavior of the refe-
rence composite over all fiber orientations using the orientation averaging method [22,23].
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This method offers an efficient way to account for fiber orientation distribution in the compo-
site. Failure during loading is predicted using the Van Hattum–Bernado model [24], which is
adapted to the elastic–plastic behavior of the composite. Van Hattum and Bernado expre-
ssed the Tsai–Wu’s failure criterion [25] in terms of fiber andmatrix strengths as well as fiber
orientation tensor components. The extension of this model to the composite elastic–plastic
behavior requires defining an ‘equivalent linear elastic’ composite at each load increment.

Although incremental EMTAs have been previously used for various composite
systems, their application to model the elastic–plastic behavior of LFTs has not been
conducted. This is one of the focuses of this article. Also, this article adapts the
Van Hattum–Bernado model to an incremental EMTA to predict strength of LFTs.
In addition, a particular focus is on fiber orientation and length distributions, which
greatly influence the composite’s properties and response. We will show the useful
application of a new fiber orientation model (termed the anisotropic rotary diffusion
(ARD) model) recently developed by Phelps and Tucker for LFTs [26].

Long-glass-fiber/PP specimens were cut from injection-molded samples for mechanical
characterization and testing. Fiber length and orientation distributions were measured at
several selected locations for use in the computation. A two-parameter Weibull distribution [1]
or a log-normal distribution can be used to represent the probability density function for
weight of fiber vs. fiber length. Although Weibull’s distribution is sufficiently accurate for
computation of elastic properties, the log-normal distribution is more appropriate for strength
prediction. Fiber orientation distributions in the samples were predicted using the ARDmodel.
The elastic–plastic and strength prediction model was implemented in the ABAQUS finite
element code bymeans of user subroutines. ABAQUSwas then used to compute the elastic–
plastic response and strength of LFT glass/PP specimens. The computed responses using the
predicted fiber orientation results are compared with the solutions obtained based on
measured fiber orientations, and with the experimental stress–strain results.

THEORY

This section develops an elastic–plastic model for LFTs, making use of an incremental
EMTA procedure to compute the composite stress–strain response. The model accounts for
fiber length and orientation distribution resulting from the injection-molding process. The
reader is referred to Ref. [1] for a detailed description of fiber length distribution (FLD) and
Refs [1] and [22] for the definition of the orientation tensors. This section also provides a
summary of the Van Hattum–Bernado model [24] that is used in conjunction with the
elastic–plastic model to predict strength of LFTs. A summary of the Phelps–Tucker’s
anisotropic rotary diffusionmodel [26] to predict fiber orientation in LFTs is also presented.

An Elastic–Plastic Model for LFTs

Consider a unidirectional (UD) fiber composite containing a fiber length distribution.
Computation of the incremental elastic–plastic response of the composite starts from the
EMTA solution for the elastic composite, which is given by:

H ¼

R1
0 H�ðl=dÞpðlÞdlR1

0 pðlÞdl
ð1Þ
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with:

H� ¼ Hm þ vfðHf �HmÞ : Af ð2Þ

where H*(l/d) is the stiffness matrix of the UD composite having the fiber aspect ratio l/d,
where l is the fiber length and d is the fiber diameter. P(l) is the probability density function
(PDF) that expresses the fiber length distribution (FLD) in terms of number or weight
of fibers vs. fiber length. vf is the fiber volume fraction. H, Hm, and Hf are the stiffness
tensors of the UD composite, matrix, and fiber phases, respectively. Af is the fiber strain-
concentration tensor, given by:

Af ¼ T : ð1� vfÞIþ vfT½ �
�1

ð3Þ

with:

T ¼ Iþ S : H�1m : ðHf �HmÞ
� ��1

ð4Þ

where S is the Eshelby tensor and I is the fourth-order identity tensor. Next, the orien-
tation averaging method is applied to Equation (1) to obtain the stiffness tensor H for the
actual composite possessing a fiber orientation distribution (FOD). The result is written
(using index notation) as [22,23]:

Hijkl ¼ B1
~Aijkl þ B2ðAij�kl þ Akl�ijÞ þ B3ðAik�jl þ Ail�jk þ Ajk�ilÞ

þ B4�ij�kl þ B5ð�ij�jl þ �il�jkÞ
ð5Þ

where the coefficients Bi (i¼ 1, . . . , 5) are the invariants of the UD stiffness tensor. Aij and
~Aijkl are the second and fourth-order orientation tensors, respectively, and �ij is the identity
tensor.Aij is either predicted by a process model ormeasured, and then the ORE orthotropic
closure approximation [27,28] is used to estimate the fourth-order tensor ~Aijkl from Aij.

When the material behavior is nonlinear, we look for an incremental solution of the form:

�� ¼ H
t

: �e ð6Þ

in which �r is the composite stress increment resulting from the composite strain
increment �e, and H

t
is the current tangent stiffness tensor of the composite. To compute

the stress–strain response of the composite incrementally, it is necessary to calculate H
t
at

each increment. To do so, the key idea is to replace the elastic stiffness tensor Hm of the
matrix in Equations (2) and (4) by its current tangent stiffness tensor H

t

m (which reflects
the nonlinear behavior of the matrix) and apply the EMTA homogenization procedure to
obtainH

t
. The computational method is as follows. The Ramberg–Osgood relation is used

to describe the elastic–plastic behavior of the matrix in terms of the total matrix equivalent
stress (�m) and strain ("m):

"m ¼ "
e
m þ "

p
m ¼

�m
Em
þ

�0
Em

� �
�m
�0

� �n

ð7Þ
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where �0 and n are material coefficients and are known as the reference stress and the
power-law exponent Em, "

e
m, and "pm are the matrix elastic modulus, equivalent elastic

strain, and equivalent plastic strain, respectively. The overall strain increment applied to
the composite induces the strain increments in the fiber and matrix phases as follows:

�ef ¼ Af : �e ð8Þ

�em ¼ Am : �e: ð9Þ

Here Af is the orientation average of Af that is obtained by applying the orientation avera-
ging method to Equation (3). The matrix strain concentration tensor Am is related to Af as:

ð1� vfÞAm þ vfAf ¼ I: ð10Þ

The matrix equivalent plastic strain at the end of the previous increment is saved and used
at the beginning of the current increment to compute the plastic modulus E p

m of the matrix
based on the Ramberg–Osgood representation:

E p
m ¼

d�m
d"pm
¼

E1=n
m �ðn�1Þ=n0 ð"pmÞ

ð1�nÞ=n

n
: ð11Þ

Hence, the current tangent modulus of the matrix is determined as:

Et
m ¼

EmE
p
m

Em þ Ep
m
¼

Em

1þ n�1�n0 �n�1m

: ð12Þ

The computation of the current matrix tangent modulus allows calculation of the current
matrix tangent stiffness tensor Ht

m, and therefore, the current tangent stiffness tensor
of the composite (H

t
) can be determined using Equations (1), (2), and (5). Next, the matrix

stress increment is calculated as:

�rm ¼ Ht
m : �em: ð13Þ

The matrix stress is then updated, and the matrix equivalent stress is obtained using the J-2
deformation theory of plasticity:

�m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
�
0m
ij �

0m
ij :

r
ð14Þ

where �mij is the matrix deviatoric stress tensor. The computation of �m allows the current
matrix equivalent strain and plastic strain to be determined using the Ramberg–Osgood
relation (7). These quantities are saved to start the next increment of the loading process.
Finally, the overall stress increment is computed by Equation (6) to update the overall
stress at the end of the current increment. At each load increment, failure is predicted using
the Van Hattum–Bernado model [24], which is summarized in the next section.

The elastic–plastic EMTA procedure was implemented into the ABAQUS finite element
code by means of user subroutines. The UMAT subroutine was employed to implement
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the constitutive model. In addition, the utility user subroutine UEXTERNALDB was used
to read the fiber orientation and FLD data obtained from experiments or process
modeling. In UMAT, three options for fiber length distribution are introduced: the use of
the experimental FLD, the use of Weibull or log-normal distributions whose shape
parameters are introduced as material constants. The ‘User Material’ option of ABAQUS
is used to introduce the material input data for the model.

Prediction of the Composite Strength

Van Hattum and Bernado [24] first applied the Tsai–Wu criterion [25] to a UD fiber
composite that contains a fiber length distribution. This criterion predicts failure when:

f ¼ F : rþ rT : ~F : r ¼ 1 ð15Þ

where F and ~F are the second and fourth-order strength tensors, respectively, and r is the
stress tensor. If the behavior of the UD composite is the same in tension and compression
(i.e., its tensile and compressive strengths are the same), then F¼ 0. The components of
~F can then be determined in terms of the strengths of the UD composite, which are
obtained here using the Kelly–Tyson model [29]. The details of the derivation to obtain the
components of ~F are provided in Ref. [24].

~F ¼ ~Fð�L, �T, �sÞ ð16Þ

where �L, �T, and �s are the longitudinal, transverse, and shear strengths of the UD fiber
composite, respectively.

The longitudinal strength is predicted using

�L ¼

Z lc

0

��LðlÞpðlÞdlþ

Z 1
lc

��LðlÞpðlÞdl ð17Þ

in which lc is the critical fiber length necessary to build up sufficient stress to break a fiber.
p(l) is the PDF for fiber length, as in Equation (1) ��L is given by the Kelly–Tyson model in
terms of the interfacial shear strength �, the equivalent stress developed in the matrix at
fiber failure strain ��m, and fiber strength �f :

��L ¼ vf
�l

d
þ ��mð1� vfÞ for l5 lc

��L ¼ vf�f 1�
lc
2l

� �
þ ��mð1� vfÞ for l � lc:

ð18Þ

For a strong interfacial bond, the transverse strength of the UD composite is approximated
by the strength of the matrix, �sm, and its shear strength is then determined by: �m ¼ �

s
m =

ffiffiffi
3
p

.
Due to processing, the actual composite can suffer from poorer fiber/matrix interface
properties, and as a result, the interfacial shear strength can be significantly lower than the
shear strength of the matrix material.
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For a UD linear elastic composite, Equation (15) can also be expressed in terms of
strains as:

f ¼ G : e� eT : ~G : e ¼ 1 ð19Þ

where:

G ¼ F : Heq ð20Þ

and:

~G ¼ HT
eq : ~F : Heq ð21Þ

with Heq ¼ H, the stiffness tensor of the UD composite given by Equation (1). To extend
the criterion (15) to a random-fiber composite that possesses a fiber orientation
distribution, we assume that the composite consists of an aggregate of UD elements
with different orientations, and that local failure occurs when the average value of f among
all elements equals unity. Consistent with our averaging scheme for stress, we assume that
each element of the aggregate experiences the same strain. Thus, we apply the orientation
averaging method [22,23] to Equation (21) [24] to find

~F ¼ H
�T

eq : ~G : H
�1

eq ð22Þ

where the ‘bar’ symbol denotes orientation averaging, and H is given by Equation (5) for
an elastic composite. The failure criterion (15) then becomes:

f ¼ rT : ~F : r ¼ 1: ð23Þ

For a composite that exhibits an elastic–plastic response, some approximation is
required. Here, we determine Heq as follows. At the end of each load increment, we
define an ‘equivalent UD composite’ and compute its stiffness. First, the computed
equivalent strain and equivalent stress of the matrix material at the end of the current
increment are used to define the current matrix secant modulus, Es

m ¼ �m="m. Next, the
EMTA procedure is applied to obtain the stiffness of the equivalent UD composite
that has elastic fibers and an elastic matrix of modulus Es

m. This stiffness tensor is then
used in Equations (20) and (21). As the failure criterion ignores the loading history,
using the as-defined equivalent composite is a way to bring the UD elastic–plastic
composite to the same current stress state at which the correspondence between the
strength tensors given by Equations (20) and (21) still holds as in the elastic case.
However, we implicitly account for the nonlinear behavior of the composite in the
criterion via the stress state. Finally, the application of the orientation averaging
method allows the strength tensors of the actual elastic–plastic composite to be
determined.

In our elastic–plastic EMTA procedure, the overall stress at the end of each increment is
used to evaluate criterion (23). If the failure criterion is verified for a given integration
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point, the composite stress and stiffness at this point are reduced to zero in a small number
of load steps using a vanishing element technique [5]:

n5K : H
t

failure ¼ H
t
ðf ¼ 1Þ �

nH
t
ðf ¼ 1Þ

K

n � K : H
t

failure ¼ a

ð24Þ

where H
t
ðf ¼ 1Þ is the composite stiffness at the point of failure (f ¼ 1), n is the load step

number starting from the step at which failure occurs, and K is a prescribed value. The
components of a are taken to be very small (�10�8MPa) to represent a vanishing stiffness.
It is necessary that the stiffness and stress reduction to zero occurs progressively in a
number of steps to avoid numerical convergence problems.

Prediction of Fiber Orientation

Predicting flow-induced fiber orientation in short-fiber systems has been carried out
for more than two decades using the Folgar–Tucker model [30]. In this model,
the effects of fiber–fiber interactions, which occur in nondilute fiber suspensions and
whose effect is to reduce the fiber aligment, are captured by an isotropic rotary
diffusion term governed by a scalar interaction coefficient CI. More recently, some
efforts have been made to improve the Folgar–Tucker model for concentrated short-
fiber systems. This has led to the so-called reduced strain closure (RSC) model [2],
which contains an additional empirical coefficient � to reduce the rate of fiber aligment
in a concentrated fiber suspension. An assessment of the RSC model [1] showed that
using a large value of the interaction coefficient CI in the RSC model could give a
correct prediction of the flow-direction orientation A11. However, the thickness-
direction component, A33, was then over-predicted, resulting in the under-prediction of
the cross-flow component A22. Therefore, it was necessary to develop a better fiber
orientation model for LFTs.

Fan et al. [31] and Phan-Thien et al. [32] proposed a fiber orientation model using an
anisotropic rotary diffusion (ARD) term. However, the Phan-Thien/Fan model’s diffusion
term fails to return the fibers to an isotropic orientation at steady state, a necessary
condition of any diffusion model. To correct the Phan-Thien/Fan model, Phelps and
Tucker developed an expression for rotary diffusion that was defined on the surface of the
unit sphere traced by all orientations of the unit orientation vector [26]. The expression for
the ARD model to properly match the LFT fiber orientation data is:

_A ¼ ðW � A� A �WÞ þ �ðD � Aþ A �D� 2 ~A : DÞ

þ _�ð2C� 2ðtrCÞA� 5ðC � Aþ A � CÞ þ 10 ~A : CÞ ð25Þ

whereA and ~A are the second- and fourth-order orientation tensors, respectively. _A¼DA/Dt
with t being the time, W is the vorticity tensor, and D is the rate-of-deformation tensor.
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_� is the scalar magnitude ofD, and � is the particle shape parameter (�¼ 1 for slender fibers).
The rotary diffusion tensor C is constructed from the A and D tensors as:

C ¼ b1Iþ b2Aþ b3A
2
þ b4

D

_�
þ b5

D2

_�2
ð26Þ

where bi (i¼ 1, . . . ,5) are the scalar constants. A systematic method of selecting the bis was
developed in Ref. [26] to ensure stable and valid orientation solutions.

To properly match experimental orientation data, one may also need to slow the
orientation kinetics of a given model. For instance, the RSC model [2] can objectively slow
the orientation kinetics of the Folgar–Tucker model. Treating the ARD model similarly,
the ARD–RSC model is then obtained as [26]:

_A
ARD�RSC

¼ ðW � A� A �WÞ

þ �ðD � Aþ A �D� 2½ ~Aþ ð1� �Þð ~L� ~M : ~AÞ� : DÞ

þ _� 2 C� ð1� �Þ ~M : C
h i

� 2�trC
� �

A

� 5 C � Aþ A � CÞ þ 10 ~Aþ ð1� �Þð ~L� ~M : ~AÞ
h i

: C
� �

ð27Þ

where C is given by Equation (26). ~L and ~M are fourth-order tensors that are defined
by the eigenvalues and eigenvectors of A. � (51) is a scalar parameter that controls the rate
of fiber alignment.

EXPERIMENTAL METHODS AND MATERIALS

Molding Conditions and Material Characterization

This article uses the same material as our previous study [1]. Long-glass-fiber/poly-
propylene compounds were procured from Montsinger Technologies. The molding
compound had a fiber weight fraction of 40%, a nominal fiber length of 13mm, and a
nominal fiber diameter of 17.4mm. Injection molding was carried out for the center-gated
disk and ISO-plaque geometries. The pellets were injected using two different volume flow
rates (16.4 and 131.1 cm3/s) in order to study the effect of the injection speed on the as-
formed composite microstructure. In this article, these flow rates are denoted as slow-fill and
fast-fill, respectively. The density of glass/polypropylene in the melt state is 1.2203 g/cm3.
The weight fraction of glass fibers for both geometries is 40%, corresponding to 19.2% fiber
volume fraction. The center-gated disk is 3mm thick and has a diameter of 177.8mm.
The ISO-plaque is also 3mm thick, and is 90mm long and 80mm wide.

Figures 1 and 2 present the pictures of these injection-molded samples. Three regions were
considered for fiber length and orientation measurements. These are denoted as A, B and C,
and are located at 6, 34, and 64mm from the gate on the center-gated disk, and at 15, 45, and
75mm from the gate on the ISO plaque. A population of 2000 fibers was taken in each
region for fiber length measurement. The FLD measurement method is described in
Ref. [33] and summarized in Ref. [1]. Also, fiber orientation measurement was achieved
using the optical system developed byHine et al. [34]. The discussion onHine et al.’s method
(termed as the Leeds system) and its application to LFTs are provided in Ref. [1].
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C B A

Figure 1. The 3 mm thick injection-molded glass/PP center-gated disk: Regions A, B, and C being 25.4 mm
long along a radial direction were taken for fiber length and orientation measurements.

 

A B C

Figure 2. The 3 mm thick injection-molded ISO-plaque: Regions A, B, and C being 25.4 mm long were taken
for fiber length and orientation measurements.
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Stress–Strain Response Measurement

Tensile specimens were cut from the injection-molded samples for mechanical testing.
For the ISO-plaque geometry, cuts were made out along the plaque’s longitudinal (flow)
and in-plane transverse (cross-flow) directions to remove specimens for the longitudinal
and in-plane transverse stress–strain responses, respectively. The specimens that contain
the sample edge were excluded from testing to avoid edge effects. For the center-gated disk
geometry, the specimen was cut along the radial (flow) direction to obtain the specimens
for determining the longitudinal response, while the in-plane transverse (cross-flow)
response was obtained using a specimen that contains the location B in its central region,
and whose long axis is perpendicular to the radial direction passing through this location.
All specimens are 12.5mm wide and 76mm long. A servo-hydraulic machine applied
tension at constant displacement rate of 0.0254mm/s resulting in a constant strain rate of
3.342E�4/s. Strain was measured with a 12.5mm gauge length extensometer positioned
over the area of interest, while engineering stress was calculated from the load cell signal
and the original cross-sectional area of the specimen.

RESULTS AND DISCUSSION

Fiber Length Distribution Results

Fiber length distributions for the studied samples were measured at the selected locations
A, B, and C (see Figures 1 and 2) using the measurement method described in Ref. [33] and
summarized in Ref. [1]. The raw FLD data was then corrected by the method presented in
Ref. [33] to obtain an unbiased FLD. In Ref. [1] we showed that a two-parameter Weibull’s
distribution can globally well represent the corrected FLD in terms of a PDF for weight
of fibers vs. fiber length, and that using the Weibull distribution to predict elastic moduli
led to practically the same results as the use of the actual FLD. However, the effect of
fiber length on strength of LFTs was not studied in Ref. [1], it is therefore necessary to assess
Weibull’s representation for FLDs in the prediction of the composite’s stress–strain
responses up to failure. Weibull’s probability density function is given by:

pðlÞ ¼
c

b

l

b

� �c�1

e
l
bð Þ

c

ð28Þ

where b and c are shape parameters that can be determined by a method based on the
maximum likelihood technique, presented in Ref. [1]. A close examination of Weibull’s fit
for FLDs in Ref. [1] shows that Weibull’s representation overestimates the weight
contribution of the intermediate fiber length range (�2–3mm) and underestimates the
contribution of longer fibers (44mm). However, these longer fibers improve the overall
strength of the composite, and therefore, it is necessary to use another representation
of the FLD to better capture the long fiber range. To this end, the log-normal distribution
can be used. The log-normal probability density function reads:

pðlÞ ¼
1

ls
ffiffiffiffiffiffi
2�
p exp

ðlnðtÞ � 	Þ2

2s2

� �
ð29Þ
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where l is the fiber length, s is the shape parameter, and 	 is the scale parameter. The two
parameters are determined by using the experimental measurements combined with the
maximum likelihood estimation technique to obtain the relations:

	 ¼

P
i ln lt
N

ð30Þ

s2 ¼

P
i ln li � 	ð Þ

2

N
: ð31Þ

The lengths li span the range of the data, and N is total number of fibers for the whole
range. Figures 3 and 4 present the FLDs for the fast-fill center-gated disk and ISO plaque,
while Figures 5 and 6 show the FLDs for samples molded under slow-fill conditions. These
figures also show the Weibull and log-normal fits, as well as the weight-average fiber
lengths LW, LWeib

W , and Llog�normal
W based on the corrected FLD, Weibull’s fit, and log-

normal fit, respectively. The Weibull distribution globally captures the FLD in terms of
PDF for weight of fibers vs. fiber length, but better fits are obtained with the log-normal
distribution. As expected, the slow injection rate reduces fiber length attrition and thus
conserves longer fibers in the samples, however, when comparing Figures 3–5 and
Figures 4–6, it is found that the injection rate effect is more important for the ISO-plaques.

Fiber Orientation Distribution Results

The ARD–RSC model summarized in the Theory section was implemented in
ORIENT, a finite difference injection mold filling simulation [35], and ORIENT was
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Figure 3. FLDs in terms of probability density function for weight of fibers vs. fiber length for the fast-fill
center-gated disk (Region B).
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Figure 4. FLD in terms of probability density function for weight of fibers vs. fiber length for the fast-fill
ISO-plaque (Region B).
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Figure 5. FLDs in terms of probability density function for weight of fibers vs. fiber length for the slow-fill
center-gated disk (Region B).
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then used to predict fiber orientation in the studied LFT specimens. ORIENT assumes
symmetry about the mid-plane in the thickness direction, and this is reflected in the
orientation predictions: the predicted values of A11, A22, and A33 are all symmetric about
z ¼ 0, while A31 is anti-symmetric about z¼ 0. The finite difference mesh used in ORIENT
consisted of 21 nodes in the thickness direction and 121 nodes in the flow direction. In the
simulations [26], the parameter � in Equation (27) was taken to be 1/30, and parameters bi
(i¼ 1, . . . , 5) were chosen as: b1¼ 7.848� 10�4, b2¼ 2.357� 10�2, b3¼ 1.0� 10�2,
b4¼ 1.168� 10�5, and b5¼�3.0� 10�3.

The orientation predictions are a good fit to all the experimental orientation data for the
LFT glass/PP samples, as shown in Figures 7–10. Compared to the predictions by the RSC
model discussed in Ref. [1], the new orientation model captures the through-thickness
variations of all components of the second-order orientation tensor much more accurately.
Table 5 presents the through-thickness averages of the experimental values of A11 and A22

for all the studied specimens. It is found that the injection rate has very little effect on the
orientation distribution in the center-gated disks.

Prediction of Elastic Properties

The effects of fiber length and orientation on the elastic properties of LFTs were studied
in Ref. [1]. An in-house computer code named ‘EMTA’ was developed that implements
the Eshelby–Mori–Tanaka mean field approach and the fiber orientation averaging
technique (Equations (1)–(5)) to compute the elastic stiffness of a discontinuous fiber
composite. This section applies EMTA to first compute the elastic properties of the
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Figure 6. FLDs in terms of probability density function for weight of fibers vs. fiber length for the slow-fill
ISO-plaque (Region B).
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injection-molded long-glass/PP samples. The elastic moduli and Poisson’s ratios of glass
fibers and of the PP matrix used in the computation are 73 and 1.5GPa, and 0.25 and 0.4,
respectively [1]. The predictions that used fiber orientation distribution (FOD) results
predicted by the ARD model are compared with the solutions based on measured fiber
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Figure 7. Predicted and measured second-order orientation components for the fast-fill center-gated
disk: (a) A11 and A22, (b) A33 and A31.
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orientations and with the experimental results. Tables 1 and 2 give the predicted and
experimental moduli for the fast- and slow-fill center-gated disks while Tables 3 and 4
provide the results for fast- and slow-fill ISO-plaques. The average values of the
experimental moduli for each direction (flow or cross-flow direction) are also provided in
these tables. There are generally good agreements of results for all cases.
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Figure 8. Predicted and measured second-order orientation components for the fast-fill ISO-plaque: (a) A11

and A22, (b) A33 and A31.
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Prediction of Stress–Strain Responses

The developed elastic–plastic and strength prediction model implemented in ABAQUS
was employed to compute the composite stress–strain response using the composite
multilayer shell element of this code. The number of layers considered in the analysis was
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Figure 9. Predicted and measured second-order orientation components for the slow-fill center-gated disk:
(a) A11 and A22, (b) A33 and A31.
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based on the number of through-thickness locations at which fiber orientation data were
determined. For instance, there were 21 equally spaced through-thickness positions taken
for fiber orientation measurement; this then allowed a 21-layer composite shell element
to be defined and used in the analysis that accounted for measured fiber orientation.
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Figure 10. Predicted and measured second-order orientation components for the slow-fill ISO-plaque:
(a) A11 and A22, (b) A33 and A31.
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Table 3. Predicted and experimental overall elastic properties
for the fast-fill ISO-plaque region B.

Predictions
(experimental
FOD and FLD)

Predictions
(predicted FOD and
experimental FLD) Experiments

E11 (MPa) 6017 5908 6063
E22 (MPa) 6935 6951 7211
E33 (MPa) 3070 3044
G12 (MPa) 2046 2110
G13 (MPa) 977 966
G23 (MPa) 1010 986

Table 2. Predicted and experimental overall elastic properties for
the slow-fill center-gated disk region B.

Predictions
(experimental
FOD and FLD)

Predictions
(predicted FOD and
experimental FLD) Experiments

E11 (MPa) 5550 6039 5318
E22 (MPa) 7907 6764 7521
E33 (MPa) 3068 3068
G12 (MPa) 2045 2237
G13 (MPa) 940 977
G23 (MPa) 1014 993

Table 1. Predicted and experimental overall elastic properties
for the fast-fill center-gated disk region B.

Predictions
(experimental FOD

and FLD)

Predictions
(predicted FOD and
experimental FLD) Experiments

E11 (MPa) 5540 5833 5199
E22 (MPa) 7699 6995 7577
E33 (MPa) 3056 3064
G12 (MPa) 2118 2216
G13 (MPa) 950 988
G23 (MPa) 1012 1017

Table 4. Predicted and experimental overall elastic properties
for the slow-fill ISO-plaque region B.

Predictions
(experimental
FOD and FLD)

Predictions
(predicted FOD and
experimental FLD) Experiments

E11 (MPa) 5784 6408 6166
E22 (MPa) 7564 6676 7213
E33 (MPa) 3072 3071
G12 (MPa) 2081 2196
G13 (MPa) 956 977
G23 (MPa) 1018 972
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On the other hand, fiber orientation predictions using 21 nodes through the specimen’s
half-thickness led to a 41-layer composite shell element that was used in the analysis
accounting for predicted fiber orientation.

The parameters of the Ramberg–Osgood relation and the strength data for the PP matrix
are not known.As the stress–strain response of the PPmatrix is different from that of NEAT
PP (because of the difference in microstructure), and it is impossible to directly identify the
stress–strain response of the PP matrix, we have then indirectly identified the PP matrix’s
behavior from the experimental stress–strain responses of the longitudinal glass/PP
specimens cut from a slow-fill ISO-plaque. Initial guesses for the values of the Ramberg–
Osgood coefficients and strength parameters were used in the simulation of the stress–strain
response for these specimens up to failure. Necessary parameter adjustments were carried
out through simulations until the predicted response agrees with the experimental stress–
strain curves. The final values of the parameters for the PP matrix were then identified and
used for all the other specimens removed from disks or plaques. The following values for the
PP matrix in the studied specimens have been identified: Em ¼ 1500MPa, �0 ¼ 8MPa,
n¼ 4, �sm ¼ 14MPa, and �¼ 7MPa. The value of the interfacial strength, � identified is close
to the value used by Thomason for a glass/PP system [36].

The strength of E-glass fibers based on [37] is �f ¼ 3445 MPa. The longitudinal strength
of the UD composite was then determined using Equations (17) and (18) assuming that
��m ¼ �

s
m. In fact, the exact value of ��m is not known and its choice is still subject of debate.

As a first approximation, ��m was taken to be equal to the matrix strength. The strength
parameters of the actual LFT composites were obtained by Equation (22) and the fiber
orientation data presented in Figures 7–10.

It is first necessary to assess the effect of fiber length representation (Weibull’s or Log-
normal distribution) on the composite stress–strain response up to failure. To this end,
probability density functions for weight of fibers vs. fiber length for the region B of a slow-
fill glass/PP ISO-plaque (see Figure 6) were used to predict the stress–strain response of a
longitudinal specimen cut from this plaque. Figure 11 shows the comparison of the
predicted responses with the experimental results. The predicted curves have a steep and
negative slope after the initial failure due to the vanishing element technique used that
quickly relaxes the stress and stiffness at the failure location. The stress is then redistributed
over the adjacent layers around the failure location, and the neighboring regions will in turn
fail. It is clearly seen in Figure 11 that the solution that used the Weibull’s distribution has
under-predicted the specimen strength while the predictions using the measured FLD and
the log-normal distribution are very close to one another and are in better agreement with
the experimental results. These findings are not surprising since the Weibull’s distribution
under-represents the weight contribution of long fibers (44mm) that enhance composite’s
strength. For the validation of the elastic–plastic and strength prediction model, the
corrected measured FLDs were used for all the studied specimens.

Figure 12(a) and (b), respectively show the longitudinal (flow direction) and in-plane
transverse (cross-flow direction) stress–strain responses for the fast-fill center-gated disk.

Table 5. Averaged experimental through-thickness values of A11 and A22.

Fast-Fill disk Slow-Fill disk Fast-Fill plaque Slow-Fill plaque

Average A11 0.3921 0.3835 0.4433 0.4074
Average A22 0.5830 0.5925 0.5278 0.5661
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These figures show that the responses predicted usingmeasured fiber orientationor predicted
fiber orientation by the ARD–RSC model are pretty close to one another. Furthermore,
the correlation of either prediction with the experimental results is better for the in-plane
transverse behavior. This suggests that more progressive damage occurs in the longitudinal
specimens, contributing to the more pronounced nonlinearity displayed by those specimens.
The other reason is due to the fiber orientation effect. The simulation used the FOD data
determined for region B whereas the specimens although contain region B, they also cover
adjacent regions whose FODs can be noticeably different from the FOD at region B.

Figure 13(a) and (b) present the results for the fast-fill ISO plaque. The same
observations as in the previous case apply to this case. However, there is better agreement
between the predicted responses with the experimental curves in the longitudinal direction
of the ISO plaque, compared to the flow direction for the fast-fill center-gated disk. Again,
the more pronounced nonlinearity in the flow direction suggests more contribution of
matrix nonlinear behavior and that more damage is occurring when the specimen is loaded
in this direction. In fact, the fiber orientation distributions in Figures 7 and 8 show that, on
average, the cross-flow A22 component is higher than the A11 component in both the ISO
plaque and the disk. Therefore, the fibers are more aligned in the cross-flow direction than
in the flow direction, leading to a greater portion of the stress carried by the matrix under
flow-direction loading. As a result, greater amounts of plastic deformation and of
progressive damage by matrix cracking and fiber/matrix debonding occur in the flow-
direction specimen, producing a more pronounced nonlinearity in the longitudinal stress–
strain responses.

The results for the slow-fill center-gated disk and ISO-plaque are given in Figure 14(a)
and (b) and Figure 15(a) and (b), respectively. Similar conclusions to the fast-fill cases can be
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Figure 11. The effect of FLD representation on the stress–strain response predicted for a longitudinal
specimen removed from a slow-fill glass/PP ISO-plaque.
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drawn for the slow-fill cases. The current model reasonably well captures the stress–strain
responses in both flow and cross-flow directions; however, it will be necessary to model
progressive damage, in addition to plasticity, in order to better capture the more
pronounced nonlinearity observed in the flow-direction stress–strain responses at the
approach of final failure.
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Figure 12. Predicted and experimental (a) longitudinal and (b) in-plane transverse stress/strain responses for
the fast-fill center-gated disk.
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The strengths predicted for all the slow- and fast-fill cases are given in Tables 6 and 7.
The averaged experimental strength values are also provided in these tables. To have a
good insight of these results, it is necessary to examine the FLDs provided in Figures 3–6,
and Table 1 which gives the thickness-average values of the orientation components
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Figure 13. Predicted and experimental (a) longitudinal and (b) in-plane transverse stress/strain responses for
the fast-fill ISO-plaque.
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A11 and A22 for all the studied samples. Also, it is necessary to examine the actual fiber
orientation distribution in the in-plane transverse specimens removed from ISO-plaques.

First, the experimental slow-fill and fast-fill disk results (Figures 12 and 14) are nearly
identical within the experimental scatter, this is because these samples have practically the
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Figure 14. Predicted and experimental (a) longitudinal and (b) in-plane transverse stress/strain responses for
the slow-fill center-gated disk.
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same fiber length distribution and thickness-average values of A11 and A22. Second, the
average A11 and A22 in the fast-fill and slow-fill ISO-plaques are also nearly identical within
the experimental scatter, however, the slow-fill injection rate has conserved longer fibers, and
this results in the stiffer and stronger slow-fill ISO-plaque (Figure 15 compared to Figure 13).
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Figure 15. Predicted and experimental (a) longitudinal and (b) in-plane transverse stress/strain responses for
the slow-fill ISO-plaque.
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Finally, the strength predictions for longitudinal specimens agree reasonably well with the
experimental results while the strengths predicted for in-plane transverse specimens
removed from plaques are significantly higher than the experimental values. The main cause
of this deviation is due to a fiber orientation effect. The actual in-plane transverse specimens
possess fiber orientation distributions that are more in alignment with the flow
direction around the specimens’ ends (near the grips) due to an edge effect occurring
during injection molding. When these specimens were subjected to tensile loading, the
matrix material was more exposed to loading resulting in early failure initiation of the
specimens in these locations.

CONCLUSIONS

An elastic–plastic model for long-fiber thermoplastic composites has been developed,
using an incremental Eshelby–Mori–Tanaka approach to compute the homogenized
nonlinear stress–strain response. The model considers the elastic–plastic behavior of the
thermoplastic matrix and elastic long fibers, whose length distribution is represented by a
Weibull’s or a log-normal probability density function for weight of fibers vs. fiber length.
In addition, the model accounts for the fiber orientation distribution resulting from the
molding process. The elastic–plastic matrix obeys the Ramberg–Osgood relation and the
J-2 deformation theory of plasticity. The Van Hattum–Bernado failure criterion has been

Table 7. Predicted and experimental flow direction strengths
for the slow-fill glass/PP samples.

Specimen (Slow-fill)

Flow direction
strength (measured fiber

orientation) (MPa)

Flow direction
strength (predicted fiber

orientation) (MPa)
Experiment

(MPa)

Center-gated disk 57.3 53.8 50.1
ISO-plaque 62 60.6 56.7
Specimen (Slow-fill) Cross-flow direction

strength (measured fiber
orientation)

Cross-Flow direction
strength (predicted fiber
orientation)

Experiment

Center-gated disk 96.8 79.9 70.4
ISO-plaque 96.5 84.7 54.3

Table 6. Predicted and experimental flow direction strengths
for the fast-fill glass/PP samples.

Specimen (fast-fill)

Flow direction strength
(measured fiber

orientation) (MPa)

Flow direction
strength (predicted fiber

orientation) (MPa)
Experiment

(MPa)

Center-gated disk 51.3 47.1 50.1
ISO-plaque 56.5 51.3 54.8
Specimen (fast-fill) Cross-flow direction

strength (measured fiber
orientation)

Cross-flow direction
strength (predicted fiber
orientation)

Experiment

Center-gated disk 90.4 75.5 69.8
ISO-plaque 74.4 76.5 50.8
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associated with the elastic–plastic model to predict strength of LFTs. The entire model has
been implemented in the ABAQUS finite element code by means of user subroutines, and
a multi-layer shell element has been used in the analysis of LFT glass/PP specimens
subjected to tensile loading. Fiber orientation and fiber length distributions were measured
for all the studied specimens. In addition, fiber orientations were also predicted using the
newly developed ARD–RSC model. The following important conclusions are drawn
from our study:

. Good prediction of fiber orientation by the ARD–RSC model allows more accurate
predictions of the stress–strain response of LFTs. The predicted stress–strain responses
using predicted fiber orientations are close to the predicted curves based on measured
orientations.

. Weibull’s probability density function for weight of fibers vs. fiber length can
sufficiently represent fiber length distribution for use only in the computation of elastic
properties. However, it fairly represents the FLD for use in strength prediction as
it under-represents the contribution of long fibers (44mm) that enhance the overall
strength of the composite. The log-normal distribution is more appropriate to represent
FLDs for strength prediction.

. The nonlinear stress–strain responses of the studied glass/PP specimens are mainly due
to the nonlinear stress–strain behavior of the matrix PP.

. The Van Hattum–Bernado model can reasonably well predict the strengths of LFTs.
Associating this model with the present elastic–plastic model for LFTs is a first step to
predict the strengths of these materials. Nevertheless, as the failure criterion ignores any
damage processes, it cannot predict strength to a high level of accuracy.

. Finally, it will be necessary to model progressive damage to better capture the
nonlinear stress–strain response up to failure in order to predict composite’s strength
more accurately.
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