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In this paper, we propose a new method for calculating the stiffness tensor for a composite material con-
taining curved discontinuous fibers. We introduce a new concept of configuration for a single curved fiber
defined by five dimensionless parameters. An ensemble of curved fibers within a composite material is
then described by a configuration probability density function. The proposed stiffness tensor requires
three tensors of fourth-order describing the material microstructure and a set of elastic constants. We
introduce the concept of configuration averaging and present an analytical method for estimating elastic
constants for materials containing curved fibers. We demonstrate that for materials containing only
straight fibers, fiber configuration and configuration averaging reduces to standard fiber orientation
and orientation averaging. Comparison of stiffness measurements using X-ray digital image correlation
against the stiffness calculated with fiber geometry obtained by X-ray tomography shows that accounting
for fiber curvature provides better estimate of stiffness.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Discontinuous fiber reinforced composites (DFCs) are materials
in which the fibers act as structural reinforcements and their
aspect ratios, defined as fiber length divided by fiber diameter,
influence the resulting material properties. Examples of traditional
production processes for DFCs are injection molding, compression
molding, and spray-up. However, this work can be applied equally
well to metal matrix composites and bio-composites. The work
presented below assumes linear elastic matrix properties, there-
fore applications should focus on materials obeying this assump-
tion until extentions of the method are introduced to remove
this restriction. The objective of this work was to develop an
improved description of microstructure of DFCs that accounts for
curved fibers and to develop a method for obtaining the stiffness
tensor of the composite. Since material stiffness is a common
design driver, this work also provides a practical design tool.

In developing this work, we acknowledge that virtually any
microstructure can be explicitely modeled using numerical tech-
niques such the finite element method (FEM) [1,2]. However, an
obvious disadvantage of this approach is the need to generate a
large, statistically significant number of representative volumes
for quasi-random architectures and to subsequently perform
analyses on all of them in order to obtain the statistics of the
resulting response. Modeling of realistic DFCs using such an
approach would require prohibitive computer resources and time.

An alternative modeling approach is to use statistical measures
and homogenization methods for describing the fiber and matrix
microstructure in the representative volumes of the composite.
These measures and methods are largely driven by the nature of
the subsequent analysis. The microstructure measures commonly
used for composite stiffness prediction are fiber volume fraction,
fiber length distribution (FLD), and fiber orientation distribution
(FOD). Fiber volume fraction is a single parameter describing an
average content of fiber and matrix material within the composite.
FLD and FOD are functions describing an ensemble of fibers, repre-
sented as straight cylinders. Measurement techniques and results
for traditional flow molded DFCs are discussed for example in
[3–5] for FLD, [6,7] for FOD and standards [8,9] covering fiber vol-
ume fraction.

The orientation of a single straight fiber is described by an ori-
entation vector. The probability density function (PDF) describing
the orientation for an ensemble of fibers can be represented by a
set of even order orientation tensors as described in [10]. Using a
fourth order orientation tensor and the micromechanics-based
material stiffness coefficients, Advani and Tucker [10] obtain the
stiffness tensor using orientation averaging of transversely isotro-
pic stiffness tensor.

In this work, we extend the work of Advani and Tucker for com-
posites containing straight fibers with arbitrary orientation [10] to
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composites containing assemblies of curved fibers. The resulting
stiffness tensor is anisotropic. This extension is motivated by
experimental observations such as that shown in Fig. 1.

In order to systematically account for the effect of fiber curva-
ture on the composite properties, we introduce a new concept of
fiber configuration and a PDF for the configuration of the ensemble
of fibers. We then introduce a method of configuration averaging of
the orthotropic stiffness tensor that results in a stiffness tensor
containing 21 distinct components. To obtain numerical values of
the material constants for the orthotropic stiffness tensor, we use
the Halpin-Tsai equations [11] along with orientation averaging
(although these constants could be generated by other methods).
Finally, we demonstrate the developed method with examples.

2. Description of microstructure

2.1. Configuration of single fiber

The first step in our approach is to introduce the configuration
description for a single curved fiber. We define a fiber coordinate
system f = (p, q, s) as a Cartesian coordinate system defined by
orthonormal vectors p, q, and s. We assume a straight cylindrical
fiber of length L and diameter d and place it so that the center of
gravity of the fiber coincides with the origin of the fiber coordinate
system and the fiber centerline is parallel to p as shown in Fig. 2.

The fiber configuration is then defined by a single dimension-
less parameter n ¼ L

d and orientation vector (1,0,0) in coordinate
system f.

Four successive geometry transformations will result in a
curved fiber in a general configuration with respect to a laboratory
coordinate system. These operations consist of first changing the
fiber from a straight to a curved shape and then rotating it using
three Euler angles. We then change the shape of the fiber so that
the oriented curvature q is given by q ¼ 1

R q, where R is the radius
of curvature. This is equivalent to describing a section of a toroid in
cylindrical coordinates ðr;u;�zÞ with cylindrical coordinate system
origin at Rq, �z axis aligned with s and u measured from �x in a
mathematically positive sense as shown in Fig. 2, right.

We assume that the fiber length and diameter remain the same,
and the vector p remains tangent to the fiber centerline at its cen-
ter. This fiber configuration is given by two dimensionless param-
eters, n ¼ L

d and g ¼ L
R. We further assume that the fiber coordinates

fi are initially aligned with the laboratory coordinates xi and per-
form three successive rotations through three Euler angles: rota-
tion around s by a, rotation around q by b, and rotation around p
by c in mathematically positive sense. These operations are
described by

fl ¼ Rx
klR

y
jkRz

ijxi i; j; k; l ¼ 1;2;3 ð1Þ

In (1) and all subsequent equations in this document, summa-
tion takes place over repeated indices unless otherwise noted.
The direction cosines in (1) are given by
Fig. 1. Injection molded composite containing glass fibers. Left: Polished cross-section –
are highlighted. Right: Entangled mass of curved fibers after matrix burn-off.
Rx
kl ¼

1 0 0
0 cos c sin c
0 � sin c cos c

24 35; Ry
jk ¼

cos b 0 sin b
0 1 0

� sin b 0 cos b

24 35;
Rz

ij ¼
cos a sin a 0
� sin a cos a 0

0 0 1

24 35 ð2Þ

We may obtain a unique description of a curved fiber in any
configuration by placing the following limits on the rotations:

0 � a < 2p; �p
2
� b <

p
2

; 0 � c < 2p ð3Þ

Therefore, the configuration of a curved fiber can be described
by five dimensionless parameters n, g, a, b, c as illustrated in
Fig. 3. Parameters n, g describe the shape of the curved fiber, while
the three angles a, b, c allow for arbitrary rotation of this shape
with respect to the laboratory coordinates.

Note that the limiting case of a straight fiber (g = 0) reduces to
the coordinate system of Advani-Tucker [10] (with spherical coor-
dinate angles / = a, h ¼ p

2 � b) where c can be selected arbitrarily
without affecting the configuration state. The components of the
orientation vector p and the curvature vector q are:

p1 ¼ cos a cos b ¼ cos / sin h; p2 ¼ sin a cos b ¼ sin / sin h;

p3 ¼ sin b ¼ cos h ð4Þ
q1 ¼ � sina cos c� cos a sin b sin c;

q2 ¼ cos a cos c� sin a sin b sin c; q3 ¼ cos b sin c ð5Þ

The configuration of a straight fiber is described by three
parameters, namely the aspect ratio n ¼ L

d and two angles defining
the orientation of fiber vector p. Eq. (4) gives the orientation vector
components with Euler angles a, b as well as with standard
spherical coordinate angles /, h to allow for easy comparison with
previously published work [10]. The description of configuration
for a curved fiber requires one additional shape parameter and
one additional angle. The shape parameter g ¼ L

R provides the
magnitude of curvature, while the angle c provides the direction
of the curvature vector q, which is by definition perpendicular to
the orientation vector p.

2.2. Configuration distribution function for an ensemble of fibers

We now define the configuration distribution function for an
ensemble of fibers wC(a, b, c, n, g) as the probability density func-
tion of finding a fiber with configuration given by angles and
parameters a, b, c, n, g in the intervals:

Pða1 � a � a1 þ da1;b1 � b � b1 þ db1; c1 � c � c1 þ dc1; n1

� n � þn1 þ dn1;g1 � g � þg1 þ dg1Þ
¼ wða1; b1; c1; n1;g1Þ cos b1 dadbdcdndg ð6Þ

The configuration distribution function w is normalized as:Z 1

g¼0

Z 1

n¼0

Z 2p

c¼0

Z p=2

b¼�p=2

Z 2p

a¼0
wCða;b; c; n;gÞ cos b dadbdcdndg ¼ 1

ð7Þ
three cross-sections whose deviation from elliptical shape indicates fiber curvature



Fig. 2. Left: Straight cylindrical fiber with coordinate system f = (p, q, s). Right: Bent fiber with curvature radius R.

Fig. 3. Curved fiber with coordinate system f = (p, q, s), defined by Euler angles a, b,
c. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Material with fibers in single configuration.
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Assuming the independence of fiber shape and rotation, w may
be separated into two parts

wCða; b; c; n;gÞ ¼ wRða;b; cÞwSðn;gÞ ð8Þ

where the rotation of fiber coordinate system with respect to labo-
ratory system given by three angles a, b, c and the shape of a fiber
given by parameters n, g are independent for an arbitrary configura-
tion. We place the following normalization conditions on the rota-
tion distribution function wR and the shape distribution function wSZ 2p

c¼0

Z p=2

b¼�p=2

Z 2p

a¼0
wRða;b; cÞ cos b dadbdc ¼ 1;Z 1

g¼0

Z 1

n¼0
wSðn;gÞdndg ¼ 1 ð9Þ

Upon integration of wR over all possible angles c, the fiber ori-
entation distribution function is:

wða;bÞ ¼
Z 2p

c¼0
wRða; b; cÞdc ð10Þ

The properties of w were explored in detail by Advani and
Tucker [10].

2.3. Stiffness tensor

In this section, we use the concept of fiber configuration to
establish the components of the anisotropic stiffness tensor Cijkl
for an ensemble of fibers in an arbitrary configuration. The general-
ized Hooke’s law is given by

rij ¼ Cijklekl i; j; k; l ¼ 1;2;3 ð11Þ

where rij and ekl are the components of symmetric second rank
stress and strain tensors respectively. Assuming the existence of a
strain energy density function and the symmetry of the stress and
strain tensors, we note the following (standard) symmetry of the
stiffness tensor

Cijkl ¼ Cjikl ¼ Cklij ¼ Cijlk i; j; k; l ¼ 1;2;3 ð12Þ

which reduces the number of distinct components in Cijkl from 81 to
21. In the following sections, our focus is on deriving these 21 com-
ponents of Cijkl for any material with its microstructure described by
Eq. (8).

2.4. Orthotropic stiffness tensor for a material with fibers in a single
configuration

We now consider a material consisting of an ensemble of uni-
formly dispersed fibers of a single configuration within a matrix
with no interactions between the fibers as illustrated in Fig. 4.

For the material illustrated in Fig. 4, a single fiber and surround-
ing matrix shown in Fig. 3 constitutes a representative volume. We
can inspect Fig. 3 and conclude that there exists geometrical sym-
metry with respect to a plane with normal p and to a plane with
normal s. Since our idealized material consists of fibers in a single
configuration, the resulting material will also have two material
planes of symmetry. We can write two transformations under
which a stiffness tensor remains invariant

RijðpÞ ¼ dij � pipj and RijðsÞ ¼ dij � sisj i; j ¼ 1;2;3 ð13Þ

Vectors p and s are normal; this was shown to imply a third
material plane of symmetry [12] and result in orthotropic material
stiffness tensor eCijkl with nine material constants
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eC ijkl¼lðdikdjlþdildjkÞþkdijdklþjp2ðpipjdklþdijpkplÞ
þjq2ðqiqjdklþdijqkqlÞþ2l1ðdikpjplþdilpjpkþdjlpipkþdjkpiplÞ
þ2l2ðdikqjqlþdilqjqkþdjlqiqkþdjkqiqlÞþjp4pipjpkpl

þjq4qiqjqkqlþjs4ðpipjqkqlþqiqjpkplÞ i; j;k; l¼1;2;3 ð14Þ

This form of orthotropic stiffness tensor can be found for exam-
ple in [13] and [14]. Spencer [14] also suggested that the vectors p
and q may vary point to point for a material containing curved
fibers. We extend this idea by introducing the concept of configu-
ration averaging in a representative volume.

2.5. Configuration averaging for a material with an arbitrary fiber
configuration

We now perform configuration averaging to obtain the stiffness
tensor for material containing fibers described by a configuration
distribution function w. This procedure is analogous to orientation
averaging. We define the configuration average of the stiffness ten-
sor as

hCijkliC ¼
Z 1

g¼0

Z 1

n¼0

Z 2p

c¼0

Z p=2

b¼�p=2

Z 2p

a¼0

eCijklwCða;b; c; n;gÞ

� cos b dadbdcdndg i; j; k; l ¼ 1;2;3 ð15Þ

where we use hic brackets to indicate configuration averaging.
Substituting Eqs. (14) into (15) results in the most general form of
a stiffness tensor for material containing curved fibers. We now
use the standard separation of variables in Eq. (8) to describe inde-
pendence of fiber shape and its rotation with respect to the labora-
tory system. This allows us to simplify configuration averaging (15)
by separating rotation averaging and shape averaging as discussed
below.

The material constants in Eq. (14) are independent of the orien-
tation of the fiber coordinate system with respect to laboratory
system. However, they depend on parameters n and g for a partic-
ular configuration. Therefore for any of the material constants k
(with units of Pa) of Eq. (14)k = k(n, g).

Since the orientation vector p for any configuration is obtained
by two rotations through angles a, b and the curvature vector q is
then obtained by additional rotation around orientation vector p
through angle c, we can write

p ¼ pða; bÞ; q ¼ qða;b; cÞ ð16Þ

Performing the requisite integration, Eq. (15) becomes

hCijkliC ¼ �lðdikdjl þ dildjkÞ þ �kdijdkl þ jp2ðaijdkl þ dijaklÞ
þ jq2ðbijdkl þ dijbklÞ þ 2l1ðdikajl þ dilajk þ djlaik þ djkailÞ
þ 2l2ðdikbjl þ dilbjk þ djlbik þ djkbilÞ þ jp4aijkl þ jq4bijkl

þ js4ðcijkl þ cklijÞ i; j; k; l ¼ 1;2;3 ð17Þ

where

�k ¼ hkiS ¼
Z 1

n¼0

Z 1

g¼0
kðn;gÞwSðn;gÞ dndg ½Pa� ð18Þ

with k representing any of the material constants in (17) and hiS
brackets denoting shape averaging. We use hiR brackets for rotation
averaging and standard definition of single brackets hi indicating
orientation averaging to define aij and bij as second order orienta-
tion and curvature tensors respectively:

aij ¼ hpipji¼
Z p=2

b¼�p=2

Z 2p

a¼0
pipjwða;bÞcosb dadb i; j¼1;2;3 ð19Þ

bij ¼hqiqjiR ¼
Z 2p

c¼0

Z p=2

b¼�p=2

Z 2p

a¼0
qiqjwR a;b;cð Þcosb dadbdc i; j¼1;2;3 ð20Þ
Similarly, we define aijkl, bijkl and cijkl as fourth order orientation,
curvature and mixed tensors:

aijkl ¼ hpipjpkpli; bijkl ¼ hqiqjqkqliR; cijkl

¼ hpipjqkqliR i; j; k; l ¼ 1;2;3 ð21Þ
We have therefore defined all the terms in Eq. (17) that allow us to
obtain the form of a stiffness tensor for a material containing curved
fibers in an arbitrary configuration. The remaining task is to find
nine constants for a material containing curved fibers in a single
configuration. Before doing this, however, we explore the properties
of the geometric configuration tensors and the character of the
resulting material anisotropy.

2.6. Properties of geometric configuration tensors

In this section, we investigate properties of the second and
fourth order orientation tensors aij and aijkl, the second and fourth
order curvature tensors bij and bijkl, and the mixed tensor cijkl. In the
absence of fiber curvature, definitions of aij and aijkl given in Eqs.
(19) and (20) reduce to definitions identical to those provided by
Advani and Tucker [10]. Correspondingly, all of the equations
above reduce to previously developed theories. The orientation
tensors are fully symmetric:

aij ¼ aji and aijkl ¼ ajikl ¼ akijl ¼ alijk ¼ aklij; etc: ð22Þ

with information about second order tensor being contained within
fourth order tensor and the trace of the second order tensor reduc-
ing to unity, i.e.:

aijkk ¼ aij; aii ¼ 1 ð23Þ

We can write identical expressions for fully symmetric curva-
ture tensors bij and bijkl. Full symmetry for fourth-order tensors
implies 15 distinct components.

The mixed tensor is not completely symmetric. However, it is
symmetric with respect to the first pair and last pair of indexes.
cijkl ¼ cijlk ¼ cjilk ð24Þ
Thus, there are 36 unique components in cijkl. Eq. (14) imposes addi-
tional symmetry:

sijkl ¼ ðcijkl þ cklijÞ ¼ hpipjqkql þ pkplqiqjiR i; j; k; l ¼ 1;2;3 ð25Þ
The tensor sijkl has the same symmetry as the elastic tensor and

has 21 distinct components. We can therefore conclude that the
stiffness tensor produced using configuration averaging contains
the base tensor with 21 distinct components, while the stiffness
tensor constructed via standard orientation averaging would con-
tain a base tensor with only 15 distinct components corresponding
to the full symmetry of aijkl.

2.7. Obtaining material parameters for a material in a single
configuration

We now describe a procedure for obtaining the material param-
eters in Eq. (17). If a material contains fibers in a limited range of
configurations, these constants could be obtained experimentally.
However, such an empirical approach would be impractical for
realistic DFCs. Alternatively, one could perform a large number of
numerical simulations to obtain the constants.

We propose an approach based on orientation averaging and
semi-empirical Halpin-Kardos [11] equations. Regarding a curved
fiber in an arbitrary configuration as an assembly of segments of
straight fibers, we can assign an orientation tensor to any given
segment. We will first define a planar orientation tensor for a bent
fiber with shape given by n, g in fiber coordinate system f = (p,q,s),
and subsequently rotate the result to obtain the solution for arbi-
trary configuration. From Fig. 5, we note that / = u and h ¼ p

2 for
a segment of bent fiber with orientation given by vector ~p.



Table 1
Fiber and matrix properties from Ref. [1].

Ef [Pa]([psi]) mf Em [Pa]([psi]) mm Vf n

7.24 � 1010 (10.5 � 106) 0.2 3.45 � 109 (0.5 � 106) 0.35 0.2 100
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The probability of finding a segment with given orientation is
given by

~wð/Þ ¼
1
pg for / 2< � g

2 ;
g
2 >

0 elswhere

(
ð26Þ

Components of orientation tensors ~aij and ~aij representing the
segments of bent fiber can be calculated from definition given in
Eq. (19) and (20).

~a1111 ¼
3gþ ð4þ cos gÞ sin g

8g
; ~a2222

¼ 3gþ ð�4þ cos gÞ sing
8g

; ~a1122 ¼ ~a2211 ¼ ~a1212 ¼ ~a2112

¼ ~a2121 ¼ ~a1221 ¼
g� sin g cos g

8g
ð27Þ

with all other components reducing to zero. We now use planar ori-
entation averaging over the transversely isotropic stiffness tensor

h�Cijkli ¼ lsðdikdjl þ dildjkÞ þ ksðdijdklÞ þ 12ð~aijdkl þ ~akldijÞ þ ðl0

� lsÞð~aikdjl þ ~aildjk þ ~ajldik þ ~ajkdilÞ þ 14~aijkli; j; k; l

¼ 1;2;3 ð28Þ

where ls, ks, l0, 12; 14 are material constants for straight fibers
obtained from the Halpin-Kardos [11] equations and the following
relations:

l ¼ G23; l0 ¼ G12; k ¼ �E1E2G23

E1E2 � 4E1G23 þ 4E2G23m2
12

� G23;

12 ¼ G23 þ
E1E2G23ð1� 2m12Þ

E1E2 � 4E1G23 þ 4E2G23m2
12

; ð29Þ

14 ¼ G23 � 4G12 þ
E1

2ðE2 � 4G23Þ þ E1E2G23ð4m12 � 1Þ
E1E2 � 4E1G23 þ 4E2G23m2

12

The orientation averaging in Eq. (28) results in an orthotropic
stiffness tensor. Consequently, we can obtain nine material con-
stants in Eq. (14) for a material containing curved fibers:

l ¼ ls � 14~a1122; k ¼ ks þ 214~a1122; jp2

¼ 12~a11 � 2~a112214;jq2 ¼ 12~a22 � 2~a112214;l1

¼ 1
2
ððl0 � lsÞ~a11 þ 2~a112214Þ;l2

¼ 1
2
ððl0 � lsÞ~a22 þ 2~a112214Þ;j4 ¼ ~a111114;jq4

¼ ~a222214; js4 ¼ 3~a112214 ð30Þ
Fig. 5. Orientation vector ~p fo
For straight fiber with g ? 0, the limiting process reduces an
orthotropic material with nine material constants to a transversely
isotropic material with five material constants as expected: l = ls,
k ¼ ks;jp2 ¼ 12;jp4 ¼ 14;l1 ¼ 1

2 ðl0 � lsÞ;l2 ¼ jq2 ¼ jq4 ¼ js4 ¼ 0.
It should be noted that there are many other approaches for

obtaining material constants which may result in better predic-
tions of material properties.

3. Examples

To illustrate the proposed approach, we will follow our deriva-
tion in reverse. In Table 1, we use numerical values for fiber and
matrix properties given in an appendix of Ref. [10].

To generate material constants for a material with fibers in sin-
gle configuration, we use the Halpin-Kardos [11] equations and
Eqs. (29) and (30). Fig. 6 shows material constants in Eq. (17) as
a function of curvature g for a material in with fibers single
configuration.

Note that straight fibers and fibers forming half of a circle have
five distinct material constants corresponding to a transversely iso-
tropic material. The constants that will be used in later are given in
Table 2.

To provide a tool for better understanding of the influence of
fiber curvature on material properties, we can use the transforma-
tions listed in [13] to generate three Young’s moduli Ep, Eq, Es, shear
moduli Gpq, Gps, Gqs and Poisson’s ratio mpq, mps, mqs with subscripts
indicating directions in the fiber coordinate system as shown in
Fig. 7.

All of the results above are obtained through orientation aver-
aging of the transversely isotropic stiffness tensor and represent
a material with fibers in a single configuration.

To demonstrate the concept of configuration averaging, we cal-
culate geometric tensors for a material with fibers in a finite set of
configurations from the following definition:

aijkl ¼
XN

K¼1

!K
pipjpkpl

Z
; bijkl ¼

XN

K¼1

!K
qiqjqkql

Z
; sijkl

¼
XN

K¼1

!K
pipjqkql þ qiqjpkpl

Z
i; j; k; l ¼ 1;2;3 ð31Þ
r a segment of bent fiber.



Fig. 6. Material constants as a function of curvature g for a material in with fibers
single configuration having aspect ratio n = 100 and constituent properties listed in
Table 1.
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where Z ¼
PN

L¼1!L cos BL and vectors p = p(AK, BK), q = q(AK, BK, CK)
are calculated directly from (4) and (5). !K indicates the fraction
of fibers in given configuration. The second order-tensors can be
obtained through contraction.

We consider a hypothetical material consisting of an ensemble
of three fibers (N = 3) with the geometric configuration parameters
listed in Table 3.

Using standard representation of symmetric fourth order tensor
with symmetry given in Eq. (12) as 6 � 6 matrix, the configuration
given in Table 1 results in the following geometric tensors:
að4Þ ¼

7:85� 10�1 6:07� 10�3 1:32� 10�2 8:44� 10�3 4:07� 10�2 3:92� 10�2

6:07� 10�3 7:08� 10�3 2:82� 10�2 1:41� 10�2 8:5� 10�3 4:43� 10�3

1:32� 10�2 2:82� 10�2 1:13� 10�1 5:64� 10�2 3:29� 10�2 1:66� 10�2

8:44� 10�3 1:41� 10�2 5:64� 10�2 2:82� 10�2 1:66� 10�2 8:5� 10�3

4:07� 10�2 8:5� 10�3 3:29� 10�2 1:66� 10�2 1:32� 10�2 8:44� 10�3

3:92� 10�2 4:43� 10�3 1:66� 10�2 8:5� 10�3 8:44� 10�3 6:07� 10�3

26666666664

37777777775
ð32Þ

bð4Þ ¼

8:55� 10�2 2:54� 10�2 2:46� 10�2 �2:22� 10�2 �4:58� 10�2 4:17� 10�2

2:54� 10�2 7:88� 10�1 9:71� 10�3 3:22� 10�2 �1:53� 10�2 �3:11� 10�2

2:46� 10�2 9:71� 10�3 7:08� 10�3 �6:13� 10�3 �1:32� 10�2 1:17� 10�2

�2:22� 10�2 3:22� 10�2 �6:13� 10�3 9:71� 10�3 1:17� 10�2 �1:53� 10�2

�4:58� 10�2 �1:53� 10�2 �1:32� 10�2 1:17� 10�2 2:46� 10�2 �2:22� 10�2

4:17� 10�2 �3:11� 10�2 1:17� 10�2 �1:53� 10�2 �2:22� 10�2 2:54� 10�2

26666666664

37777777775
ð33Þ

sð4Þ ¼

2:53� 10�2 8:1� 10�1 1:04� 10�1 8:47� 10�2 2:03� 10�2 �2:28� 10�2

8:1� 10�1 1:94� 10�2 3:48� 10�2 9:59� 10�3 3:16� 10�2 5:29� 10�2

1:04� 10�1 3:48� 10�2 5:64� 10�2 �1:15� 10�2 �4:41� 10�2 5:25� 10�2

8:47� 10�2 9:59� 10�3 �1:15� 10�2 �2:53� 10�2 �3:01� 10�2 2:38� 10�2

2:03� 10�2 3:16� 10�2 �4:41� 10�2 �3:01� 10�2 �3:12� 10�2 1:91� 10�3

�2:28� 10�2 5:29� 10�2 5:25� 10�2 2:38� 10�2 1:91� 10�3 5:84� 10�3

26666666664

37777777775
ð34Þ
The reader may readily verify that Eq. (23) hold and note that
the mixed tensor contains 21 distinct constants. We consider two
cases of fiber shapes. In our first hypothetical material, all three
of our fibers are straight (g = 0) with aspect ratio n = 100, while
in the second material, the fibers are curved with g ¼ p

4. Shape
averaging of identically shaped fibers will result in constants listed
in nine material constants listed in Table 2. We can now use these
constants with geometric tensors listed in Eqs. (32)–(34) in Eq. (17)
to assemble stiffness tensors. For the material with straight fibers:

C¼

1:7�1010 4:56�109 4:57�109 5:24�107 4:28�108 4:25�108

4:56�109 8:73�109 5:22�109 1:12�108 5:12�107 9:61�106

4:57�109 5:22�109 9:84�109 6:18�108 3:35�108 1:62�108

5:24�107 1:12�108 6:18�108 2:18�109 1:96�108 9:75�107

4:28�108 5:12�107 3:35�108 1:96�108 1:96�109 9:69�107

4:25�108 9:61�106 1:62�108 9:75�107 9:69�107 1:88�109

26666666664

37777777775
ð35Þ

and for the material with curved fibers:

C¼

1:61�1010 4:99�109 4:6�109 9:2�107 4:18�108 3:47�108

4:99�109 8:74�109 5:16�109 1:16�108 8:86�107 9:06�107

4:6�109 5:16�109 9:81�109 5:38�108 2:3�108 1:41�108

9:2�107 1:16�108 5:38�108 2:14�109 1:74�108 1:31�108

4:18�108 8:86�107 2:3�108 1:74�108 1:97�109 1:34�108

3:47�108 9:06�107 1:41�108 1:31�108 1:34�108 2:32�109

26666666664

37777777775
ð36Þ

It is apparent that for the material containing straight fibers,
configuration averaging recovers the results of orientation averag-
ing and results in a stiffness tensor with 15 distinct constants for
aijkl. Configuration averaging of curved fibers generally gives a stiff-
ness tensor with 21 distinct constants corresponding to anisotropy
of sijkl. Our particular method for obtaining material constants
through orientation averaging of fibers with identical length is
equivalent with segmental orientation averaging, however modi-
fied methods will result in stiffness tensor with symmetry given
in Eq. (12).



Table 2
Orthotropic material constants for a material with curved fibers in single configuration given by shape parameters n = 100 for straight fiber g = 0 and curved fiber with g ¼ p

4.

g l (Pa) k (Pa) jp2 (Pa) jq2 (Pa) l1 (Pa) l2 (Pa) jp4 (Pa) jq4 (Pa) js4 (Pa)

0 1.85 � 109 5.00 � 109 �6.17 � 108 0 �5.28 � 107 0 1.20 � 1010 0 0
p
4 1.31 � 109 6.09 � 109 �1.67 � 108 �1.12 � 109 2.22 � 108 2.69 � 108 1.08 � 1010 5.29 � 107 1.63 � 109

Fig. 7. Engineering constants as a function of curvature g for a material in with
fibers single configuration having aspect ratio n = 100 and constituent properties
listed in Table 1.

Table 3
Geometric configuration parameters for three fibers.

AK BK CK !K

Fiber 1 (K = 1) 0 0 0 1/3
Fiber 2 (K = 2) p/32 p/32 p/32 1/3
Fiber 3 (K = 3) p/3 p/3 p/3 1/3
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Now we consider a material in which the fiber rotation is
perfectly random over the entire range of angles a, b and c. This
distribution is represented by a constant function

wRða; b; cÞ ¼
1

8p2 ; ah2 0;2pi;b 2 �p
2
;
p
2

D E
; ch2 0;2pi ð37Þ

And with the help of symbolic equation solver [15], the geomet-
ric tensors can be obtained analytically by performing integration
as outlined in Eqs. (19)–(21).

að4Þ ¼

1
5

1
15

1
15 0 0 0

1
15

1
5

1
15 0 0 0

1
15

1
15

1
5 0 0 0

0 0 0 1
15 0 0

0 0 0 0 1
15 0

0 0 0 0 0 1
15

26666666664

37777777775
ð38Þ

bð4Þ ¼

1
5

1
15

1
15 0 0 0

1
15

1
5

1
15 0 0 0

1
15

1
15

1
5 0 0 0

0 0 0 1
15 0 0

0 0 0 0 1
15 0

0 0 0 0 0 1
15

26666666664

37777777775
ð39Þ
sð4Þ ¼

2
15

4
15

4
15 0 0 0

4
15

2
15

4
15 0 0 0

4
15

4
15

2
15 0 0 0

0 0 0 � 1
15 0 0

0 0 0 0 � 1
15 0

0 0 0 0 0 � 1
15

26666666664

37777777775
ð40Þ

The reader may verify that changing the magnitude of fiber cur-
vature does not influence the resulting stiffness tensor with mate-
rial constants as calculated above. For example, both sets of
constants in Table 2 result in the same stiffness tensor:

C¼

1:06�1010 5:39�109 5:39�109 0 0 0
5:39�109 1:06�1010 5:39�109 0 0 0
5:39�109 5:39�109 1:06�1010 0 0 0

0 0 0 2:61�109 0 0
0 0 0 0 2:61�109 0
0 0 0 0 0 2:61�109

26666666664

37777777775
ð41Þ

Our particular method of obtaining orthotropic material con-
stants by orientation averaging of transversely isotropic stiffness
tensor only accounts for changing orientation along the axis of
the curved fiber and ensures that we obtain identical stiffness
tensors regardless of fiber curvature. In general, the method of
configuration averaging would result in different stiffness tensors
for varying fiber curvature, however the form of the stiffness tensor
would not change. It is clear that this material is isotropic with
Young’s modulus E = 6.99 � 109 Pa and Poisson’s ratio m = 3.37 �
10�1.

We have therefore established that changing the magnitude of
fiber curvature in a material with fibers in a single configuration
has significant influence on the stiffness tensor, while perfectly
random fiber architecture negates the effects of fiber curvature.
4. Comparison with experiments

Now we compare results of our method to against a realistic
material produced with a common production technique. A poly-
amide 6,6 (PA6,6) material containing 50% of glass fibers by
weight in the form of 12 mm long pulltruded pellets was injection
molded into an edge-gated plaque cavity of 600 mm � 600 mm
and 2.8 mm thickness. The physical samples used in this study
were harvested from the centers of these plaques. Fig. 8 shows
weight-based fiber length distribution in the sample obtained by
pyrolysis and measurements of a digitized image of 2000 individ-
ual glass filaments [5].

A nominal diameter of 15 lm was measured for glass fibers in
these samples using optical microscopy.

Experiments were performed using an X-ray micro-tomography
unit with a tensile testing machine [16]. This setup allows us to
perform tomography at the beginning of the experiment and
obtain fiber orientation as well as fiber curvature measurements.
After reconstructing the sample cross-section slices with a Feldk-
amp’s cone beam convolution-backprojection algorithm [17], the
fibers appear as bright circular features in each slice. A Hough
Transform [18] is used to detect the circular fibers at each slice
and the recursive nearest neighbor algorithm searches the sample
volume to connect each fiber through neighbor slices. Note that



Fig. 8. Weight-based experimentally measured fiber length distribution.

Fig. 9. Histogram of fiber curvature radius measured using X-ray micro-
tomography.

Fig. 10. Stress–strain curves from digital image correlation.

Table 4
Zero strain tangential Young’s moduli from digital image correlation of X-ray images
of loaded samples.

Sample 1 Sample 2 Sample 3 Average

E (GPa) 8.88 5.84 8.09 7.61
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cross-section images needs to be generated for all the major axes
(i.e., x, y, z axes) in order to segment fibers in all directions. Finally,
a segmented fiber is represented as points in 3D space. To deter-
mine the orientation of the fiber, the points eignevectors and
eignevalues provide the direction and the magnitude of the point
spread, respectively. Consequently, the first and second largest
latent vectors give the orientation of the fiber. Although by empir-
ical observation of the processed samples 45 point samples were
enough to determine the orientation of the fiber, in order to reduce
the impact of noise in the reconstructed slices, the fibers consid-
ered in this paper have a minimum of 75 point samples. After pro-
jecting the segmented fiber to a 2D plane, by aligning the mayor
eigenvectors with the plane axes, an optimal solution is found by
fitting a circle to the points with the standard Levenberg-Marqu-
ardt geometrical scheme [19] – the initial point is given by approx-
imating the fiber curvature radius and center with Taubin’s fitting
algorithm [20]. Measurements were performed on segments of 466
fibers with the best reconstruction. Although it is theoretically pos-
sible to obtain configuration of each individual filament using the
setup presented in [16], the reduced field of view and imperfect
alignment of the testing machine in the tomography unit produces
artifacts making tracking of each fiber difficult. Fig. 9 shows a his-
togram of the fiber curvature radius measured confirming the pres-
ence of curved fibers.

Note that a glass fiber subjected to pure bending can have a
minimum fiber curvature radius of approximately 147 lm and
fibers with a radius exceeding kilometers are essentialy straight
fibers with an infinite radius of fiber curvature.

Eqs. (11)–(13) provide the following geometric tensors calcu-
lated based on measured filaments.
að4Þ ¼

8:62� 10�2 1:38� 10�2 1:07� 10�1 �2:79� 10�3 �3:21� 10�2 9:66� 10�3

1:38� 10�2 3:27� 10�2 1:13� 10�2 �1:4� 10�3 �2:94� 10�3 4:02� 10�3

1:07� 10�1 1:13� 10�2 6:17� 10�1 1:27� 10�3 �1:27� 10�1 4:28� 10�3

�2:79� 10�3 �1:4� 10�3 1:27� 10�3 1:13� 10�2 4:28� 10�3 �2:94� 10�3

�3:21� 10�2 �2:94� 10�3 �1:27� 10�1 4:28� 10�3 1:07� 10�1 �2:79� 10�3

9:66� 10�3 4:02� 10�3 4:28� 10�3 �2:94� 10�3 �2:79� 10�3 1:38� 10�2

26666666664

37777777775
ð42Þ

bð4Þ ¼

1:43� 10�1 9:96� 10�2 2:42� 10�2 �7:95� 10�3 2:24� 10�2 �1:27� 10�2

9:96� 10�2 5:08� 10�1 3:29� 10�2 �2:35� 10�2 2:35� 10�2 �5:42� 10�2

2:42� 10�2 3:29� 10�2 3:54� 10�2 �1:44� 10�3 9:26� 10�3 �3:74� 10�3

�7:95� 10�3 �2:35� 10�2 �1:44� 10�3 3:29� 10�2 �3:74� 10�3 2:35� 10�2

2:24� 10�2 2:35� 10�2 9:26� 10�3 �3:74� 10�3 2:42� 10�2 �7:95� 10�3

�1:27� 10�2 �5:42� 10�2 �3:74� 10�3 2:35� 10�2 �7:95� 10�3 9:96� 10�2

26666666664

37777777775
ð43Þ



sð4Þ ¼

7:17� 10�2 1:59� 10�1 2:43� 10�1 �7:25� 10�3 �2:48� 10�2 �1:22� 10�2

1:59� 10�1 2:77� 10�2 5:12� 10�1 �7:27� 10�4 �1:06� 10�1 8:34� 10�3

2:43� 10�1 5:12� 10�1 7:33� 10�2 �2:79� 10�2 2:36� 10�2 �4:89� 10�2

�7:25� 10�3 �7:27� 10�4 �2:79� 10�2 �1:46� 10�2 3:87� 10�3 1:14� 10�3

�2:48� 10�2 �1:06� 10�1 2:36� 10�2 3:87� 10�3 �5:87� 10�2 2:86� 10�2

�1:22� 10�2 8:34� 10�3 �4:89� 10�2 1:14� 10�3 2:86� 10�2 �1:31� 10�2

26666666664

37777777775
ð44Þ
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Mechanical tests were performed on double dog-bone shoulder
loaded samples with 1 mm � 1 mm cross section [21]. Fig. 10
shows stress–strain curves from the digital image correlation using
X-ray images of sample deformed under known load.

The solid lines in Fig. 10 show fifth order polynomial least
square fit that provide zero strain tangential Young’s modulus val-
ues summarized in Table 4.

Table 5 shows constituent material properties used for predic-
tion of the stiffness tensor. The matrix properties were obtained
by averaging the zero strain tangential modulus of five PA6,6 sam-
ples containing resin identical to that used in the reinforced
material.

Averaging for a material with fibers in finite set of configura-
tions was used with the number of fibers N = 466. A random num-
ber generator in Mathematica [15] was used to select values from
fiber length measurements and pair them with radii to generate
values for n and g for each filament since we could not measure
both fiber length and the magnitude of fiber curvature with a sin-
gle physical method. Due to the small sample size, the fiber length
distribution was influenced significantly by machining the edges of
the sample and reducing filament lengths. The values of n for each
filament were adjusted by randomly generating the intersection of
the fiber with the sample and eliminating portions of the filament
outside of the sample which was removed during machining of the
sample. Two stiffness tensors were calculated for one hundred ran-
domly selected sets of 466 fibers. One stiffness tensor accounted
for fiber curvature, while the other was calculated with the
assumption of straight fibers. Fig. 11 shows sample stiffness Ec
Table 5
Constituent Material Properties for Injection Molded PA6,6 Containing 50% Glass
Fibers By Weight.

Ef (Pa) mf Em (Pa) mm Vf

7.24 � 1010 0.2 2.63 � 109 0.35 0.31

Fig. 11. Predicted sample Young’s moduli Ec and Es for curved fibers and straight
fibers respectively.
for curved fibers and Es for straight fibers. The assumption of
curved fibers resulted in mean sample stiffness prediction of
8.77 GPa, while the mean for straight fiber prediction was
9.05 Gpa.

The deviation from the average experimental measurement is
therefore 15% for a model with curved fibers and 19% for a model
with straight fibers. It is likely that we would obtain a closer match
if we accounted for time dependent or non-linear behavior of the
matrix material. Accounting for visco-elastic effects would allow
us to calculate the first few points along the stress strain curve
obtained with a difficult experimental technique [16]. It should
also be noted that we have not performed any calibration of matrix
material properties or any other arbitrary adjustments of parame-
ters that are often performed in engineering practice.
5. Conclusions

A new practical method for obtaining the stiffness tensor for
discontinuous fiber composite materials containing curved fibers
has been introduced, as well as a new concept for curved fiber con-
figuration that is described by five dimensionless parameters. Two
parameters describe the fiber shape and three parameters describe
the rotation of that shape with respect to the laboratory coordinate
system. Furthermore, an ensemble of fibers is described by a con-
figuration distribution function. For a system of non-interacting
fibers, separation of variables is used to define the configuration
distribution function as a product of shape distribution and rota-
tion configuration functions. Additionally, we have proposed a
new method of configuration averaging for constructing a stiffness
tensor for a material containing an ensemble of curved fibers. This
configuration averaging led to the definitions of orientation, curva-
ture, and mixed fourth order tensors. The anisotropic stiffness ten-
sor for an ensemble of curved fibers was then assembled using
these three tensors and nine averaged elastic constants. We have
provided a method for predicting these material constants and
have shown that the method of configuration averaging reduces
to orientation averaging if all fibers within the material remain
straight. We have also presented numerical examples and have
concluded that the impact of fiber curvature on stiffness tensor
properties depends on the rotation distribution function of the
DFC material. Finally, we compared results of configuration averag-
ing and orientation averaging using experimentally obtained data.
X-ray micro-tomography was used to obtain fiber orientation and
curvature parameters, while X-ray digital image correlation was
used to obtain stress–strain behavior of injection molded material.
We demonstrated that configuration averaging produces a closer
match to the experimental results than orientation averaging.
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