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Presentation Overview	


• Challenges of plasma facing components & structural materials in 

the (magnetic) fusion environment!

• Introduction to goals, organization, research approach and 
capabilities of the PSI Science Center!

  - Still a work in progress, but beginning to integrate wide range of 
exposure, diagnostic and modeling techniques!

• W fuzz formation mechanisms:!
  - Experimental capability development & initial characterization!
  - Molecular dynamics modeling to investigate sub-surface He bubble 

stability !
  - Model of fuzz formation!

• Summary and future work!



Multiscale, synergistic plasma surface interface!

S	
  



Multiscale challenge of PSI Science*	



* Wirth, Nordlund, Whyte, and Xu, Materials Research Society Bulletin 36 (2011) 216-222!



PSI Science Center Goals	



•  Advance basic science understanding of plasma-surface 
interactions!

•  Strong external impact by bridging  the gap between “laboratory” 
PSI studies and “real-world” applications!
–  Magnetic fusion!
–  Plasma thrusters!
–  Plasma processing!

•  Develop and train the required new !
     generation of  multidisciplinary PSI !
     scientists.!



PSI Science Center Organization	



•  Consistent with our “tripod” research paradigm, Center leadership 
and funding (1400 k$) is distributed roughly equally among !
–  University of Tennessee -- Materials modeling : Brian Wirth  (300 k$)!
–  UCSD -- PISCES / WallPSI model / DIII-D :  Russ Doerner (525 k$)!
–  MIT -- DIONISOS / Accelerator lab / C-Mod : Dennis Whyte (450 k$)!

•  Collaborative outreach and participation of major tokamaks  
and national labs!
–  General Atomics, LLNL, Alcator C-Mod, AdAstra Rockets, JPL!
–  Support for PSI lab facilities of Sandia / CA:  Dean Buchenauer (125 k$)!

•  Over 90% of funding to universities.!

•  Supports 12 young scientists / students!
–  Strongly leverages coordination of existing hardware.!



• An integrated Center, including tokamaks,  
 covers range not possible in single facility!

PSI Exposure capabilities	





Integrated tools for surface/plasma measurements, 
including unique DIONISOS in-situ ion beam analysis"

PSI Diagnostic capabilities	





Integrate validated multiscale models of materials,  
plasma-surface interface and plasma"

UCSD/LLNL!
Plasma models!

UTK!
Materials models!

PSI Modeling capabilities	





Surface dynamics under combined thermal/particle fluxes	





•  Adding small amount of 
Ar to D plasma increases 
sputtering yield even 
though YDonBe > YAronBe @ 
100 eV 

•  Macroscopic morphology 
(SEM) is different, but no 
substantial difference in 
nanoscopic (TEM) surface 
features 

•  Thin (5-10 nm) 
amorphous-like surface 
layer exists in both cases 

SEM 
images 

TEM 
images 

Plasma composition effects morphology & yield	





• CLASS is part of the DoE-funded PSI Science Center of Excellence in 
collaboration with UCSD, U of Tennessee, SNL, and INL.!

• Work is mostly on fusion materials but there are active collaborations in 
other fields:!

 Tungsten fuzz growth!
 Diagnostic development (RFQ, ion-sensitive probes) !!
 Material erosion in plasma thrusters!
 Post-mortem material analysis for tokamak surfaces!

1.7 MV Cockcroft-Walton tandem accelerator DIONISOS Experiment 

Cambridge Laboratory for Accelerator-based Studies of Surfaces 
(CLASS)	





•  Heavy-ion (O5+) elastic recoil detection (ERD) gives the He 
concentration depth profile in the near surface.!
•  ~1 mm oblong beam spot gives decent spatial resolution.!
•  Limited range of ERD is somewhat off-set by porosity of W “fuzz”!

How to measure spatially resolved He concentration in W?	





The He concentration is constant throughout the entire 
fuzz layer but strongly peaked at the surface for pre-

fuzz conditions!

Pre-­‐Fuzz	
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He concentration in fuzz layer	





•  None of these targets show signs of fuzz growth (by eye)!
•  Higher local concentrations of He at high Tsurf and deeper diffusion.!

•  Lower surface conc. may be bubbles reconnecting to the surface and breaking open.!

How much He can tungsten trap? What are the controlling 
parameters?	





•  Linear plasma device like  PISCES 
have grown micron-thick nano-
tendril or “fuzz” layers from metallic 
Mo/W surfaces!

•  Recipe: Low-energy Helium ions  + 
Tsurface  ~900-1400 K!

•  These conditions are expected in 
ITER and reactor divertors.!

•  However, fuzz never documented in 
tokamak divertor which has large 
differences to linear plasmas!

–  Grazing magnetic field vs. perpendicular!

–  Transient vs. steady-state!

–  Short ionization MFP & fluid-like transport vs. 
weak ionization & recycling.!

•  Exploit ITER/reactor similar C-Mod 
divertor!

–  High heat flux, ITER density, Mo metal surfaces! Tungsten “fuzz” !
made in PISCES!
Tsurf ~ 1100 K!

Can fuzz form in ITER and reactors? 	





12 shots, ~ 3 MW ICRF, L-Mode 
Te,divertor ~ 20 eV, q// > 0.2 GW/m2  
~ 12-15 seconds exposure 

IR image of 
divertor!
Tiles with 
Tmax~1300K!

// plasma flux!

W langmuir probe and Mo calorimeters were hottest!
Clearly reduced reflectivity of W probe indicative of fuzz!

Ramped Mo tiles!

He plasmas in Alcator C-Mod produce conditions for fuzz 
growth at the outer strikepoint	





Thickness of individual 
tendril is 50-100 nm, 
which is thicker than 
tendrils grown in linear 
devices (20-30 nm)!

W peak!

Fully formed nano-tendrils have almost 
total surface coverage of the probe tip.!

EDX measurements confirm that the fuzz 
is ~100 % tungsten.!

SEM imaging shows nano-tendrils on tungsten probe surface	





•  Simultaneous plasma and ion beam exposure of targets!

•  Active target heating and cooling (Ttarget = 300-750 K)!

•  In-situ, time-resolved ion beam analysis!

• In-situ target irradiation by high-energy (~MeV) ions for 
irradiated materials studies.!

Unique capabilities of DIONISOS	





DIONISOS	
  (MIT)	
  

Deuterium ion flux 
(m-2s-1) 

1020-1022 

Ion energy (eV) 20-350 (bias) 

Te (eV) 5-10 

Ti (eV) 2 - 5  

ne  (m–3) 1017-1019 

Pmax (MW/m2) 0.6 

Plasma diameter (mm) 50 

Pulse length (s) Steady-state 

Activated targets No 

Tritium No 

Substrate heater!

Isolated sample 
clips for target 
biassing!

Heat shielding!

Power leads!

•  TMAX ~ 1473 K!
•  Electrically isolated from target!
•  Mo heat shielding!

In-situ ERD allows for the He concentration to be measured in-situ during fuzz 
growth.!

DIONISOS has plasma capabilities & target heater to grow fuzz 	





Proposed W fuzz formation mechanism*	


• Sub surface He bubbles drive ʻfingerʼ instability!

* Kajita, Nuclear Fusion 49 (2009) 095005.  	





Proposed W fuzz formation mechanism*	


• W ʻviscosityʼ drives transport from below bubble layer driving fuzz 
growth!

* Krasheninnikov, (2011) manuscript in preparation.  	





MD simulations: sub-surface He bubbles	


• Evolution of He bubbles below surface: initial nucleation & 
growth require a kinetic model (in progress)!

• Evolution of larger He bubbles -> several regimes of interest:!
 !- Equilibrium bubbles (internal gas pressure P = 2γ/R)!

!- Over-pressurized bubbles can ʻpunch loopsʼ !
!(P = 2γ/R + Gb/R)!
!- Near-surface, over-pressurized bubbles can rupture!

How do these processes influence surface topology evolution, 
sputtering, etc. & can sub-sputtering threshold He exposure 
drive surface evolution processes?!



Pressure evolution of He bubbles	


Molecular dynamics simulations to assess He bubble pressure & response of over-
pressurized, sub-surface bubbles (R ≈ 1.6 nm)!



Pressure evolution of He bubbles	


• He bubble close to the surface will burst if the pressure is “too high”!
  - lead to cratering but no W erosion observed (MD timescales)!
• Dependent on distance below surface, size, P, T!

movie!



He bubble influence on sputtering & evolution	


• How do sub-surface He bubble influence sputtering? !
• How do sub-surface He bubbles grow to drive burst phenomena!
MD of evolution of He bubble population at 600K!

R ~ 0.9 ± 0.5 nm, 2 He/V, d > 0.3 nm! 9 bubbles inserted d > 1.6 nm 
below (100) W surface, 1.2 < R 

< 1.4 nm, P = 2γ/R!
15% He bubble fraction!
- Evaluate He induced 

sputtering yields (300-600 eV)!

movie!



•  W exposed to low flux He plasma 
(a) does not result in He nano-
bubble formation (UCSD) 

•  Higher flux He plasma (b) does 
cause He bubble precipitation 
(UCSD) 

•  Ion beam sputtering of both type 
of surfaces (a & b) shows no clear 
difference (IPP-Garching) 

•  Simultaneous sputtering and gas 
concentration depth profile 
measurements in DIONISIS 
(MIT) are being discussed 

•  MD modeling of sputtering from 
surfaces with voids being 
performed (U. Tenn.) 

Role of near-surface bubbles on tungsten erosion	





PSI Science Center Summary & Future Efforts	


• Multi-institution PSI Science Center with goal of interdisciplinary 
science investigation of plasma surface interactions involving exposure, 
(in-situ) diagnostics and modeling!

• Tungsten fuzz formation mechanism remains unresolved – !
   - Key observation that it is not only a laboratory observation!
   - Continuing to work toward models to predict fuzz formation & the 
critical steps in nucleating the growth of fuzz!

• Continued coordinated efforts on W fuzz formation & the role of sub-
surface He bubbles on W sputtering yields do to He ion irradiation!


