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Summary of three projects with
tungsten emphasis:

Overview

* Hydrogen precipitate model

— continuum-scale bubble growth

* Tritium plasma experiment (TPE)
— plasma-driven permeation system

— surface morphology characterization

* Surface studies (ARIES)

— molecular-dynamics (MD) models of
surface channeling

— instrument upgrades (time of flight,
Auger)
Scope ranges from applied
experiments to fundamental studies.



PART 1. HYDROGEN PRECIPITATE

MODEL




Continuum-scale finite difference model

enables simulations of bubble growth

Precipitation affects hydrogen diffusion in | » » ; FIBCROSS-

SECTION

metals [W.R. Wampler, Nucl. Fusion (2009)] i e - Bk

How do hydrogen bubbles grow?

* DFT MD, and Kinetic Monte Carlo reveal
key nucleation and growth mechanismes.

FIB CROSS-
SECTION

* Incorporate insight into continuum
approach to model practical environment

» Existing models (TMAP, DIFFUSE) exclude

important physics (e.g. precipitation) (a-c) contributed by John Smugeresky, (d) from S.
Lindig et al., Phys. Scr. (2009).

We leverage metal tritides expertise at Sandia from 3He bubble growth
models [D.F. Cowgill, Fusion Sci. & Technol. (2005)]

U Altered to simulate hydrogen bubbles:
 Different nucleation process [Henricksson Appl. Phys. Lett. (2008).]
Use experiments to refine model.




Previous work identified conditions

necessary for bubble growth

How much hydrogen can we 1S N R SR
force into the bubbles? 5 temey
A Michels
. . . TEOUOR 726°C
(Bubbles fill until chemical S T Veroatk
nym = . E‘? \F::\ — Tkacz _
equilibrium is reached. S b el
dEquilibrium determines whether o TR
precipitation is favored: : (@) T
0.001 tr ,I,”i,_ T LS R
= At RT, bubbles grow even at ST o 7 i 2 e
low H conc.
= At high temperature, need
high H conc. for growth. =
=
* Findings consistent with =
experiments.

R.D. Kolasinski, D.F. Cowgill, R.A. Causey, J. Nucl. Mater. (2010).




Continuume-scale approach enables rapid

solution of diffusion equation

Assume:

(a) Point defects saturable, do not behave as
bubble nucleation sites.

(b)Array of evenly-spaced sperhical bubbles.

(c) Bubble diameter smaller than inter-
bubble spacings

(d)Slow thermal ramp (quasi-equilibrium is
satisfied.)

Array of evenly-

i i spaced spherical
E O O O i bubbles.
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Bubble growth by loop punching

Simple loop punching condition:

y = surface energy
I, = bubble radius
b = Burgers vector

i = shear stress

. J




Basis for finite difference model:

need to integrate three coupled PDE’s

Governing equation (1-D diffusion w / 2 sinkterms): o qr = dur(x,t)/0t

otu(x,t)/ot = D(t) 0%u(x,t)/ox? —@—@

Flow into or out of the bubbles determined by local eq. conc.

g = dug (x,@: AtD (t)rg(x, t)Np(x) [ —@

Concentration at bubble surface determined by Sievert’s Law:

= \@Soexp(—Es/RT)

Fugacity (requires aforementioned EOS):

p
@p) =f0 (v(p,T)/RT — 1/p)dp




Simulated bubble sizes consistent

with experimental findings

* Assumed a pre-existing concentration of S
nucleation sites (eventually growing into N t=4x11(2) V\ll
bubbles.) Nb=1(1)8 w 2
« Traps fill first, followed by bubble growth. F=10"® D/cm?-s, calculated near-surface
« Using realistic input conditions, depth conc. at the end of range from F=Du/r.
— + 3
profiles consistent with experimental r=2.5 nm for 100 eV D* ions
findings.
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PART 2: TRITIUM PLASMA

EXPERIMENT




Planned TPE studies will focus on

understanding microstructure effects

Objective for upcoming work: perform experiments to
examine microstructure effects.

Present work aimed at eliminating uncertainties in the
instrument:

— Eliminating C components in TPE

— Better thermal control of the target
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Development of plasma-driven

permeation experiments underway

* Plasma-driven tritium permeation using “realistic”
samples.

* Experiments part of the PSI-Science Center and
collaboration with INL

* Leverages unique capabilities of the tritium plasma
experiment (TPE)

* See subsequent talk (Shimada, Session 1)

Low-flux ion beam studies:

e Anderl (1992) (initial measurements, measured
recombination rate)

 Ueda (2011) compared different material structures

* Early high-flux attempts using TPE unsuccessful (~1995)
due to temperature control difficulties

Progress to date:

* First generation design completed; demonstrated
superior temperature control.

* Gas-cooled design fabricated ready for testing.
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PART 3. SURFACE ANALYSIS &

HYDROGEN ADSORPTION STUDIES




lon scattering enables advanced studies of

surface effects relevant to fusion materials

Objective: improve understanding of
hydrogen-surface interactions.

* How does H adsorb bind to surfaces?

Important for understanding:
* recycling
* adsorption/desorption
 dissociation/recombination

validation of fundamental
models (DFT)

* ARIES: Angle-resolved ion energy

spectrometer _ N
Determine surface composition based upon:

«  Low energy ion scattering (LEIS): E_= initial incident particle energy

e Unique for high sensitivity to E.= particle energy after scattering
hydrogen J,= scattering angle

2cos6, =(1+A)E, +(1-A)/E
« Systems under examination: Calculate: V& /&
- W(100)+H Mass ratio, A=m,/m,
 Be(0001)+H
« Al(111)+H
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Refinement of interatomic potentials

needed for accurate modeling of scattering

1000 -|||||||| ||""|"".|§%"il rrr |||||||||||.|E
Calculation of pair potentials v [NeHpotentiall = XN\
: . - — 7ZBL T | .
— Only repulsive portion is needed. - Y DET T ¥
« . ”» . 100 £ Q P o pair —=I_r """"""""" N P 'E
— “Universal” potentials (ZBL) too 2 ¢ ‘ 1 E|S =
repulsive at large impact - I -
parameters. % w0k R
— We calculate interaction based on = : JE[Ne-W potential] . =
superposition of electron shells of - 1 < SIB:'% X .
Hartree-Fock atoms. 1E EF — S p:
— Result compares well with DFT. F o\ oS Tx N ]
comp _ (@ oL o]
molecular dynamics code Kaylpso. 05 1.0 15 20 05 10 15 20
interatomic spacing [A]
2.07 T T T o o T v . . T
clean H-coveree

z-distance [A]
PR
o ol

o
&)

x-distance [A]

Equi-potential contours for the W(100) surface (<110> channel.) Potential strength in eV.
14



Surface channeling strongly

affected by the hydrogen location
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MD calculations reproduce experiments

for correct adsorbate height

We can simulate experimental results for
different binding sites.
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* Blocking depends on H height.
* Bestagreement consistent with DFT
(VASP).

R. Kolasinski, N. Bartelt, J. Whaley, T.
Felter, Phys. Rev. B (submitted.)
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New time of flight capability enhances sensitivity by 104

ARIES Instrument:
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Concluding Remarks

We have studied....

* Hydrogen bubble growth
— Successfully adapted Sandia 3He bubble growth code

— Model accurately predicts conditions for bubble growth, produces realistic
bubble size distributions.

e Tritium plasma experiment
— Future retention experiments to examine microstructure effects.
— Plasma-driven permeation testing system under development.

* Hydrogen adsorption on surfaces

— Determined H binding site on W surface, extensive modeling with DFT /
MD

— New detector makes analysis non-destructive, opens up a wealth of surface
chemistry experiments.
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