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Overview

Summary of three projects with 
tungsten emphasis:

• Hydrogen precipitate model
– continuum-scale bubble growth

• Tritium plasma experiment (TPE)
– plasma-driven permeation system

– surface morphology characterization 

• Surface studies (ARIES)
– molecular-dynamics (MD) models of 

surface channeling

– instrument upgrades (time of flight, 
Auger)

Scope ranges from applied 
experiments to fundamental studies.



Part 1: hydrogen precipitate 
model
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Continuum-scale finite difference model 
enables simulations of bubble growth
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How do hydrogen bubbles grow?

• DFT, MD, and Kinetic Monte Carlo reveal 
key nucleation and growth mechanisms.

• Incorporate insight into continuum 
approach to model practical environment

• Existing models (TMAP, DIFFUSE) exclude 
important physics (e.g. precipitation) (a-c) contributed by John Smugeresky, (d) from S. 

Lindig et al., Phys. Scr. (2009).

Precipitation affects hydrogen diffusion in 
metals [W.R. Wampler, Nucl. Fusion (2009)]

We leverage metal tritides expertise at Sandia from 3He bubble growth 
models [D.F. Cowgill, Fusion Sci. & Technol. (2005)]

Altered to simulate hydrogen bubbles:

• Different nucleation process [Henricksson Appl. Phys. Lett. (2008).]

Use experiments to refine model.
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Previous work identified conditions 
necessary for bubble growth
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How much hydrogen can we 
force into the bubbles?

Bubbles fill until chemical 
equilibrium is reached.

Equilibrium determines whether 
precipitation is favored:

 At RT, bubbles grow even at 
low H conc.

 At high temperature, need 
high H conc. for growth.

 Findings consistent with 
experiments.
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Continuum-scale approach enables rapid 
solution of diffusion equation

Assume:
(a)Point defects saturable, do not behave as 

bubble nucleation sites.
(b)Array of evenly-spaced sperhical bubbles.
(c) Bubble diameter smaller than inter-

bubble spacings
(d)Slow thermal ramp (quasi-equilibrium is 

satisfied.)
Bubble growth by loop punching

Simple loop punching condition:

pLP≥ 2γ/rb+μb/rb

γ = surface energy

rb = bubble radius

b = Burgers vector

μ = shear stress

Array of evenly-

spaced spherical 

bubbles.
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Basis for finite difference model:
need to integrate three coupled PDE’s

Governing equation (1-D diffusion w / 2 sink terms):

Flow into or out of the bubbles determined by local eq. conc.

Concentration at bubble surface determined by Sievert’s Law:

Fugacity (requires aforementioned EOS): 

𝜕𝑢(𝑥, 𝑡) 𝜕𝑡 = 𝐷 𝑡 𝜕2𝑢 𝑥, 𝑡 𝜕𝑥2 − 𝑞𝑇(𝑥, 𝑡)− 𝑞𝐵(𝑥, 𝑡) 

𝑞𝐵 = 𝜕𝑢𝐵(𝑥, 𝑡) 𝜕𝑡 = 4𝜋𝐷 𝑡 𝑟𝐵 𝑥, 𝑡 𝑁𝐵(𝑥) 𝑢 𝑥, 𝑡 − 𝑢𝑒𝑞 (𝑥, 𝑡)  

𝑢𝑒𝑞  𝑥, 𝑡 =  𝑓𝑆0exp(−𝐸𝑠/𝑅𝑇) 

ln 𝑓 𝑝  =   𝑣(𝑝,𝑇) 𝑅𝑇 − 1 𝑝  𝑑𝑝
𝑝

0

 

𝑞𝑇 = 𝜕𝑢𝑇(𝑥, 𝑡) 𝜕𝑡  
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Simulated bubble sizes consistent 
with experimental findings
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Nt=4×10-5 W-1

Nb=10-12 W-1

F=1018 D/cm2-s, calculated near-surface
conc. at the end of range from F=Du/r.
r=2.5 nm for 100 eV D+ ions

300 K 500 K

• Assumed a pre-existing concentration of 
nucleation sites (eventually growing into 
bubbles.)

• Traps fill first, followed by bubble growth.
• Using realistic input conditions, depth 

profiles consistent with experimental 
findings.



Part 2: tritium plasma 
experiment
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Planned TPE studies will focus on 
understanding microstructure effects

• Objective for upcoming work: perform experiments to
examine microstructure effects.

• Present work aimed at eliminating uncertainties in the
instrument:

– Eliminating C components in TPE

– Better thermal control of the target
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Development of plasma-driven 
permeation experiments underway

Low-flux ion beam studies:

• Anderl (1992) (initial measurements, measured 
recombination rate)

• Ueda (2011) compared different material structures

• Early high-flux attempts using TPE unsuccessful (~1995) 
due to temperature control difficulties

Progress to date:

• First generation design completed; demonstrated 
superior temperature control.

• Gas-cooled design fabricated ready for testing.

• Plasma-driven tritium permeation using “realistic” 
samples.

• Experiments part of the PSI-Science Center and 
collaboration with INL

• Leverages unique capabilities of the tritium plasma 
experiment (TPE)

• See subsequent talk (Shimada, Session 1)
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Part 3: surface analysis & 
hydrogen adsorption studies
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Ion scattering enables advanced studies of 
surface effects relevant to fusion materials

Determine surface composition based upon:
Eo= initial incident particle energy
Es= particle energy after scattering
θs= scattering angle

Calculate:
Mass ratio, A=m2/m1

sss EAEA /)1()1(cos2 

Objective: improve understanding of
hydrogen-surface interactions.

• How does H adsorb bind to surfaces?

• Important for understanding:
• recycling
• adsorption/desorption
• dissociation/recombination
• validation of fundamental 

models (DFT) 

• ARIES: Angle-resolved ion energy 
spectrometer

• Low energy ion scattering (LEIS):
• Unique for high sensitivity to 

hydrogen

• Systems under examination:
• W(100)+H
• Be(0001)+H
• Al(111)+H

+

θs

LEIS
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Refinement of interatomic potentials 
needed for accurate modeling of scattering
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Calculation of pair potentials

– Only repulsive portion is needed.

– “Universal” potentials (ZBL) too 
repulsive at large impact 
parameters.

– We calculate interaction based on 
superposition of electron shells of 
Hartree-Fock atoms.

– Result compares well with DFT.

– Potentials incorporated into the 
molecular dynamics code Kaylpso.
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Surface channeling strongly 
affected by the hydrogen location
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 MD simulations

• Use grazing incidence to access 
adsorbated hydrogen high above 
the surface.

• Perpendicular energy 
Eperp=Eocos2(α) is small at 
grazing incidence (binary 
collision approximation invalid.)

• Presence of hydrogen atoms in 
surface channels strongly 
influences ion focusing.
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MD calculations reproduce experiments 
for correct adsorbate height

We can simulate experimental results for 
different binding sites.

Signal depends on where H resides

• Blocking depends on H height.
• Best agreement consistent with DFT 

(VASP).

R. Kolasinski, N. Bartelt, J. Whaley, T. 

Felter, Phys. Rev. B (submitted.)
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New time of flight capability enhances sensitivity by 104
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Time of flight detector improves 
sensitivity dramatically:
 Eliminates need for 

neutralization model
 Non-destructive analyses of 

delicate surfaces
 Opens up a wealth of surface 

chemistry experiments.
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ARIES Instrument:
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Concluding Remarks

We have studied….

• Hydrogen bubble growth

– Successfully adapted Sandia 3He bubble growth code

– Model accurately predicts conditions for bubble growth, produces realistic 
bubble size distributions.

• Tritium plasma experiment

– Future retention experiments to examine microstructure effects.

– Plasma-driven permeation testing system under development. 

• Hydrogen adsorption on surfaces

– Determined H binding site on W surface, extensive modeling with DFT / 
MD

– New detector makes analysis non-destructive, opens up a wealth of surface 
chemistry experiments. 
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