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1. Reduced average divertor heat load for snowflake divertor

2. Reduced ELM heat load for snowflake geometry

3. Other topics:
— Sheath potential modifications during ELMs
— Radiative divertor for heat-load management in future devices
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Alternate divertor geometries
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Snowflake configuration yields strong @ZJ&
eak heat-flux reduction in NSTX \ “Sciences

Easier detachment (no need in gas puff)
Carbon content in the core down by a factor ~ 2
Radiation from the core down by a factor ~ 2
Radiation from divertor up by a factor of a few
No noticeable adverse effect on core

NSTX: factor of 3 heat-flux
reduction on the divertor plate
(V.A. Soukhanovskii et al, Nucl.
Fusion, 51, 012001, 2011)
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UEDGE is used to model snowflake ision
nergy

geometlz in NSTX \_Sciences

Standard: shot 135481 Snowflake: shot 135498
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Modeling of standard divertor shows high @ZJG
divertor temperature and heat flux \“Sciences
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In comparison, the snowflake configuration for @,s,-onlr
. . . . ner,
similar parameters shows substantial reduction  SEZE2

Shots 135481 and 135498
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TCV tokamak in Lausanne has <’;':ysion
- ner;
also studied the snowflake \ Scionces

Radiated power

O Visible CCD Camera and AXUV Piras F, Coda S, Furno I, Moret JM, Pitts RA,
Ip = 230KA, Br=1.4T, n.=7%10'*m- Sauter O, Tal B, Turri G, Bencze A, Duval BP,
ekt . e Felici F, Pochelon A, Zucca. “Snowflake

[V — Y P divertor plasmas on TCV”, Plasma Physics
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TCV data shows that ELM peak heat load <‘/'ru§£!r
is reduced with a showflake geomet \_Sciences

Y
n
w
R

-1

3 o 5 )
S i—j\\“o—« ;:: fJ\\‘M«
During ELMy H-mode, = —10
estimate that peak ELM £ 15 ff‘. e e 8
heat load is reduced by 3“; % —maim 9 @ :
~10 compared to standard 32
divertor geometry, Labit 60 ]
et al., EPS Conf., 2011 2 40 !!‘,
= 20
3 x 10'?
7 2 !
:"1 Pt M
0
“.—.1.5
E 1
EOSJ(M\_,_/—‘
< -

-
Ld
° —
¢ 3
W
= [

ELM



Snowflake geometry can reduce surface @s,-onlr
- ner.
temperature rise from ELMs \ “Sciences

« Surface temperature rise scales as

« Snowflake geometry provides mechanisms to reduce T ¢

— Longer distance along magnetic field B between midplane
ejection region and divertor plates: S, ~ Int (B/B,) dx,

— Magnetic flux expansion of divertor heat footprint

— Enhanced radial transport of energy near null-point region
— Feedback on ELM growth
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UEDGE modeling shows how ELM deposition <%E£lr

. . . Energy
time increases with larger L \ Sciences
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Divertor heat flux is made up <?rus,-on
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Summary of other topics:

» plasma sheath currents
 radiative divertor
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Thermoelectric currents in SOL during @s,-onlr
. ner;
ELM can impact surface heat flux \ “Sciences

 Plasma temperature
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outer divertor surfaces can Ho2¢ Inner plate
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T 0]
 Such currents can €
substantially change the IS N '
y e 9 Q 8r ! % _Inner plate [t=200 us| 1
sheath potential from zero- £ oS 1
current condition of ¢ = 3T, S ' Outer plate
5 .

al F
« 2D ELM simulation result for i /

DIlI-D ELM conditions ol , . . .
0.98 1.00 1.02 1.04 1.06

Normalized poloidal flux

Rognlien
PFC 8/10/11 14



Radiating neon in SOL for Noon st poverdanaty

ARIES ACT1 at high densit Pao. - 260 MW
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Summary

« NSTX snowflake divertor reduces average divertor heat load
— A large decrease in peak heat flux
— UEDGE modeling shows that power detachment results
— Preliminary results with Carbon show stronger effect
— Need to include lithium and couple to WBC

« TCV reduction in peak ELM heat-load, surface temperature rise
with snowflake configuration

— Experimental results reported at EPS in June, 2011; ~10 times
reduction in peak ELM heat load

— UEDGE modeling shows how deposition time lengthens for the
snowflake

— Area of deposition increase from magnetic flux expansion

« Other topics
— SOL currents during ELMs substantial change sheath potential
— Radiative SOL compatibility of high density and core Zeff
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Back-up slides on radiative SOL
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ACT-1 geometry (simple divertor) @ZJ
nergy
and pa rameters \_Sciences
' S ' * Magnetic equilibrium from
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Shifting to the high density, neon impurity cases; <?us,-onlr

d
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A 280 MW case shows
acceetable heat loads
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Corresponding 400 MW case is Mision

Neon radiated power density

Energy
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Neon impurity for sufficient SOL power loss @sionlr
- u . gom - ner;
results in significant core concentration \ Scicnces

Z i profile for 400 MW case Neon concentration
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Core impurity concentrations are substantially larger for double-null
cases than previous single-null (ARIES-RS) cases; edge flows are
different
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New results for double-null ACT-1

are shifted to hi
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