' Advanced integrated modeling of transient
effects on Tokamak PFCs
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Physical Processes, an Integrated Approach

1. MC model for escaped core
particles:
* ELM and disruption conditions;
» Energy deposition into walls
» Energy deposition into plasma

2. Device surface processes:
» Heat load;
* Heat conduction;
 VVaporization

3. Edge plasma physics:
* MHD of plasma;
* Magnetic diffusion
* Heat conduction;
 Radiation transport

Edge plasma
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Physical Processes, an Integrated Approach

B Monte Carlo gyrokinetic model for the ELM and disruption particles:
— 3D equations of motion in magnetic and electric fields;
— Evolution of the initial and secondary particles (ions, electrons, photons);
— All scattering processes including Bremsstrahlung, Compton absorption,
photoabsorption, Auger relaxation;

— 3D energy deposition profiles in solid, vapor and plasma on unstructured mesh (UM)

B MHD of the edge plasma in entire SOL.:
— Total variation diminishing scheme in Lax-Friedrich formulation (UM);
— Magnetic field divergence correction (UM);
— Implicit algorithm for magnetic diffusion. Sparse matrix solvers (UM)

B Thermal conduction:
— Implicit algorithm for edge plasma. Sparse matrix solvers (UM);
— Explicit schemes for component materials. Surface extra refinement;
— Vaporization model for component surfaces (UM)

B Radiation transport in edge plasma:
— Weighted Monte Carlo algorithm;
— More than 3500 spectral groups for the divertor plasma;
— Full 3D simulation (UM)

B Unstructured mesh: New
— Five layers geometry adaptive refinement;
— Device wall surfaces extra refinement ,QN
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Research Objectives

Damage of Tokamak components should be simulated in actual device
configuration and realistic operating conditions

B Entire SOL should be modeled:

— Complex character of core plasma particles escape and motion in SOL,;
— Distribution of disrupted core particles on component surfaces;

— Radiation transport problem;

— Magnetic field gradient and curvature drift;

— Radial electric field

B Unstructured mesh is important solution for:
— Complex design of tokamak components;
— Device size scale (meters) vs. edge plasma MHD scale (100 xm)

B Extra refinement for surfaces:

— Energy deposition depth of core plasma particles ~ 10 um;
— Erosion surfaces scale ~ 1 ym

B MPI parallelization of HEIGHTS:

— Large computational domain can be separated into sub-domains;
— Great scalability of Monte Carlo computational blocks
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HEIGHTS Structure
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Edge Plasma General Equations Set
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p - density; V — velocity; B — magnetic field; p — pressure; Q. - thermal conduction; Q,,4 - radiation

transport; Q; - Joule heat term; Q,,"%, Q,,'% - target vaporization; Qj, - SOL plasma impact,

QMdiff - magnetic diffusion terms.
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Previous Local Implementation of
Calculations

U Nearby divertor area domain

O Coarse mesh for curvilinear
component surfaces

ULocal Cartesian coordinate
system

J. Palmer et al., Recent developments towards ITER 2001 divertor maintenance, I
Fusion Engineering and Design, 75-79 583 (2005) WROC, (N
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Divertor Plasma Density Evolution

1.0 ms giant ELM
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Radiation Fluxes Evolution

1.0 ms giant ELM

60
NS 1200
90
50 o
3 S 1000
> X
o = 1500
= =1
= =
2 = | 1600
- )
N 20 2 11400
10 200
0 0
0 20 40 60 80
R distance, cm .
Domain expansion and surfaces refinement are needed .. 2 1% '
| H B R EN’}_ -q“'r\-o\“‘\J
u SMT: T NE
PURDUE Simulation Results CNQ Tone™ 10

UNIVERSITY -94,[__\0\,_-. m n



Publications

1. V. Sizyuk and A. Hassanein, Integrated models to study the impact of
ELMs and disruptions on lithium in the NSTX divertor, Journal of
Nuclear Materials, (2011) in press.

2. E.M. Hollmann et al, Plasma-surface interaction during tokamak
disruptions and rapid shutdowns, Journal of Nuclear Materials, (2011)
In press.

3. A. Hassanein, T. Sizyuk, V. Sizyuk, G. Miloshevsky, Impact of various
plasma instabilities on reliability and performance of tokamak fusion
devices, Fusion Engineering and Design, vol. 85, N7-9, pp. 1331-
1335, 2010.

4. V. Sizyuk and A. Hassanein, Damage to nearby divertor components
of ITER-like devices during giant ELMs and disruptions, Nuclear
Fusion, vol. 50, N11, p. 115004, 2010.

5. V. Sizyuk and A. Hassanein, Self-consistent analysis of the effect of
runaway electrons on plasma facing components in ITER, Nuclear
Fusion, vol. 49, N9, p. 095003, 2009.

H N quiPL, EN? =
PURDUE HEIGHTS Upgrade. Current Status ;?N\ e 11



New Approach of Calculations (ITER)
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Device design: R. Aymar, Fusion Eng. Des. 55 107 (2001).
Plasma core form: W.M. Stacey, Phys. Plasmas 16 032506 (2009)
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0 AMR for the complex
design of surfaces

0 AMR decreases calculation
time with better accuracy

O Extra refinement for
surfaces heat load and
erosion

O 3D Cylindrical coordinate
system

0 Whole SOL computational
domain

O Accurate simulation of core

particles escape to SOL



5-Layers Geometry Levels of AMR (NSTX

Mesh construction (RZ plane)
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HEIGHTS Upgrade. Current Status
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Wall Extra Refinement (Unstructured Mesh)

U Finite volume approach for

z
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domain on processors
subdomains

U Separate processors for
plasma MHD domain and
solid heat conduction
domain

O Equal processors load
distribution via cell

numbers in subdomains



Magnetic Field Initialization (ITER)

1 oM _______ I ."Z'.':? _|T____'___ " 11

Magnetic field at strike point: B=5T
Sliding angle at strike point:
Coils location:

R. Aymar, Fusion Eng. Des. 55 107 (2001).
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EQSDK files as the initial conditions source
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Magnetic Field Initialization (NSTX)
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Magnetic Field Initialization using EQDSK
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Magnetic Field Initialization using EQDSK

— Brz
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MC Simulation of Core Particles Escape
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Integrated Divertor ELM Flux (ITER)
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Divertor flux profile was simulated for the ELM impact energy Q = 12.6 MJ by the pulse
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Spatial Energy Deposition in Divertor (ITER)
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Summary and Conclusion

B HEIGHTS models and computer codes are revised and
applied to plasma evolution modeling in ITER-like
devices during the giant ELM and disruptions

B Physical and computational models are expanded to
describe evolution of edge plasma in entire SOL area

B Unstructured mesh with adaptive refinement was
Incorporated into HEIGHTS to achieve higher accuracy
with reasonable computational time

B The implemented mesh has five layers of cell sizes and
logical block for the device geometry adaptive
refinement. Extra refinement (~ 0.5 um) is applied to
surface cells to provide sufficient accuracy of surface
erosion and evolution
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Summary and Conclusion (Cont.)

B Both mathematical models and HEIGHTS package structure
have parallel implementation.

B The new developed gyrokinetic block allows simulating
particles escape from core plasma via generation of initial
particles at core border section. Influence of radial electric
fleld on generated particles motion is taken into account

B We simulated ELM and disruption plasma incident fluxes
using ITER actual geometry and predicted initial impact
parameters. The simulated results are in good agreement
with our previous localized calculations

B Now new HEIGHTS is ready for full integrated simulation of
transient events in full 3D and for realistic reactor geometry!
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