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e Thermoelectric effect and thermoelectric MHD seen in SLIiDE
(Solid/Liquid Divertor Experiment)

e Lithium/Metal Infused Trenches (LIMIT) experiment
« Experiment setup
« Velocity measurement with particle tracking method
« Uneven surface temperature distribution (IR camera)
« Embedded thermocouples measurements

e Limits on LIMIT

e Conclusion
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e Thermoelectric effect

Thermoeleotrlc effect

e Causes thermocouple junction y

voltage \\\\\\\\ 4
e Electric field generated by

temperature gradient v
J.A. Shercliff, Thermoelectric MHD, J. Fluid Mech. 91, 231 (1979)
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e Requires different material
(or TE power) to provide
current return path and to
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e Lithium has a high Seebeck | 10-
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fusion plasma. (low recycling, Temperature (1C) Temperature (°C)
improved Confinement, flat V. Surla et. al. accepted in J. Nucl. Mater., to be published
tempe ratu re prOf”e and SO On) Seebeck coefficient measurements of lithium isotopes ™
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Thermoelectric driven swirling flow

e Solid/Liquid Lithium Divertor E-bean
Experiment (SLIiDE) E-beam SOQQ%cm \

e Linear Gaussian electron

beam hits the center of Current density profiley
lithium surface r\

e Vertical magnetic field
(0~700G) Tray
o Lithium melted in a stainless [ jaworski, otal. Phys. Rev. Lett. 104, 094503 (2010)
steel square tray

40 . : . . I -
e Result found on SLiDE os  Haz3s
e Swirling flow of liquid lithium L e
e Flow speed changes with 20 | I
magnetic field, depth of ST S a
lithium and heating power. o AT
e Heat is redistributed from N

interface by convection 0 5 10 15 2 25 30 3B 40
Theoretical vs Experimental velocities in cm/s

Theory matches at all Ha numbers tested
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Ratio of TEMHD to TC in SLIDE

e All quantitative data cases show urenap _ Plopy) 1"@F(f))
evidence of swirling flow. Urc "
where F(§) =

$H — tanh($)
e However, TC was capable of $ tanh($) + C tanh™($)
being seen in an oscillatory flow | MA. Jaworski, etal. Phys. Rev. Lett. 104, 094503 (2010)

behavior. Jaworski Number was always greater than 1 !
9 raT- 3600[K/m] ]

- TEMHD flow distributes heat and f —
smooths out the gradient along - -

the Li — steel interface
- With no gradient there, only the

—_——

Uremup / Ute [
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surface temperature gradient Quantitative

exists, therefore TCMHD until data

interface gradient builds up again

TS R S0 SR ]
When the Jaworski number is near 1 207 1ol a0 a0l 12
and TEMHD and TCMHD (Maragoni Hartmann No. [-]
effect) are balanced, so flow oscillates P(opv)/?
between swirling and splitting. Jaworski Number: ( =
~
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The ldea: “LIMIT” Design in NSTX

NSTX Inner divertor shelf

/ -~ "

(I

Divertor
Strikepoint Stripe

e Left is a cross-section of NSTX showing the “shelf-like” inner divertor plates.

e Right is the LIMIT concept: metal tiles with radial trenches containing lithium.
The trenches run in the radial (polodial) direction such that they lie primarily
perpendicular to the torroidal magnetic field.
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The ldea: “LIMIT” Design in HT-7

HT-7 Cross-section:

\ Toroidal limiter
Poloidal 1i
‘\%7 /?0
X

Belt limiter

Plasma primary
heat-flux location

e Left is a cross-section of HT-7 showing the toroidal limiter.

e Right is the LIMIT concept: metal tiles with radial trenches containing lithium.
The trenches run in the radial (polodial) direction such that they lie primarily
perpendicular to the torroidal magnetic field.
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Lithium Flow in the Trenches is Self-Driven

D.N. Ruzic, et al. Nucl. Fusion Lett. (accepted, to be published )

The top surface of the Li

iS hOtter than the su rface Heat ﬂ Uux Lithium - Metal Infused F"l‘“lll'seil(l;h]essegli‘cile\;[IT) for Heat Removal in
that IS deeper Therefore 'D. N Ruzic, 'W. Xu, 'D. Andruczyk and M. A. Jaworski

1 !Center - for Plasma-. Uar lI teractions, mel ent of Nuclear, Plasma and Radiological Engineering,
there IS a VERTICAL )‘) of Illinois at Urbana- C/(mp aign, 61801 IL, US4
temperature gradient Hot F P IonP/asmaP/) s Laboratory, NJ, USA

Li row

stainless
steel plate

0~4MW/m? Li channel
heat flux

@B

Water coolin
at bottom g Back flow channel of Li

Cooling channels
Outlet Inlet

Passive Li replenishment

e Concept for heat removal using TEMHD. The Li flows in the slots of the metal
plate powered by the vertical temperature gradient. This vertical temperature
gradient generates vertical current, which when “crossed” by the torroidal
magnetic field, will create a radial force on the Li driving it along the slot. This
flow will transfer the heat from the strike point to other portions of the divertor
plate. The bulk of the metal plate could be actively cooled for a long-pulsed
device or passively. Under the plate the Li flows back naturally.
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To really observe flow: sprlnkle dust on the I|th|um |

We added a tray to hold

some lithiumoxide dust and

hit the device with a

hammer to knock the dust ¥ T —
onto the tray. It worked ! field

Powder direction
dropper

Beam
tray
& N

Direction

current of lithium
direction ™
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Show Movie: “moving impurities (top view)”

The top view movies are shot through a
mirror, so the flow in these frames is from
top to bottom.
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Four Frames that Show a Moving Dust Grain

Top-Down view. Due to the mirror, the flow in these pictures is from top to bottom.

This frame by frame video capture allows one particle to be tracked.
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Show Movie: “four-frame sequence (top view)”

The top view movies are shot through a
mirror, so the flow in these frames is from
top to bottom.
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A Different Four-Frame Sequence

This one is first visible even more toward the edge of the tray.

We have movies from the side port as well.
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Show Movie: “moving impurities (side view)”

The side view movies are shot looking directly
at the tray, so the motion is from  left to
right.
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Calculation of the speed of the flow

e The time between each frame is 1/25 s. The total length of the
moving trace is measured and divided by the time interval.

e From four independent sequences, analyzed by two different
methods the flow speed in the channels was determined to
be: 22.1 +/- 3.1 cm/s
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IR pictures of Stainless Steel (400 W) b

Note that rf interference in this picture Electron Beam Heat Stipe

produced the vertical lines and waviness
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Heat clearly moves to the right — the direction of the TEMHD lithium flow
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y-position (cm)
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IR images when reversing the magnetic field
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° !jR tcagn?ra measurement of the top surface shows an uneven temperature
istribution.

e \When the direction the magnetic field is changed, the direction of the flow is changed.
So is the temperature distribution.

e Although the heat flux at the heating area is about 4MW/m? the temperature increase
at the heating area is not very high. A lot of heat is brought away by the flowing
lithium to the outlet area.

e From IR camera movies we can also get an estimate of the flow velocity. A value of
0.15 +/- 0.07 cm/s was measured.
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Predicted velocity by the analytic model is 0.18 m/s.

Measured velocity from movies is 0.22 +/- 0.03 m/s

Velocity inferred from IR measurements is 0.15 +/- 0.07 m/s
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Experiment setup for thermocouples

The top surface of the Li is hotter. Therefore '
Z

Mirror for
Camera

i

Electron

there is a VERTICAL temperature gradient

E-beam
.
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Cool | Passive Li flow > / é / y. )
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e The lithium tray is tilted to a small angle
with the magnetic field. The electron
beam is used to provide the heating
while the magnet can generate about
600 Gauss magnetic field parallel to the
tray surface.

e The stainless steel trench is 2mm wide,
1cm high and 10 cm long. The back flow
channel is 5mm thick.
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Crossing the melting point =

e Magnetic field is 350G. 1500 Jr =

Heating power [W]

e TC3 and TC4 are in the same  soo |

0 1 1 1

channel and TC4 is closer to

200 F

the heating area than TC3. o b Temperawre of T 1614
e Temperature difference is e -
negative when lithiumis solid oo 7] .
and positive when lithium is 00T eate)
100 T t TC2 [C -
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e \When the tray is placed horizontally =

; . 270 ' —
(red) the magnetic field is parallel to s} Lemperature of TC2 [C1
the thermoelectric current and 216 - _

therefore provides no force. The W]

magnetic field and power are 44 Outlet temperature_TC3 [CL

unchanged. s E

] 387 [ L 1 L 1 L 1 L 1 1 ]

e No driven force, no flow. 344 _ Inlet temperature_TC4 [C]-

301 -

e Without the flow, the temperature is 258 [/ f’j o —
significantly higher during and after 0o o a0 s s o

the heating(30s). Time (s)
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e From previous swirling flow
experiment we found that
when the magnetic field is on
the flow can exist for a long
time. Red line: B stays on.

e After the heating, if the
magnetic field is on, the inlet
temperature keeps increasing
for about 3.1 seconds and then
starts to decrease.

e If the magnetic field is
immediately turned off, the
temperature decrease will be
slowed down since the flow
stops.
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e The swirling flow 600 |
experiment reveals that ‘Z‘gg :
the flow speed is ol
dependent on the 2040 1
magnetic field strength. ... |

e \When the magnetic field

is higher, there willbe @ s
higher temperature 297 |
difference between inlet Ses

and outlet. 319 |

290

261 |
42
28
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With different magnetic field strength
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How to use this in High Fields ?

e [0 ensure a return flow in
a high field we need to
maintain temperature
gradient even outside of
the plasma heat flux zone.

e This will be built by the
Chinese and tested in
HT-7 in April/May 2012

o AT LA Rk

. . Gl T
olt will go on their Cooling channels
retractable limiter and be Inlet‘
diagnosed with TCs and Lithium reservoir \ "
visible fast-framing Heaters

camera
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)

Retractible Liquid Li Limiter Tray on HT-7
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Limits on LIMIT:

e Temperature gradient in

radial direction (poloidally 1 dT
along divertor) causes a JTEMHDI = T 05

thermoelectric current in

the radial direction.
_ For dT/dz = 2000 C/m, and C and S from

® T his causes a force earlier, the parrallel current is 9 x10* A/m2

upward (or dOWﬂWGFd). The total current along the Li trench is then
_ 0.45A and the force from the TEMHD is

e The capillary force from 0.045N upward.

the Slde Wa”S balances The capillary force is 0.3N/m at 300 °C. So
t’]is ejecti()n force WhICh the capillary force which constrains ejection
. ’ is about 0.06N.

is why the channels have "

to be narrow (OI’ flame The capillary force is larger so Li won't be
Sprayed to give more ejected into the plasma.

surface area)
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Limits on LIMIT: Heat Flux

e Heat can be removed in three ways. | will use Leonid
Zahkarov’'s back-of-the-envelope numbers here:

e By convection with the Li flow oTE 6
For NSTX ~ 24 MW/m? bt = B,

ForHT-7 ~ 6 MW/m? -
o,gvT N 1.5 AT‘J‘S

e Conduction through the metal (SS) QL yw/m? = 5— 000
For NSTX or HT-7 ~ 3 MW/m? 050 AT
e Conduction through the lithium QY W 2 = ; — 500
! lmm 4 “

For NSTXor HT-7 ~ 10 MW/m?2

The real way to do this is with a 3-D Fluent calculation:
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Conclusions

e Experiments have shown that TEMHD can remove heat
fluxes using flowing lithium. Lithium flows fast enough to
present a clean surface to the plasma, ready to absorb D.

e The more heat that hits the lithium, the faster the LiIMIT
system will take the heat away. TEMHD can be used to drive

flow in return legs as well to overcome magnetic drag from
high fields.

eBoth LTX at PPPL and HT-7 in Hefei have expressed interest
In testing this LIMIT concept soon. It would also be possible
for the NSTX upgrade.

e Using TEMHD to remove high-heat-flux may allow a low-
recycling, lithium PFC solution for the future of fusion which
could lead to a smaller / cheaper / better reactor.
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