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Scopes of UCLA PFC Efforts

= Joining technique development for Be/F82H (Ph.
D. dissertation- near completion)

= ITER FW/shield blanket thermofluid and
structural design analysis (supplemented by SNL
US ITER FW/shield design work)

= Exploratory study of He Impinging jet for FW
High Heat Load Removal (Master thesis)

= Revisiting liquid metal free surface flow and heat
transfer (Modeling)

UCLA



A Cu interlayer to increase ductility and Ti to block diffusion, Be
bonded to F82H with a shear strength of 168 MPa

Three challenges must be m

overcome to bond Be/F82H

* HIP temperature, if too high, HIP
affects material properties Be <—>| F82H

* Differential thermal
expansion causes significant
residual stress

 Be forms brittle Cu (10-30 pm)
intermetallics with most Ti (5-25 um)
elements * Impede Be diffusion with a

diffusion barrier and controlled
~ fabrication temperature
F82H G
* Insert a ductile interlayer
between substrates to absorb

Be-Fe intermetallic differential thermal expansion




Numerical modeling performed to determine fabrication

processes/parameters and interface stress state
Copper layer reduce residual stress at interface near
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With 10pum Ti and 20pum Cu, joint withstood 150 MPa
tensile load

TR

* Beryllium-titanium form thin
intermetallic

e Titanium-copper forms CuTi and
Cu,Ti (can be problematic)

 Copper-F82H are insoluble
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EDS and WDS conducted at UCSD Proposed joining technique:

* 20um Cu ductile interlayer

* 10um Ti diffusion barrier

* HIP at 700-750 °C for 2 hours @ 103MPa

An oral presentation will be given at the ICFRM

* Ti thickness determined via vacuum
annealing experiments



Impinging jet concepts for FW high heat load removal
(an exploratory study- conducted as a master thesis)

The FW is an integrated part of the blanket in order to minimize the
structural contents and ensure adequate tritium breeding.

ITER adopts a separate FW concept, which posts a challenge issue
concerning the design integration.

It has been recognized that a portion of the ITER FW will be exposed to
high surface heat loads (up to 4.7 MW/m?2.) A similar situation seems
expected for the FNSF/Demo. (There are also transient events.)

To accommodate this, hypervaportron channels are being incorporated
into the enhanced heat flux FW panels. The heat transfer is further
augmented by a sub-cooled boiling heat transfer mechanism.

Sub-cooled boiling heat transfer may not be possible for the FNSF/DEMO
FW design for power production (even for super-critical water).

The question is can a typical FW design with minimum modifications
remove ITER-like high heat loads within its structural temperature limit?
If not, what will the maximum allowable surface heat load be for RAFS?



FW and Blanket oo o

surface heat removal)
Typical FW/blanket 4
designs for DEMO

Stiffening structure
(resistance to accidental in-box
pressurization i.e He leakage)

He collector
system (back)

Typical FW:
rectangular duct
with some surface
roughness to
enhance heat
transfer

FW panel attached to the
Shield Block through Bolts




Low temperature water not practical for fusion reactor

application

Crlagy o Magnitudes~ f(power, plasma physics,
SOL length, --) yet to be determined for

Heat flux (MW/m?)

FNSFIDEMO . min : 0.00 MW/m?

1st poloidal chamfer _ !
4.4 MW/m* | max : 5.5 MW/m

1st poloidal chamfer
4.7 MW/m?

1.0 MW/m?
2.0 MW/m?
3.0 MW/m?
4.0 MW/m?

Flow in hypervaportron 5.0 MW/m?

with heat transfer
augmented by
subcooled boiling

6.0 MW/m?

interpolated between t je for convection (RNG
k-¢ model) and FDB curves as given by Bergles
and Rohsenow.



Past thermo-fluid analysis revealed high heat transfer
removal capability possible for impinging jets
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Heat Flux (Mwim®)

A double tube with impinging holes FW

Mitteau
profile

0.2 04 0.6 0.8
Distance (m)

75.00 150.00 225.00 300.00
Velocity

tube
Outer
tube

Ribs may be introduced
into the pipe system to
enhance structural integrity

Jet hole diameter (d) = 0.6 mm
H/d=2

Velocity through the impinging holes
should be limited to < 300 m/s
(Marc < 0.3)



A double tube with impinging holes FW (Cont’d)

Surface Temperature at 1Imm
above impinging surface
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A T-Tube like He-impinging jet configuration
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A T-Tube like He-impinging jet configuration (cont’d)
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Previous work and current activity in lithium free surface flow
study for particle pumping and high surface heat flux removal

O HIMAG code has been developed, Lithium film height evolution
which is capable of simulating both (HIMAG calculation)
closed channel flow and free Lithium flows from inboard (CHI) to
surface flow with MHD effect. outboard and climbs uphill at a

O Benchmark numerical simulations
of MHD free surface film and jet
flows (without heat transfer) have
been performed .

O Effort is underway to include a heat
transfer model to study surface heat
flux effects and temperature
distribution in the HIMAG free surface
flow code

O Estimation of temperature field in a
liquid lithium film flow with high
heat_ flux depos_;ltlon on surface was NSTX like toroidal and normal fields
carried out at first hand. Initial velocity = 10 m/s

O Examination of the MHD effect on - Initial film height= 2 mm
low velocity flow (1 cm/s like flow.) « Film height ~5 mm at 30 cm

downstream

0.0020.0040.0060.008

0



A simple method for estimating surface temperature in
liquid metal film flow with high heat flux deposition
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Heat flux at surface: g = 7MW/m?
Film thickness: 0 =1

Inlet film flow velocity: V=10 m/s
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Velocity distribution in a liquid lithium film flow

without MHD effect
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Temperature distribution in a liquid lithium film flow



