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The PISCES-B divertor plasma simulator is
used to investigate ITER mixed materials PSI.

PISCES ITER (edge)
: - lon flux (cm?s™) 10"-10"° ~10"-10%
) PISCES-B IS Contamed lon energy (eV) 20-300 (bias) 10-300 (thermal)
within an isolated Safety T. (eV) 4-40 1-100
enclosure to prevent the n, (cm™) 10%-10" ~10"
release Of Be dUSt. Be Imp. fraction (%) Up to afew % 1-10 (ITER)
Pulse length (s) Steady state 1000
PSI materials C,W, Be C,W,Be ..
Plasma species H, D, He H,D, T, He
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PISCES-B has been modified to allow exposure of samples

to Be seeded plasma
PISCES —
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Outline of Presentation

* Erosion in the plasma environment
— Comparison to TRIM and 1on beam data
— Surface characterization
— Role of morphology

« Redeposition/sticking efficiency

* Summary
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Significant variations in the Be sputtering

yield are measured
PISCES —
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discrepancy between - JET - PISCES-B - 1on beam — TRIM - sputter yields
(<45%) (<0.4%) (<8%) (<3.5%)

R.P. Doerner et al | Journal of Nuclear Materials 257 (1998 ) 51-58
mere ournal of Nucie s J. Roth et al., FED 37(1997)465
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AES reveals a relatively ‘clean’ Be surface
during sputtering yield measurements
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Sputtering of Be with D: discrepancy in total yield

PISCES —
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PISCES-B corrections:

normalized sputter yield
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High JET yield can be explained by angle, Be self-sputtering & impurities.
PISCES yields are a factor of 5-10 lower than TRIM. Why?
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Similar yield evolution with time/fluence
IS documented in the literature
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HYDROGEN |ON EROSION YIELD
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factor of 2 reduction of the yield

UCSD R. P. Doerner, USDOE PFC Meeting, ORNL, Aug. 10-12, 2011

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘




Plasma atoms remaining in the near surface also can
reduce the sputtering yield by a factor of 2-3
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Morphology evolution and 20-50% D 1n implantation zone can
—. account for 4-8 reduction from TRIM estimation of sputtering yield
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Gross erosion 1s expected to remain constant
with increasing Be redeposition/influx

Erosion Rate (normalized units)
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« N=G*(1-R), where N = net

Current theoretical picture

2 ' ' ' ' erosion, G = gross erosion, R =
redeposited fraction
A ~ — e In HSCE.S-B, Gross = net
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RN . is large compared to 1,},,, SO
06 I N o - redeposition is small)
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0 , , . . > allow a controlled and
0 0.2 0.4 0.6 0.8 1

independent variation of the Be
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Erosion/deposition balance in Be seeded
high flux D discharges

yield (% Be per ion)

ion fluence: =10?2/cm?
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« Use Be oven seeding to balance
Mass loss
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No change 1n mass loss 1s measured when Be
seeding flux equals sputtering of Be by D

Mass loss
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ADAS database 1s used

Be flux from Be II (313.1 nm) and
background plasma flow velocity
(E. Hollman JNM, PSI-19)

Be ion flux is verified during no
bias discharges, when weight gain
1s measured (net deposition)

Net erosion stays constant,
implying gross erosion must
Increase

Erosion yield of 0.15% can only be
compensated by seeding 2.8% Be
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Beryllium seeded He discharges

Bel (457.3nm) intensity (a.u.)
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target:
bias: <-40V results in E = 30eV
He 1on flux: 5-10'8 cm2g-!
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10 <

M 4%
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Different behavior 1s observed experimentally
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What PMI issues are still unresolved
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Net Erosion — we believe we can explain the observed, low
sputtering yields in PISCES-B, due to surface morphology
and fuel atoms within the target surface (no Be seeding)

— How many gas atoms are in the surface during exposure?

Gross Erosion — drastic differences in behavior of gross
erosion during Be seeding indicates the simple theory
regarding the benefits of prompt redeposition may need to be
revisited

— 10 times more influx is needed to balance erosion and force net
erosion to zero

— Low sticking probability or high re-erosion possible explanations
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particle refelcetion coefficient
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Be seeding fraction (1.e. influx) 1s at most in the percent range,
so Be self-sputtering and Be reflection can be neglected
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