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Introduction 
•  Research is now being conducted at ORNL on a fully rf-based intense plasma source 

having the following features: 
–  Electrodeless 

•  inherently steady state 
•  low maintenance requirements 
•  lack of metallic electrodes and relatively low heat flux in plasma production region minimizes impurity 

generation 
–  Combination of helicon plasma generator with additional electron and ion cyclotron heating 

allows a wide range of plasma parameters to be produced at the target, without the need for 
biasing, and with possible high power fluxes up to 20 MW/m2 with particle fluxes (in the 
production/heating region) > 1023 m-2s-1   

•  A 15 cm diameter, high |B|, high particle flux helicon source has produced plasma 
densities ne > 4 X 1019 m-3, and operated at sufficient density (> 1019 m-3) with |B| ~ 0.5 T 
in the plasma production region, to produce required particle flux at source for a PMTS 

•  Operation of an ECH experiment for investigation of overdense heating  (whistler and 
EBW) in a linear geometry has begun 

•  Modeling in support of this work is underway using the versions of the Genray (ray 
tracing) and SOLPS (neutrals and plasma transport) codes modified for use in a linear 
geometry, as well as the EMS-2D (rf propagation and power deposition) code 



 Managed by UT-Battelle 
 for the U.S. Department of Energy     R. Goulding                   PMI 2011 Meeting 8/11/11             3/11  

The ORNL high-field helicon plasma source  

•  15 cm diameter electrodeless light-ion (H, D, He) plasma source 

•  EBT magnet coils – can produce 1.6 T maximum CW magnetic field strength 

–  Produce uniform field underneath antenna for optimum rf coupling to plasma 

–  Create downstream peak in magnetic field found experimentally to produce increased plasma production with hydrogen 

•  Water cooled half-turn helical antenna operated in air – designed for 100 kW operation, presently limited to ~ 
30 kW due to currently available rf power 

•  Aluminum nitride rf window (high thermal conductivity) 

Gas feed 

Magnetic field coils 

RF feed: 100 kW 
f = 13.56 MHz 

Water 
cooled 
endplate Cylindrical 

aluminum 
nitride 
rf window 

Antenna 
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He operation: high density and |B| have been 
achieved 

•  Plasma densities > 4 X 1019 m-3 have been 
measured both by Langmuir probe and 
interferometer 
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Plasma density vs time 
Pin = 23 kW, |B0| = 250 g, |Bprb| = 850 g, gas flow = 1900 sccm 

Plasma density vs time 
Pin = 22 kW, |B0| = 4850 g, |Bprb| = 3570 g, gas = 2000 sccm 
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Plasma density vs midplane |B| on axis 
Pin ~ 17 kW, gas = 2000 sccm 

Plasma density vs time 
Pin = 2 kW, |Bmid| = 300 g 
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|B| on axis for data shown above 
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interferometer
Langmuir probe

Probe: Isat I = 0.6 ni e v a                Te (est) = 6 eV   
Intererferometer: chord length = 3. 8 cm 

•  High density achieved with |B| ~ 0.5 T at 
antenna 

•  Maximum density vs |B| under antenna 
with constant mirror ratio 

•  2s pulses achieved w/high 
density plasma (symmetric coil 
operation) 

•  Density scaling w/power 
(symmetric coil operation) 

Plasma density vs time 
|Bmid| = 500 g, |Bprb| = 700 g, gas = 2000 sccm 

 
•  Broad plasma profile observed 

with high field operation 
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Plasma density vs radius 
Pin ~ 22  kW, , |B0| = 2700 g, gas = 2000 sccm 
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High density hydrogen and deuterium operation has 
also been achieved 

•  Plasma density > 6 X 1018 m-3 has been 
achieved with symmetric coil operation 
with hydrogen 

Plasma density vs time, H 
Pin ~ 20 kW, gas ~ 1000 sccm 

Plasma density vs time 
Pin ~ 22 kW, |B0| = 1020 gas = 1300 sccm 

Plasma density vs time, H 
Pin ~ 20 kW 

|B| on axis for data shown above 

•  Approximately same density at 3 X higher 
|B| achieved with deuterium (symmetric 
coil operation) 

•  Highest plasma density with H (and D) 
observed with 3 – coil operation 

Flux tube mapping
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Radial density profile for symmetric operation 
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•  Density dependence on |B0|, deuterium, 
symmetric-coil operation 

Pin ~ 22 kW, gas = 1300 sccm 

•  Density dependence on power, 
deuterium, symmetric-coil operation 

|B0| ~ 1000 g, gas = 1300 sccm 
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Higher power may increase range of 
magnetic fields at which high density 
can be achieved with H,D 
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•  Limited range of operation seen on mini-RFTF at low power density 
Magnetic field profiles Ion saturation current, low power, H operation Ion saturation current, high power, H operation 

Comparison of power densities: Mini-RFTF, VASIMR VX-50 
and High Flux Helicon  Y. Mori et al., Plasma Sources. Sci Technol 13 (2004) 424. 

260 86 173 433 520 347 B (T) 
208 125 291 374 42 B (T) 
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Successful microwave plasma production 
at high fields has been demonstrated 

•  Plasma formation has been successful 
at 18 GHz with high magnetic fields 
(~0.9 Tesla peak) 
–  High-field launch whistler wave coupler concept 

works 

–  A peak density of > 4x1017/m3 has been observed 
with an electron temperature of 6-8 eV (Te higher 
than helicon plasma) 

–  Our goal of producing a density of ~1x1018/m3 for 
over-dense whistler/EBW heating at 6 GHz is 
within reach 

–  Higher 18 GHz microwave power (>10kW) should 
be available soon with a higher-voltage power 
supply (testing week of 8/15/11) 

•  Heating experiments at 6 GHz are 
schedule for August/September 

Pressure = 3x10-4 Torr 
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Modeling efforts are underway 

EMS-2D – Helicon RF plasma heating  
• Accounts for B, n, profiles, geometry, antenna, heating 
• Benchmarks well with various Helicon measurements 
• Determines design and stable Helicon operating parameters 
SOLPS – plasma-neutrals-wall transport and interactions 
• Accounts for B, wall, and pump geometries; plasma n, Ti, Te; atoms, 

molecules, ionization, recombination, wall reflection, desorption, 
pumping, etc. 

• Benchmarked and applied to tokamak edge-divertor plasmas 
• Adapted to model linear Helicon, PhIX, PMTS with RF heating 
• Determines fueling-pumping configuration producing optimal plasma/

neutral radial/axial density profiles for RF heating 
GENRAY – whistler and EBW ray tracing and plasma heating 
• Accounts for B, n, profiles, geometry, launcher, elec. Heating 
• Benchmarked and applied to toroidal experiments 
• Modified to use Cartesian framework for linear devices 
• Determines launcher configuration and heating efficiency 
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Next Step: Produce combined Physics Integration 
Experiment (PhIX) to explore electron heating of a 
helicon-produced plasma 

100	  kW	  plasma	  produc0on	  
region	  (helicon	  source)	   Target	  

Ballast	  tank	  

Expansion	  tank	  

Magnet	  coil	  
Baffle	  loca0ons	  

Gas	  injec0on	  ports	  

20-‐100	  kW	  electron	  hea0ng	  
region(whistler/EBW)	  

Magne0c	  field	  lines	  Ceramic	  window	  

Helicon	  antenna	  and	  feed	  

Electron	  cyclotron	  
resonance	  –	  18	  GHz	  

•  PhIX integrates two existing experiments to explore outstanding issues in the development of an 
intense RF plasma source 

•  RF  helicon is efficient particle generator – produces plasma densities up to 3 X 1019 m-3 
•  High-field launch “whistler” or Electron Bernstein Wave (EBW) heating increases energy of plasma 

stream 
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Conclusions 
•  Experiments on a high power, high flux helicon device have produced the following 

achievements 
–  Operation with antenna in air at power levels up to 30 kW  

–  High plasma densities (> 4 X 1019 m-3 He, 2.6 X 1019 m-3 H,D) 

–  High B operation (ne~ 1.5 X 1019 m-3 @ |B0| = 0.5 T (He), ne~ 0.6 X 1019 m-3 @ |B0| = 0.1 T (D) 

•  Additional experiments planned at higher power levels up to 100 kW – should 
produce higher densities and allow operation at higher |B| with H and D 

•  Experiments have begun on a whistler/EBW heating experiment. Power supply 
problems have limited densities achieved to-date to below cutoff 

•  Genray and SOLPS/B2-Eirene have been adapted to linear geometry, modeling 
with these codes and the EMS-2D rf code are underway 

•  Beginning next FY, the helicon and whistler/EBW experiments will be 
combined to produce the PhISX device dedicated to an examination of 
overdense electron heating of a helicon-produced plasma  
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ICRF power has been efficiently coupled to a 
helicon produced D plasma in VASIMR VX-50 
experiment 
•  Deuterium, 230 sccm,  20 kW helicon + 20 kW ICH slow wave heating 
•  Single pass damping 
•  Average ion energy increased by 200 eV 
•  ICH heating efficiency ~ 80% 

E. A. Bering III et al., “Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma” 
Phys. Plasmas 17, (2010), 043509” 

VASIMR VX-50 

Ion energy distributions for 
different ICH power levels 
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