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• Description of empirical plasma reconstruction
• Langmuir probe overview and interpretation in 

NSTX
– Classical method
– Non-local method

• OEDGE modeling results and comparison with 
other diagnostics

• Discussion and next-steps

Outline of material
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What is empirical plasma reconstruction?

• Measurements in the SOL and divertor often widely spaced spatially – how 
does one relate measurements in different areas of the machine?

• Plasma model is utilized to produce single, self-consistent (if possible) 
background plasma for comparison to measurements at different locations

• Empirical plasma reconstruction utilizes a “bottom-up” approach

– Take target data and integrate up along field lines – generalized 
two-point method

– Can extract transport coefficients from resulting plasma
– Can prescribe plasmas otherwise difficult to model (e.g. 

detached operation)

• Fluid code methods typically utilize “top-down” approach

– Define power input at core boundary, solve 2D fluid equations

– Specify transport coefficients

• Both methods produce overall picture of the plasma that can be compared 
to experimental measurements
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OEDGE interpretative modeling code

• OEDGE: OSM (Onion-skin Method) + EIRENE + DIVIMP
– Developed by U. Toronto Group (PC Stangeby and JD Elder)
– Previously used on JET, C-MOD, DIII-D, MAST

• Onion-skin method
– 1D integration of fluid equations along field-lines
– Simultaneous solution of particle, momentum and energy 

equations for ions and electrons
– Relies on target data as input, coupled to EIRENE

• EIRENE
– Hydrogenic neutral transport code (developed by D Reiter)
– Uses Monte Carlo methods to calculate transport

• DIVIMP
– Impurity neutral and ion transport code (U Toronto)
– Uses Monte Carlo methods – specified cross-field coefficients, 

classical parallel transport
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Empirical reconstruction applied to NSTX

●Empirical reconstruction improves as 
the background is constrained with 
more and more data

●Provides framework for combining 
measurements and checking 
consistency between diagnostics

●Have begun comparing and 
constraining with: magnetics, 
Langmuir probes (target T

e
, N

e
), IR 

thermography (target q), midplane 
Thomson (T

e
, N

e
), midplane 

CHERS (T
i
)

●Still to be included:  pressure gauges, 
spectroscopy, bolometers, QDMs...

●First use: validate probe interpretation 
methods
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High-density Langmuir probe array in NSTX

• Situated between liquid 
lithium divertor plate 
segments

• Provides coverage over 
graphite and LLD PFCs

• Electronics developed for 
flexibility, speed and accuracy 
(U-Illinois collaboration)

• Provides high spatial density 
measurements of local 
plasma conditions

• Interpretation of Langmuir 
probes common issue

Diagnostic tile

φr

LLD

1

99

J. Kallman

2x7mm
electrode

J. Kallman, RSI 2010
M.A. Jaworski, RSI 2010
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The “classical” method of interpreting a probe

●Classical interpretation makes use of data up 
to floating potential (Tagle, PPCF, 1997; 
Matthews, PPCF, 1994)

●Historically, Langmuir probes yield high 
temperatures relative to other diagnostics
−G. Fussman, JNM, 1984 – Asdex 

Thomson system (indications of non-
Maxwellian distr.)

−J. Watkins, JNM, 2000 – DIII-D 
comparison with DTS (LP 
consistently low)

−A. Futch, JNM, 1992 – anomalously low 
sheath heat transmission coeff.

−PC Stangeby, PPCF, 1995 – proposed 
SHTC calculations resulting from 
non-Maxwellian EEDFs

●Significant payoff if properly assessed as T
e
 

indicative of myriad processes in SOL
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Physics available from probe measurements

Heat flux to a biased PFC

Physical sputtering Yield

●Local plasma conditions determine most 
of the processes impacting the PFC
−Surface heat flux determined by 

local plasma
−Sputtering determined by incident 

flux and impact energy
−Ionization rates of hydrogen and 

impurities determined by local 
plasma

●Langmuir probes can provide some of 
these parameters
−I

sat
, V

f
 directly measured

−T
e
, N

e
 interpreted from I-V 

characteristic
−More advanced probe interpretations 

can yield more information

See also: D. Donovan – this session
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Novel probe interpretation enables calculations of EEDF

• Recent developments open a 
means to interpret the entire 
transition region of electron 
current

• So-called, first derivative 
method relies on “non-local” 
probe regime

• Approximate form for integral 
equation developed by Popov 
and demonstrated on 
CASTOR (Popov, PPCF, 
2009)

• At right illustrates the 
determination of plasma 
potential from the I-V 
characteristic and derivative

I e U =−
8πeS

3m2 ∫
W−eU  f W  dW

γ W  [1 W−eU 
W

ψ W  ]
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Bi-modal plasmas observed in divertor

SOL Plasma

PFZ Plasma

●Two cases shown here: SOL and PFZ plasmas
−Tail temperature close to calculated value 

with classical method
−PFZ plasma just inside the separatrix is 

dense and cool and may show evidence 
of recombination

●General features of the plasmas examined so far
−Bi-modal character common feature
−Bulk population with lower temperature

●Beginning studies to model the distribution 
function for comparison with measurements
−Non-Maxwellian EEDFs predicted by 

Chodura, CPP,  1992 and Batischev, 
PoP, 1997, Tskhakaya, JNM, 2010 with 
kinetic codes 

●...but can we provide independent evidence 
that this interpretation method is valid?
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Langmuir probe input data: Classical vs. Non-local 1

●V
f
 and J

sat
 are fundamental data

●Steep descent in V
f
 used to identify 

separatrix location (c.f. Watkins, JNM, 
1997) – corresponds to peak in pressure 
profile

●Error bars indicate variability during period 
of data acquisition – natural strike-point 
motion produces smooth profile
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Langmuir probe input data: Classical vs. Non-local 2

●Density and pressure dependent on T
e
 

calculated from the two methods
●Hot electron population has  

temperature similar to those 
obtained by classical method (i.e. 
about 15-20eV SOL)

●Non-local interpretation indicates bulk 
plasma is much cooler than 
classical method would yield (2-5eV 
vs. 5-15eV)

●Variation in density due to T
e
 used, 

also modifies pressure profile 
slightly

●Both interpretations indicate significant 
density at target (>1e20)
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OEDGE Solutions at target

●Solutions shown from 
OSM+EIRENE

●Based on LP target data only
●Assumes high recycling wall for 

the time being (will constrain 
with spectroscopy when 
available)

●Attached plasma modeled for 
outer SOL and outer PFZ
−Focus of this talk is near 

target and SOL
−Detachment modeling 

ongoing on the inboard 
divertor leg

Classical LPs

Non-local LPs
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Non-local interpretation compares better with IR 
thermography

●Applied classical sheath heat 
transmission coefficient (γ=7.5)
−I

sat
 common to both cases

−T
e
 is the main difference

●Neutral atom heating of the PFC 
included as well as radiation 
heating 

●Mean target IR profile (on ATJ) over 
quiescent period shown at right 
(TK Gray, A McLean, ORNL)

●Non-local interpretation in better 
agreement with IR thermography
−Error estimated from LP density 

variance at present, 
sensitivity study planned

●Neutrals contribute about 30% of 
the strike-point heating

●Radiation contributes about 20%
●Neither well constrained in the 

model yet



MA Jaworski PFC-2011 15August 10-12, 2011

Comparison to midplane values

●MPTS and CHERS data provide midplane 
profiles but only provide “weak” constraints

−Spatial resolution is low relative to OEDGE 
mesh

−OEDGE typically compared to high-spatial 
resolution diagnostics such as 
reciprocating probes

●Plasma solution from target yields possible 
method for improving equilibrium 
reconstruction

−Provides means for specifying separatrix 
temperature with T

e
 leading to new R

sep

●Midplane data indicates T
i
/T

e
~3

−These simulations utilize T
i
=T

e
 at the target

−Implies that T
i,targ

>T
e,targ

 (Non-local sim.)

−Classical simulation implies T
i,targ

~10-15eV 

at the target plate
−More work needed to further clarify
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Impact energy estimate and further aspects of EEDFs

●Ion impact energy can be estimated from the 
Langmuir probe data and simulations
−T

i,targ
/T

e,targ
~3 based on OEDGE 

simulations
−V

p
 obtained from non-local interpretation 

method
−E

i
 ~ 40-50eV (vs. ~25eV for 5T

e,class
)

−Erosion measurements may provide 
some indication of validity of impact 
energy estimate

●Inferred EEDF modified during LLD 
experiments exhibiting reduced fueling 
efficiency

●Plasma-to-floating potential difference 
correlated with hot electron energy
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Next-steps and further modeling

●More experimental constraints of the 
divertor plasma will be applied
−Further refinements will be applied 

to better evaluate target T
i
 

−Sensitivity studies
−Further experimental tests of non-

Maxwellian obs. (e.g. 
identification of λ

ioniz.
)

●OEDGE fluid background will form the 
starting point for further kinetic 
modeling
−Kinetic modeling planned to 

compare observed EEDFs
−Non-local gradient effects 

(Chodura, Batishchev)
−Atomic physics (Tskhakaya)
−Fluctuation effects
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Summary

●Empirical plasma reconstruction described and contrasted with fluid 
modeling

●Importance of Langmuir probes to OEDGE methodology and 
implementation on NSTX described

●Non-local interpretation method briefly described and typical analysis 
result shown (i.e. bi-modal distributions)

●OEDGE framework used to compare classical and non-local probe 
interpretation methods

●Comparison of IR thermography with OEDGE heat fluxes indicates 
non-local interpretation method in better agreement

●Comparison with midplane data imply target ion temperatures ~1-3T
e
 

and D ion impact energy estimated to be about 50eV at target
●Further refinement and modeling is planned to examine the formation of 

non-Maxwellian EEDFs in the NSTX divertor
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Thank you!
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Backup: Classical method can be fast and reveals 
structure

• Simple comparisons from shot to 
shot often difficult
– Strong spatial gradients in the SOL 

result in sensitivity to position

– Constant plasma motion results in 
temporal variation

• Methods developed to utilize 
magnetic equilibrium 
reconstruction as position 
reference for probe array

• Provides the means of making 
comparisons between discharges 
on magnetic flux surfaces

Swept
Triple
Mean



MA Jaworski PFC-2011 21August 10-12, 2011

Backup: Trends in the classical method and machine

• Experiments in mid-run 
indicated possible changes in 
LLD performance
– Fueling increased will negligible 

impact on the core
– LLD heated by the plasma during 

this sequence 

• Two shots in sequence used for 
comparison avoiding discharges 
with significant ELM activity

• Observe a significant shift in 
floating potential with the later 
and hotter LLD discharges
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Backup: Increase in temperature due to increase in hot 
population fraction

• Increase in the amount of the hot 
electron population observed in 
the hotter LLD discharge
– Could point to reduction in 

inelastic energy sinks
– Reduction in gradient effects
– Both effects suggested in the 

literature via kinetic codes 
(Chodura, CPP, 1992; 
Batischev, PoP, 1997)

• Plasma potential reduced but not 
enough to explain the full 
decrease in floating potential
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Backup: This comparison of LLD discharges shows an 
increase in temperature at the divertor target

• Separation observed between two 
discharges
– Identical psi surfaces compared 

here (situated in SOL, outboard 
of I

sat
 peak)

• Most noticeable change is in the 
electron temperature channel

• Showing electron temperature 
calculated from V

p
-V

f
 and calculated 

from density-weighted bimodal 
temperatures

– V
p
-V

f
 method may be susceptible 

to “beams”

– Both show increase in T
e
 with the 

hotter LLD
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Backup: what population determines (V
p
-V

f
)?

 Both populations play role 
in determining (V

p
-V

f
)

 f
hot
*T

e,hot
 has best correlation 

to (V
p
-V

f
)
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