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Motivation
• Measure in-situ erosion for PFC components
• ITER Divertor Erosion Measurement 

Requirements
(P. Andrew, Nov. 2008)
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Nominal CO2 Laser 
Digital Holography Capabilities

• Frame rates from 500 Hz (256 x 256 pixels) to
1.5 kHz (128 x 128 pixels), or even 3 kHz (64 x 64 
pixels), or faster

• x,y Resolution ~9.1µ x F/#, e.g., 1mm @ F/100 lens
• z-Range—100 nm to 1 cm (single-frame) with dual-laser 

(two-color) system
• Time Response:  Frame rate, e.g. 2ms for 500Hz
• Camera—FLIR SC4000 or SC6000 QWIP or HgCdTe;

self-contained; Mil-Spec reliability; similar CEDIP or 
Sofradir available (30Hz uncooled Photon camera?)
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Simple Shearless Digital Holography Measurement
System with Michelson Geometry

• Simple Michelson 
geometry schematic for 
Shearless Digital 
Holography illustrating 
unsheared beams (no 
angle between the beams, 
U.S. Patent 79289253).  
The reference arm phase-
shaping element can be a 
stepped optical element 
and mirror or a diffractive 
or holographic optical 
element.
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Fourier domain processing enables the 
extraction of the complex wavefront

Autocorrelation

Sidebands

Digital Filter

Raw Digital Hologram Input intensity image

Spatial 2-D FFT

2-D IFFT of 
filtered & centered sideband

Output phase

~Two-Micron Feature Sizes
~300 nm Height
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Heterodyne Recording Draws much of the Energy 
from the Reference Beam

• The energy in the hologram is:

W ~ E1E2*
where E1 and E2 are the electric fields

• An object beam energy I1 that is 1% of the 
reference beam energy is adequate to form a 
hologram (note--E1~(I1)^0.5~10%).

• In fact, great care must be taken in system design 
to avoid reflections (slightly wedged windows, 
high quality AR coats, de-centered lenses)—
unwanted reflections are significant noise sources.
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Two Digital Holograms Can Be Recorded 
Simultaneously—Same Camera Frame

Sidebands

• For the object beam two beams 
at two different wavelengths/ 
colors are combined and 
traverse an identical optical 
path

• Digital hologram 1 at 
wavelength/color 1 is recorded 
with horizontal fringes 
(reference beam at a vertical 
angle to the object beam).

• Digital hologram 2 at 
wavelength/color 2 is recorded 
with vertical fringes (reference 
beam at a horizontal angle to the 
object beam

• A single forward FFT and two 
inverse FFT’s with different axis 
translation and filters process 
the holograms
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Dual Wavelength—slide 2 
• The complex (phase and amplitude) Image 1 is 

divided, pixel by pixel, by the complex Image 2.  
• Division results in subtraction of the two phases

exp[i(1 - 2)]
• This effectively forms a phase image with a 

synthetic wavelength, much longer than the 
original wavelengths:

s = (12)/(1- 2)
• For instance, if the two wavelengths are CO2 lines 

separated by 10nm, then the synthetic wavelength is: 
s = 1cm
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Pulsed Laser PFC Measurement

• A CW CO2 laser and Ge crystal AOM can provide pulses down to ~600 
ns, at 1 MHz, with ~92% efficiency (measured efficiency on two TDT 
systems)

• Required laser power ~20W
• Infrared cameras up to 640 x 512 pixels and sensitive to CO2 are 

available up to ~40 kHz @ 64 x 4 pixels (Window/Region of Interest 
measurement at frequencies over ~200 Hz)

• Nominal camera of interest is 320 x 256 at ~400 Hz. Frame-rate 
increases as number of pixels is decreased up to 40 kHz, FLIR SC4000 
LWIR.  SC6000 640x512 also available, similar frame rates

• Typical camera frame rates:
200Hz@ 640 x 512 pixels
400Hz@ 320 x 256 pixels
500Hz @ 256 x 256 pixels
1500Hz@ 128 x 128 pixels
3kHz @ 64 x 64 pixels
43kHz @ 64 x 4 pixels
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CO2 IR Laser AOM

M2

M3

~2X to 5X 
OAP BXM4

IR Camera
M5

Par BX

WPBS

Simplified Shear Corrected Digital Holographic Density Diagnostic Schematic

To/From Target Object

Power Meter

OAP 
L1

M1
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Minimum Theoretical Noise Level for 
Digital Holography

• Photon Statistics is the ultimate theoretical noise 
limit—for typical numbers of detected IR laser 
photons per pixel ~1/10,000’th of a wavelength is 
the photon noise limit (estimating ~10 pixels 
involved in the measurement)

• Thermal, laser, vibrations, or amplifier noise may 
(will probably ;-) )  limit sensitivity before the 
photon statistics limit is reached
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Flat-Field Correction For Removal of
Systematic (Repetitive) Noise/Distortion

• 3D image of photoresist on 
silicon, with no flat-field 
correction (HeNe laser example)

• Demonstrates the effect of no flat-
field correction.  Curvature of 
field from left to right can be 
noticed.

• A reference image can be 
subtracted from phase and 
amplitude to flat-field correct the 
object wave (e.g., image made 
before start of ITER shot flat-field 
corrects the in-shot images)

• Flat-Field Correction has taken 
out the field curvature in this 
phase image of copyright on a 
silicon wafer (note that diagonal 
steps are ~700 nm, again a HeNe 
laser example).
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Example Phase II IR Hologram Noise Level ~8nm Measured on 
TMC Table, FLIR SC4000 Camera, Access Lasy-20S Laser

• Digital Holography Phase Image, note SC4000 camera internal aperture
• First Hologram Flat-Fielded by Second Same-Conditions Shot, 

0.0009 fringes of noise

Path Difference, nm

Path Difference, nm
Image: 256 x 256 pixels
Surprise Aperture
SC4000, 256x256 ROI
No Flat Field
Reliable Data 
~165Wx256H pixels

SC4000, 256x256 ROI
With Flat Field
Reliable Data 
~165Wx256H pixels

~8nm noise, 0.0009 frng

Pixels

Pixels
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Vibrational Noise Removal 
• To first order, no vibration occurs during a ~100ns up to 

~20 microsecond laser pulse (motion is stopped—typical 
vibrations are kHz)

• To second order vibration between frames can show up as 
wedge (planar tilt) in the hologram, or path length change

• Tilt can be removed in software by fitting a plane and 
forcing the tilt to zero

• Higher Order vibrational modes create frame to frame 
noise (all diagnostics will see this--averages out for tiles).

• The diagnostic can follow frame to frame changes up to 
1cm with a dual-wavelength system, or frame to frame 
changes up to 10.6µ with a single-laser system
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Vibration Noise August 5, 2011

(nm)

pixels

Noise with 90 Hz 
high-pass filter, 
nm/Hz

Frame to frame noise
(phase image from one
frame subtracted from 
the next frame) is about
4 nm for 128 x 128 pixels
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CO2 Laser Digital Holography System
at PPPL

SC4000

Access Lasy-20S
9.1 micron CO2 LaserAOM

HeNe

Tower Return
Mirror

Small OAP

Large
OAP Mount
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CO2 Laser Digital Holography System At PPPL, 
View 2

SC4000

CO2

AOM

Power Detector

CW Beam
Pickoff Mirror

CO2/HeNe 
Beam Combiner
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A 2X OAP Pair Beam Expander, At PPPL 
Expands The Beam To ~Camera Image Size

1” D 2” FL
30-Deg OAP

2” D 4” FL
30-Deg OAP

Beam In

Beam Out
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Parabolic Mirror Pair Expands Beam Up To 7”

• Off-axis Parabolic Mirrors expand beam to as much as 7”
• Expander small OAP on left, collimator large OAP on right
• As assembled and mounted at PPPL, expansion is ~6.2X
• Parabolic Beam Expander Design and Mirrors Courtesy Dr. Don 

Hutchinson (ORNL, retired)
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Chrome On Glass USAF Test Target

• 3” chrome on glass USAF test target
• Target is very flat—reflections cause the mottled appearance
• Note Group 0 test elements 2, 3, 4, 5, 6 at center left
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• Elements 3, 4, 5, and 6 from Group 0 of USAF Target (1.26 to 1.78 lp/mm) ~F/26
• Line Profile in nm (divide by two for height/depth)

Phase I Hologram of Chrome On Glass USAF Test Target
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Phase I Focus Series of Chrome On Glass USAF Test Target

• Elements 3, 4, 5, and 6 from Group 0 of USAF Target
• Camera focal positions are ~1.27 mm (0.05 in) apart, so ~4 mm range
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Two of the Authors
(actually working on Phase II System ;-) )
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• Phase I System Data
• Time sequence of 

phase and amplitude 
images of plume from 
fast gas valve 
expanding into the test 
stand.

• No flow at 3 ms after 
trigger and fully 
developed flow at 6 ms 
after trigger

• Missing amplitude 
images represent a 
software opportunity
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Color-Coded Phase Images of Fast-Gas-Valve Plume

• Time-series of gas-plume images with colors assigned to phase-difference 
levels

• This can also be presented as a 3-D plot of Ar line-density vs. position,
or unfolded into a 3D density dataset by assuming symmetry
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Line Plot of n/nstp

Noise level is less than 0.001 atmospheres Ar
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The Phase II high-speed system will install on LTX very soon
(E. Granstedt, R. Majeski, R. Kaita)
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Discussion
• A very inexpensive system could be built with:

– Single 20Watt 10.6µ laser (~$30k)
– AOM (~$5k)
– Photon (or new generation) uncooled 30Hz 320x256 IR camera (~$12k)
– Balance of optics & table (~$20k)
– Recirculating closed-loop chiller (~$3k)
– Fast computer (~$4k)
– Pulse generator & oscilloscope (~$4k)
– Nominal total  ~$100k

• Would be capable of measuring erosion at 300 µ/sec
• Dual lasers (for large steps, ~1cm, on measurement area) 

would increase this by $40k—still only requires one camera
• A high-speed dual laser-system (up to 3kHz at 64x64 pixels) 

would add ~$400k to the cost of the system 
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