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Abstract: Synergisms Between Nuclear Hydrogen, 
Renewable Electricity, and Coal Liquefaction

Different hydrogen production methods have different characteristics. The 
defining characteristics of hydrogen from nuclear systems are: (1) centralized, large-scale 
production, (2) co-production of hydrogen and oxygen, and (3) availability of low-cost heat. 

Those characteristics may enable the large scale use of renewable electricity by 
providing a low-cost method to provide backup electricity when the sun does not shine and 
the wind does not blow. Centralized nuclear hydrogen couples with large-scale underground 
storage of hydrogen and oxygen. That combination potentially enables the development of 
low-cost methods to produce intermediate and peak electrical power. The use of hydrogen 
and oxygen in power conversion systems potentially results in much lower costs for 
intermediate and peak electricity production than power conversion systems that use 
hydrogen and air. 

In the context of coal liquefaction, coal liquefaction plants require large inputs of 
hydrogen, oxygen, and heat. The inputs match the outputs of nuclear hydrogen production. 
Coal liquefaction with nuclear hydrogen avoids greenhouse gas releases in the production of 
liquid fuels. For traditional coal liquefaction plants, more greenhouse gases are released in 
the production of liquid fuels than in the burning of liquid fuels.



Nuclear Hydrogen Synergisms

• Nuclear hydrogen (H2) synergies are applications 
where the characteristics of nuclear-H2 systems 
combined with the user needs result in economic 
savings relative to other methods to produce H2
− WIN ─ WIN

• The extra value for nuclear H2 in these markets is 
a result of one or more characteristics of nuclear 
H2 relative to other H2 production technologies
− Co-production of H2 and oxygen (Fossil systems only 

produce H2)
− Centralized large-scale production
− Availability of heat



Nuclear Hydrogen For Peak 
Electricity Production

An Enabling Technology for 
Renewable Electricity



The Challenge

Characteristics of the Electricity 
and H2 Markets

Characteristics of Energy Sources



Electricity Demand Varies with 
Time-of-Day, Weekly, and Seasonally

(A Large-Scale H2 Economy Will Have Similar Characteristics)
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The Price (and Cost) of Electricity at 
Times of Peak Demand is High
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Different Electricity Sources Have 
Different Economic Characteristics

HighLowFossil

LowHighRenewables

LowHighNuclear

Operating 
Cost

Capital 
Cost

Energy 
Source

“Base-Load” Operations are Required for
Low-Cost Nuclear and Renewable Electricity
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Hydrogen Production Options

Norsk Atmospheric Electrolyser

• Near term: Electrolysis
− Base-load
− Night-time and weekend

• Longer term (Nuclear 
or Solar)
− High-temperature 

electrolysis
− Hybrid
− Thermochemical



Different Hydrogen Sources Have 
Different Economic Characteristics

HighLowFossil

LowHighRenewables

LowHighNuclear

Operating 
Cost

Capital 
Cost

Energy 
Source

“Base-Load” Operations are Required for
Low-Cost Nuclear and Renewable Hydrogen



Large-Scale Renewable 
Electric Production May 
Not Be Viable Without 

Electricity Storage

• Large-scale electric 
renewables (>10% of 
electricity) requires delivery 
of electricity when needed

• There are windless days,  
cloudy days, and night

• Backup power is expensive
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Limited Electricity 
Storage Options —

< 1 Day Capacity: Not 
Match Renewable Need

• Hydro Pump Storage
− Storage for hours (Water 

volume)
− Example: TVA Raccoon 

Mountain →
• 1530 MW(e)

• Compressed Air 
Energy System

• Flow Batteries



A Potential Solution To Produce 
Lower-Cost Peak Electricity

The Hydrogen Intermediate and 
Peal Electrical System (HIPES)



Hydrogen Intermediate And Peak Electrical 
System to Meet Variable Electrical Loads

(A Daily, Weekly, and Seasonal Solution to the Renewable Electrical Storage Problem
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Hydrogen Production Options

Norsk Atmospheric Electrolyser

• Near term: Electrolysis
− Base-load or night-time 

electricity
• Longer term (Nuclear 

or Solar)
− High-temperature 

electrolysis
− Hybrid
− Thermochemical



Hydrogen (Like Natural Gas) 
Is Stored Underground

Salt 
Formation

Shaft Shaft

Water

Storage caverns in 
hard-rock formation

Water 
compensation 
column

Surface lake

Shaft

Other rock 
strata
Impervious 
caprock

Porous 
rock air 
storage

Water

Current
Hydrogen
Storage

U.S. Natural-Gas Storage Volume 
Equals 1/3 Annual Consumption



Large-Scale Hydrogen 
Storage Is Inexpensive
• Commercial technology in salt
• Not currently commercial in other geologies
• Based on natural-gas storage technology
• Small-scale H2 storage is expensive

Chevron-Phillips Clemens Terminal
(160’ X 1,000’ Cylinder Salt Cavern)



Underground Bulk H2 Storage Cost 
1/100 of Other Technologies

(Same Technology Used for Natural Gas)

Shaft

Other rock 
strata

Impervious 
caprock

Porous 
rock air 
storage

Water

Constraints*  
Economics demands 

high-volume H2 storage

>1010 ft3/facility

Capital Cost: $0.80-1.60/kg H2

Centralized H2 production 
avoids H2 collection costs

*Based on Natural Gas Experience



Oxygen Storage Minimizes HIPES Costs 
Per kW(e); But, It Creates Challenges
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Oxygen
Storage

Oxygen
Plume

• Store underground like H2
• Potential O2 hazard is a ground-

level plume (difficult to transport)
• Avoid hazard by heating O2 before 

storage (Oxygen rises if it escapes)
− Heat input from heat source or inefficiencies in 

the H2 production process
− Significant R&D required

• Other options



HIPES Requires Low-Cost Efficient 
Conversion of H2 and O2 to Electricity

• Hydrogen production systems operate at high 
load factors to minimize H2 production costs

• Storage is cheap
• Hydrogen-to-electricity systems operate a limited 

number of hours per year
− Require low capital costs per kW(e)
− Require high efficiency

• Multiple options based on H2 and O2 feed
− Steam turbines
− Fuel cells



HIPES Steam Turbine For Electricity*
(Low-Cost Conversion of H2 and O2 to Electricity)
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• Nuclear H2 “extra 
value” synergies
− H2 and O2 available
− Size

• High-temperature 
steam cycle
− H2+ O2 → Water

• Low cost
− No boiler
− High-efficiency 

(70%)

Steam

1500º C

Hydrogen

Water

Pump
Condenser

Burner

Steam
Turbine

In
Out

Cooling
Water

Generator

Oxygen

*20 MW(t) natural gas + O2 → Electricity
demonstration underway by Clean Energy Systems



Clean Energy Systems Is Developing a 
Natural-Gas/Oxygen System

Technology Applicable to HIPES; 
Technology Being Developed for Advanced Fossil Fuel Plants
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• New system
• Feed: H2 and O2

• Major Components 
(Low capital cost)
− Combustor
− Steam turbine
− Electric generator

• Efficiency: 70%

• Commercial (Natural-
gas electric plant)

• Feed: H2 and air
• Major Components

− Combustor
− Gas turbine
− Steam boiler
− Steam turbine
− Electric generator

• Efficiency: 54%

Hydrogen to Electricity Options

HIPES                 Combined Cycle



HIPES May Enable 
Large-Scale Renewable Electricity

• Addresses the renewable electricity challenge: 
economic backup power when needed

• HIPES matches nuclear H2 characteristics
− H2 and O2

− Large scale to match storage characteristics
• No collection of H2 from dispersed sources
• No long-distance transport of O2

− Heat
• Grid electricity-electrolysis variants of HIPES 

increase the demand for base-load electricity
− Other challenges



Nuclear Hydrogen For Fossil 
Liquid-Fuels Production
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The Age of Oil for Fuels is Closing
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Conventional Futures:  Liquid Fuels  
From Heavy Oils and Tar Sands

(Fossil Input: Low H2-to-Carbon Ratio Feed)

• Liquid fuels have a high 
H2-to-carbon ratio

• Tar sands and heavy 
oils are converted to 
liquid fuels by:
− Addition of H2

− Removal of carbon with 
carbon dioxide ultimately 
sent to the  atmosphere

• Implies major increases 
in greenhouse gas 
releases (CO2) per 
vehicle mile

Syncrude Canada Ltd. 
Tar Sands Operations



Conventional Futures Imply Increasing 
Greenhouse Emissions per Mile Traveled
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Nuclear Hydrogen can Increase Liquid Fuel 
per Unit of Feedstock and Reduce Emissions
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Synergistic Alternative:
Fossil and Nuclear H2

Hydrogen sources:  nuclear, renewables, and 
coal with carbon dioxide sequestration



Coal Liquefaction Needs Match 
Nuclear Hydrogen Capabilities

• Centralized inputs to coal liquefaction plant match 
centralized nuclear H2 plant outputs
− Hydrogen
− Oxygen
− Heat

• Nuclear H2 can eliminate greenhouse gas releases 
from the coal liquefaction process
− Cut total greenhouse gas releases from liquid fuel 

production and consumption in half per vehicle mile
• Nuclear energy replaces coal as an energy source 

for process energy and H2 demands



Fischer-Tropsch (FT) Liquid Fuels
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Conclusions
• The initial markets for nuclear H2 will likely be 

where nuclear H2 provides “added value”
• Synergy: Hydrogen Intermediate and Peak 

Electrical System
− Nuclear outputs (H2, O2, and heat) match HIPES needs
− Entire system is owned by the electric utility

• No separation of H2 producer from user
• Utilities familiar with nuclear operations

• Synergy: Liquid fuels from coal
− Nuclear outputs (H2, O2, and heat) match coal 

liquefaction inputs
− Avoids massive greenhouse impacts of coal liquefaction

• Need to develop technologies to take advantage 
of potential synergisms



Added Information
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Fossil Fuels Are Used To Match 
Electricity Demand With Production

• Fossil fuels are cheap to store (coal piles, oil 
tanks, etc.)

• If fossil fuel consumption is limited, what 
alternatives have fossil-fuel-electrical system 
characteristics ?

• Systems to convert 
fossil-fuels to 
electricity have 
relatively low 
capital costs



HIPES: Grid Electricity and Electrolysis
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HIPES Fuel Cell for Electricity
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Alkaline Fuel Cell

• Reduced fuel cell cost 
and higher efficiency by 
using O2 rather than air
− Oxygen electrode limits 

performance
− Liquid electrolyte for active 

cooling at high power densities
− Potential for ~70% efficiency

• NASA shuttle uses 
alkaline oxygen-
hydrogen fuel cells



Fuel Cells Are Being Developed

• Alkaline fuel cells are a 
potential  replacements for 
gas turbines

• Cenergie developing 
industrial stationary alkaline 
fuel cell systems

• GE developing an alternative 
industrial stationary solid-
oxide fuel cell / electrolyzer 
system

• Potential for combined 
electrolysis-fuel cell system
− Fuel cell output >> 

electrolysis capacity
− Oxygen (rather than air) 

reduces cost and boosts 
efficiency

Cenergie alkaline-fuel-cell stack


