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The Boltzmann equation models the transport of a

stream of particles in the presence of a source

» The physical problem: a stream of particles collide with the nuclei of
matter resulting in

m scattering: incoming particles continue their flight but in altered directions
® absorption: incoming particles are absorbed
m streaming: incoming particles continue their flight in the same directions

streaming-collision scattering
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Discretization must be performed in energy, angle,

and space dimensions

Energy discretization: piecewise constant finite element
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Angle & space discretization:
Sn: collocation in angle & finite difference/element/volume-like in space

:Hn B, ;_1 41 170 W | | 0, 0o
I'Hz . Bz d'’Z: ‘ga q.2 —1
) .H : S [ [¢Im]: 1,0
Hnd B ndl//nq @ﬁ?]d qnd
Q. - 0 | - :i i Pl o CiHi_l i
281 C, - Cnd[ }j _[Ialmf ]'"_[%d]i ) Z ﬁi MM _ Pacific Northwest

3 NATIONAL LABORATORY



The full discretization leads to a coupled system of

integral equations
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The source/Picard/Richardson iteration is the basic

approach for solving the mono-energetic equation

» The scalar moments satisfy the integral equation
-1 -1
[1->CH, Bi][¢|m]: —2.CH;q,

» To solve for the moments, iterate
' -1 -1 -1
m =2CH B 4, —>CHq
B convergence rate depends on the ratio
(0,/0)

® acceleration techniques are needed
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There are several multigrid/multilevel approaches

for solving the Boltzmann transport equation

» DSA for Sn (Alcouffe, Brown, Larsen, Manteuffel, Morel, etc)
® can be viewed as a two-level multilevel in angle
® apply multigrid in the DSA preconditioner (spatial multigrid)
®m limited to isotropic scattering (Brown)

» PN (Austin, Chang, Lee, Manteuffel) mono-energetic
® requires solving large, strongly coupled systems of PDEs

® many terms of the spherical harmonic expansion are needed for forward
peak problems (Gibb’s phenomena)

» TSA for Sn (Adams, Nowak, Ramone) multi-energetic, anisotropic

® multilevel in angle i
) mono-energetic
» Integral equation approaches fo Sn (Kelley, Klar, Lee, Seaid)
® multigrid applied to the integral source Tteration equation
® multigrid in space (+ angle and energy)  multi-energetic, anisotropic
® can be viewed as multigrid/Gauss elimination applied to the Sn system
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There is an important distinction between multigrid

and general multilevel methods

» A multilevel method solves a system using multiple levels, not
necessarily taking advantage of the spectral properties of the system

® e.g., DSA & TSA are multilevel methods that attempt to resolve the smallest
spectral component (diffusion limit). They do not resolve the full spectrum.

m DSA & TSA use different equations on the different levels
® approximating this spectral component requires consistent DSA

» A multigrid method is a multilevel method that solves a system using a
hierarchal decomposition of the spectrum

® implies that the same base continuum equation must be used on each level

m coarsens and removes spectral components at a conservative rate (gives the
so-called good approximation property)

® e.g., energy-space-angle multigrid applied to the integral equation
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Multigrid achieves its efficiency by handling the
spectral components in hierarchal manner
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Multigrid achieves its efficiency by handling the

spectral components in hierarchal manner

> C/HB,

ALR¢LR Z=[| IR- KR ] ¢LR:qLR

SKMG(AR,gR, 4%, IR)
1 . ¢IR _ SrCItIR(AIR,¢IR,qIR)
2. rIR — qIR _AIR¢IR

3. WIR _ KIRrIR

5. SKMG(AR", q”", 4R IR —1)
6.¢IR :¢IR +PIR¢IR-1

4, q'R'1 = R'R'1W'R, ¢'R'1 =(0 spatial cparsening
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The original space-angle multigrid method

conservatively removes the spectral components

spatij)al coarsening

—> >— 5—> - each angle branch coarsens in space

_g’\.‘ S— > > 53 - angle coarsening captures the near null-space;
S spatial coarsening captures the spatial variations
0
=Y > > o3 of these angula_r near nuII-spac? c_omponents.
S Spectral analysis shows that this is needed.
L -
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Space-Angle Multigrid Cycle

coarsening in angle

MGANgle(A™R =R gEeR 10) coarsening in space
1.¢IE,IQ,LR ZSIE,IQ,LR(AIE,IQ,LR CIIE,IQ,LR ¢IE,IQ,LR LR) ‘ SIE,IQ,IR(AIE,IQ,IR qIE,IQ,IR ¢IE,IQ,IR |R)

2. rEIR — gEIOLR _ ARIRLR yEIOLR 1 ¢|E,|Q,|R — GMRESE2R (AIE,IQ,IR, ¢IE,IQ,IR’ qIE,IQ,IR)
3. qFIR SR RALR CgRIR _ g 2 rEIRR _ GEIRR _ AEIQR JEQIR

4. MGANgle(AEIOLR qELR JEOLR |0y 1) 3. qFIRT _ RRIEIRR | gEQIRT _

5. ¢'E"Q’LR = ¢'E"Q’LR + PIQ¢'E*'9‘“—R 4 SEQR ( AEIQIR- qIE,IQ,IR-1’ ¢IE,IQ,IR-1 IR-1)

5. ¢IE,IQ,IR =¢IE,IQ,IR +PIR¢IE,IQ,IR-1
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Energy-Angle-Space Multigrid Cycle

coarsening in enerqy \(9 spatial coarsenin _ S
IELQLR IE.LQ,LR IELQLR ge-o i _’w
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2 rIE,IQ,LR
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5.¢IE,IQ,IR =¢IE,IQ,IR +PIR¢IE,IQ,IR-1 f/
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Why it works: captures the space-angle features of

the near null-space components

» Coarsening in space and angle effectively reduces the near null-space
components, which have space-angle features

® angle features of near null-space:

(I1-K)p=0 =>¢~Kg =[H (0.¢)dQ =[w(x,Q)dQ =P w

W, Q)] = [Pw] +[(1 =P )w]
=gl + [ = P)wl,

But by regularity

[QeV+ow=cg = |w

O
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Why it works: captures the space-angle features of

the near null-space components

» Coarsening in space and angle effectively reduces the near null-space
components, which have space-angle features

® angle features of near null-space:
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® near null-space exists if — ~1
o

® angular flux W(X, Q) is essentially isotropic on “average” since the integration is
over the spatial domain

# can be locally anisotropic, especially for anisotropic scattering
¢ isotropic ) coarsen in angle
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Why it works: captures the space-angle features of

the near null-space components

» Coarsening in space and angle effectively reduces the near null-space
components, which have space-angle features

m spatial features of near null-space:

® use the isotropic characteristics of the angular flux to determine the
spatial smoothness

d —?o‘t (x—tQ)dt

w(x, Q) = Ie o (X—sQ)g(x — sQ)ds

strongly anisotropic if spatially oscillatory

1 xeA
near null-space: ¢(X)=4 0 xeR/(AUA)
00 xeA

near null-space locally spatially smooth

7
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This technique exposes the subtle necessity of

angle coarsening

» Near null-space is a scalar flux (independent of angle), so why coarsen
in angle?

m wrt the solver, cannot view the near null-space of the integral equation itself;
must consider the angular flux generated by this scalar flux.

® can be viewed as coarsening the integral kernel H_1crS

® angle coarsening must be performed to capture the angle variations of
the “near null-space” angular flux

Isotropic in optically thick region and anisotropic away from region.
Stronger (absolute) isotropic component near optically thick region.
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This technique can be used on more general

Boltzmann equations

» Anisotropic scattering: a similar set of near null-space can be
determined

m components couple more strongly in angle (Wigner 3j-symbol coupling)

m form of near null-space indicates that spatial semi-coarsening multigrid
cycle trees are more appropriate

» Multi-energetic equation: near null-space exists only if algebraic
relations involving the scattering and total cross-sections hold

® space-angle structure similar to the mono-energetic case

®m algebraic relations reveal how energy coarsening should be performed
® generally should not coarsen by re-discretizing the energy integral
® energy coarsening guided by the algebraic relations

® appropriate for even for highly oscillatory cross-sections m ‘

1000 J
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Energy, space, and angle descriptions of the near

null-space lead to sparse coarsening strategies

Space-Angle Multigrid
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Energy, space, and angle descriptions of the near

null-space lead to sparse coarsening strategies

Energy-Space-Angle Multigrid

spatial coarsening
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Numerical Examples: Mono-energetic

» Continuous & discontinuous cross-sections and isotropic & anisotropic

scattering
10 10
0 a 0 a
a 0 a 0
; . 0 1 0
0 a 0 a
al 0 a 0
0 0
a= 64, 640
O'S’O _ =1
/‘t —0.9999 PG, h=J{)g . 64angles
5+5*(L, —1,) Gmres sweeps
0% =0.9*(0.9999) O<i<L V(1,0) treecycles
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Numerical Examples: Mono-energetic

Semi-
Problem Tree
coarsening

0 1 2 3
full 3 3 4 4
spatial ;mﬂ
64 sparse 3 3 4 4
— full 5 6 5 5
angular iE
] sparse 6 10 10 9
continuous o
full 5 10
spatial
sparse 6 12
640
full 6 9 10
angular
sparse 6 10 10 12
full 4
spatial
sparse 4 5
64
full 5
angular
discontinuous sparse 7 11 11 10
o _ full 10 8 9
e 12 10 9 11
sparse
640 - -
full 10 13 15 13
angular ot
21 sparse 14 17 21 O rory



Numerical Examples: Multi-energetic

, , . G .
X,E)—|dE o, (X,E > E)> o(X)-)  ocl(X)2«a
» Assumption: o (%.E) J ,0( ,) “ —> f( ) zgjo __( )
o, (X, E)—.[dEo-s(x,E—>E)2a O't'(X)—ijoa;'(x)Za
Existence & uniqueness of solution (Dautray and Lions, 1993)

» “Algebraic” coarsening of energy based on cross-section relations and
space-angle coarsening on each energy level

» Discontinuous cross-sections and isotropic & anisotropic scattering

ca| a ca a e=0.000001

a ea a ea

nnnnnnnnnnnnnnnnnn

ea a ea a

\ )M\U I
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Numerical Examples: Multi-energetic

» Cross-group scattering: o = os j<i -
g p g (EI . Ej )1_25 J -

O_ij = O-;i J > i 1:7

s, fission (J —i +1) wl

m patterned coupling:

1 3

» Scattering-to-total cross-section ratios: as strong as

o _0.999999 Ooim 209", 150
O-t O-t
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Numerical Examples: Multi-energetic

» Petrov-Galerkin spatial discretization
B |sotropic scattering, h= 1/64, 64 angles, 48 energy groups

Method

Space-Angle MG
Energy-Space-Angle MG

Mono-Energetic Jacobi

1
36

15
35 (8e-8)

Problem

2
5

5

100 (4e-2)

3
47

21

diverge
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Numerical Examples: Multi-energetic

» Petrov-Galerkin spatial discretization

B anisotropic scattering, h=1/32, 64 angles, 48 energy groups

L Method

; Space-Angle MG
Energy-Space-Angle MG

. Space-Angle MG
Energy-Space-Angle MG

; Space-Angle MG
Energy-Space-Angle MG

5 Space-Angle MG

Energy-Space-Angle MG

15

12

11

12

16

Problem

2
6
6
9
9

10

25
14
14

20

32
10
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Numerical Examples: Multi-energetic

» Petrov-Galerkin spatial discretization

B isotropic scattering, h= 1/32, 64 angles, 112 energy groups, Problem 3
_ &

7

M
” Q sag:oa sening
10001[
1]
Method Iterations
“Sparse” Energy-Space-Angle 12
“Full” Energy-Space-Angle 12
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Conclusions

» A multigrid approach for Sn discretizations of the Boltzmann equation
must resolve the spectral components in hierarchal fashion

m spectral components have energetic, spatial, and angular features

® coarsening must be done in all of these dimensions

® energy, space, and angle descriptions of the near null-space components guide the
coarsening strategy
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