Overview of Proton Beam Cancer Therapy

Wayne Newhauser, Ph.D.
Department of Radiation Physics, CNS Service
Houston
Acknowledgments

• Dr. Kirk for the kind invitation

• NIH/NCI through grant 1-R01-CA131463-01A1

• Many colleagues at The University Texas M. D. Anderson Cancer Center
Basic Economic Parameters (US)

- Population: 286 million
- Gross Domestic Product: $10 trillion
- GDP per capita: $35 thousand
- Health care spending:
 - 13% of GDP, highest in the world!
 - $1.3 trillion, or $4500 per capita
 - Yet ~46 million Americans are uninsured!
Basic Cancer Statistics (USA)

• Cancer Rates
 – No. 2 cause of death after heart disease
 – 1 of 2 men, 2 of 3 women will develop cancer
 – 1.2 million new cases per year (0.4%)
 – 550,000 deaths per year (0.2%)

• Breast, lung, and prostate most common
 – More than 50% of direct medical costs

• Survival increasing
 – 8 million American cancer survivors
 – About 3% of the total population!
Robert Wilson
Circa 1946
A Condensed History

1904 Bragg & Kleeman report ion energy loss curves
1910 Geiger reports “range-energy” relation for α’s
1913 Bohr postulates atomic nucleus
1919 *Rutherford* proposes existence of the proton
1932 Lawrence & Livingston report 1st cyclotron
1946 *Wilson* proposes proton therapy
1954 *Tobias et al* treat patients w/ 340 MeV p at LBL
1961 Kjellberg et al treat w/160 MeV p at HCL

Present Status: ~25 proton centers (6 in USA)
 ~50,000 patients treated
A Spread-Out Bragg Peak
CAX Depth Dose Curves

- Neutronen
- Cobalt-60
- Photonen
- Helium
- Pi-Mesonen
- Protonen

relative Dosis vs. Eindringtiefe
High-Precision Robotic Couch
Proton Gantry

13 m diameter

220 tons

SAD ≥ 2.7 m
Gantry Pit (Tsukuba University)

Roller Bearings

Rotating Mass
~200 T!!!
~12 m dia.
Proton Bldg Construction, NCC Korea

Courtesy J Kim
NCC, Korea

Hospital (existing)

Research complex (under construction)

Proton therapy facility (under construction)

Courtesy J Kim
PTC-H Side View

Accelerator Vault
Gantry Rooms
Fixed Beam Treatment Room
Experimental Room
PTC-H Treatment Level

- Experimental
- Large Field
- Ocular

Scanning Passive

Synchrotron

5 Passive Nozzles
1 Magnetically scanned nozzle
Nozzle
Snout
Couch
X-ray Tube
Image Receptors
Articulating Floor
Univ. of Tsukuba
Linac Injector and Synchrotron

Univ. of Tsukuba

70-250 MeV
8 \(10^{10}\) p/spill
2 - 6.7 s rep
0.5-5 s/spill
Stable beam properties (no feedback)
High reliability
Our Research: Reducing Treatment-Related Morbidity and Mortality

• Review the basics of stray radiation exposures
 – Guiding principles
 – Practical Methods

• Ex 1: Central nervous system cancer

• Ex 2: Prostate cancer

• Try to answer, “Are we doing enough?”
Review: Deterministic Effects

- Severity increases with dose, above a threshold
- Effect usually occurs after large doses
- Occurs hours, days, months or years after exposure
- Examples
 - Reduction in fertility
 - Cataracts

National Eye Institute
Review: Stochastic Effects

• Probability increases with dose
• Severity independent of dose (all or nothing)
• Principal effect after exposure to low doses
• Examples
 – Lung Cancer
 – Genetic effects
“Houston, we have a problem”

In a study published in the New England Journal of Medicine in 2006, which looked at outcomes in more than 10,000 survivors, CCSS researchers found that almost two-thirds of patients reported at least one chronic health problem, one-quarter had a severe condition, and almost one-quarter had three or more chronic health problems. Late effects reported most frequently in this study were second cancers, cardiovascular disease, kidney disease, musculoskeletal conditions, and endocrine abnormalities. The risk of developing a health problem related to cancer treatment in childhood increased over time.

Women face higher risks than men for late effects including breast cancer, cognitive dysfunction, heart disease, and hypothyroidism. Other factors influencing late effects include age at diagnosis, type of cancer, and types of treatment received. Radiation treatment, especially to the brain - and, in women, the chest - carries a high risk of long-term effects.

"Both the magnitude and the diversity of the long-term health effects have been striking," says CCSS principal investigator Dr. Les Robison of St. Jude Children's Research Hospital in Memphis. "At 30 years after their diagnosis, more than 70 percent of childhood cancer survivors have a late-effect chronic health condition."

From NCI Ca Bul, March 18, 2008 • Volume 5 / Number 6
Incidence of Second Malignant Neoplasms and Non-malignant Skin Cancer (CCSS)

- Cumulative incidence of SMN: 9.3%
- Cumulative incidence of NMSC: 6.9%
Solution: Charged Particle Beams Reduce Dose to Healthy Tissue
Background

• Radiation increases risk of second malignant neoplasms (SMN)

• Increasing concern about SMN
 – Escalation therapeutic dose
 – Earlier detection/intervention of first cancer
 – Increasing life expectancies
 – Evolution of radiotherapy treatments
“Does it make any sense to spend over $100 million on a proton facility, with the aim to reduce doses to normal tissues, and then to bathe the patient with a total body dose of neutrons ...”

Hall, Technol in Ca Res Treat 2007;6:31-34
Comparative Risk for SMN Following Proton RT v IMRT for Prostate Cancer

Fontenot et al, IJROBP 74 616-622 (2009)
4-D Model of Proton Nozzle
Monte Carlo Simulation of Treatment

- range-modulator wheel
- scattering foil
- range-shifting plates
- range compensator
- field-defining collimator

(log scale)
Range Modulation

From Chu et al 1993

From Y. Zheng, UTMDACC
Monte Carlo Simulation of Proton Treatment

Log Proton Fluence

Log Neutron Fluence

MDA’s HPC Cluster

- 1072 processor computer cluster
 - Linux (Red Hat derivative)
 - 268 nodes
 - Node: 2 Dual-Core AMD Opterons
 - 10 TB data storage
 - Infiniband interconnect: sustained bandwidth of 625 GB/s

- Biggest high performance computing environment within any Cancer Center in the United States dedicated exclusively to cancer research

- Smaller testbed clusters available
Ratio of Relative Risk

$$RRR = \frac{RR_{PSPT}}{RR_{IMRT}}$$ (Includes Neutrons)

Results: Fontenot et al, IJROBP 74 616-622 (2009)
Uncertainties: Fontenot et al, in preparation
RRR Dependence on Neutron w_R for Carcinogenesis

Prospective Randomized Clinical Trial of SMN Following Proton Therapy vs IMRT

- 2000 pts/y for 5 y

- 80% power to detect an RRR of 0.67 for developing SMN with 2-sided t-test at significance level of 0.05

- Obstacles
 - Duration of study: 12.1 years
 - Ethical issues associated with equipoise

Calculations courtesy of Mark Munsell, personal communication, 2009
Comparative Risk for SMN Following Photon CRT and IMRT versus Proton Therapy for Craniospinal Irradiation

- **Photon CRT** (6 MV, 1 field)
 - Risk: 55%
 - Rel. risk: 12

- **Photon IMRT** (15 MV, 9 field)
 - Risk: 31%
 - Rel. risk: 7

- **Protons** (SOBP, 1 field)
 - Risk: 4-5%
 - Rel. risk: 1

From Newhauser et al, PMB, 2009; Miralbell et al., IJROBP 2002
Methods Include Supercomputing Monte Carlo Dose Calculations

Figure 1. Monte Carlo simulation of particle fluences for the three craniospinal treatment fields. The upper plots represent the logarithm of the proton fluence, including primary protons and secondary protons generated via (n, np) reactions in the treatment unit and in the phantom. The corresponding lower plots represent the logarithm of neutron fluence, including neutrons generated internally and externally to the phantom. Note that the fluence in each plot was scaled to maximize the visibility of the shape of the distributions, not their magnitude. (A), (B) Cranial field. (C), (D) Superior spinal field. (E), (F) Inferior spinal field.

Newhauser et al, PMB, 54 2277-2291 (2009)
Conclusions on 2nd Cancer Risk

RCT data unavailable for advanced RT modalities

In-silico RCTs can provide rigorous evidence for selecting treatment modality

In-silico case studies revealed lower risk following proton ν photon therapies

More evidence needed with increased rigor
End of Lecture