Radiation Effects in Microelectronics and the Missing Model

Talk to Nuclear Science & Engineering and Global Nuclear Security Technology Divisions at ORNL

Greg Walker
Department of Mechanical Engineering
Vanderbilt University

February 13, 2009

Collaborators:
Ron Schrimpf (Professor), Robert Weller (Professor), Robert Reed (Associate Professor), Jinhong Liu (grad student), Abdulrahman Albadri (grad student), Ashok Raman (grad student), D.M. Fleetwood (Professor), L.C. Feldman (Professor), Sriram Dixit (grad student)

Video of damaged device
Why Microelectronics?

- **As sensors?**
 - Carefully designed devices are selective to energy and type of radiation
 - Many devices amplify interaction effects (sensitivity)
 - Disadvantage: not reusable (sometimes) and most research aimed at *preventing* radiation effects

- **Industry interest**

<table>
<thead>
<tr>
<th>Spacecraft</th>
<th>Cause of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explorer XIV</td>
<td>power supply</td>
</tr>
<tr>
<td>Explorer XV</td>
<td>transistor</td>
</tr>
<tr>
<td>UK-1</td>
<td>solar power system</td>
</tr>
<tr>
<td>TRAAC</td>
<td>solar cells</td>
</tr>
<tr>
<td>Transit IV B</td>
<td>solar cells</td>
</tr>
<tr>
<td>Telstar I(^a)</td>
<td>transistor</td>
</tr>
</tbody>
</table>

\(^a\)failed Nov. 24, 1962; restored Jan. 3, 1963
Mayo et al., *Bell Syst. Tech. J.* 43, 1631 (1963)

Image on title slide courtesy of http://www.netlink.co.uk/users/stereo/paper.html
Outline

• Space radiation environment and effects
• Device modeling and behavior
 – Compact model of MOSFET burnout
 – Power diode burnout
 – Nanocrystal photoluminescence
• Model fidelity
Space Radiation

http://radhome.gsfc.nasa.gov/radhome/environ.htm
Particles

- **Trapped Protons** - AP8-MIN AP8-MAX - Solar Min: Higher; Solar Max: Lower - Geomagnetic Field; Solar Flares; Geomagnetic Storms
- **Trapped Electrons** - AE8-MIN AE8-MAX - Solar Min - Lower; Solar Max - Higher - Geomagnetic Field; Solar Flares; Geomagnetic Storms - LEO, GEO, HEO, Transfer Orbits
- **Galactic Cosmic Ray Ions** - CREME CHIME Badhwar & O’Neill - Solar Min - Higher; Solar Max - Lower - Ionization Level; Orbit Attenuation - LEO, GEO, HEO, Interplanetary
- **Solar Flare Protons** - KING JPL92 - During Solar Max Only - Distance from Sun; Outside 1 AU; Orbit Attenuation - Location of Flare on Sun - LEO, GEO, HEO, Interplanetary
- **Solar Flare Heavy Ions** - CREME; JPL92; CHIME - During Solar Max Only - Distance from Sun; Outside 1 AU; Orbit Attenuation - Location of Flare on Sun - LEO, GEO, HEO, Interplanetary

copied shamelessly from NASA’s website
Earth’s Radiation Belts

- 1 Earth radius is 6380 km
- geosynchronous orbit is at 35,800 km
- outer zone electrons have higher fluxes (∼ 10×) and energies than inner zone electrons
- maximum energy of trapped electrons is 7 MeV

Galactic Cosmic Rays

Near Earth Observations

- 85% protons
- 14% alpha particles
- less than 1% heavy ions

Other Radiation Environments

- **Military**
 - higher dose rates
 - neutrons, x-ray/gamma & transient effects bigger concerns than for space

- **High-energy particle accelerators**
 - analogous to space environment
 - neutrons and “exotic” particles are also present

- **Nuclear reactors**
 - doses can be quite high (up to 10^8 rad(Si))
 - neutrons are very important

- **Semiconductor processing (deep UV & x-rays)**
 - plasma processing
 - advanced lithography
 - e-beam tools

- **Terrestrial**
 - primary concern is single event effects
Terrestrial Threats to Microelectronics

- **Alphas from decay of trace impurities**
 Uranium and Thorium (and daughters) produce ionizing alphas with energy in the range $4 - 8 \text{ MeV}$. Impurities arise from wet etch processing materials, metalization eutectic solder, etc. Alphas travel up to $70 \mu\text{m}$ and generate more charge at lower energy.

- **Neutrons from Cosmic ray cascades**
 Less than 1% of heavy ions of galactic origin reach sea level. Complex cascades result in pions, muons, protons, electrons and neutrons. Neutrons are most likely to reach sea-level altitudes and dependent on altitude. Thermal neutrons create energetic Si recoils and fragments.

- **$^{10}\text{B} +$ neutron reaction**
 The ^{10}B cross-section is orders of magnitude greater than other dopants and creates an alpha plus Li recoil. Triggered by 15 eV neutrons. Lithium generates $25 \text{ fC}/\mu\text{m}$ compared to alphas, which generates $16 \text{ fC}/\mu\text{m}$.
Basic Radiation Effects in Microelectronics

Overview

- Ionization effects
 - total dose damage
 - photocurrents
 * single events
 * transient
- Displacement damage
 - defects
 - device effects

Single Events

- Soft errors
 - Correctable by reprogramming the circuit into its correct logic state
 - If error rate is too high, it can cause system degradation and potentially mission failure
 - Arise when a heavy-ion or proton deposits sufficient energy to change the state of a circuit node

- Hard errors
 - Are created when a heavy ion deposits sufficient energy to cause permanent damage to a device
 - Error cannot be corrected by reprogramming
 - Types of hard errors include latchup, snapback, single-event burnout, and single-event gate rupture
Single-Event Effects

- Ion loses energy in a material by excitation and ionization of atoms
- It creates a very high density electron-hole plasma along its path
- The amount of energy deposited by an ion is given by its mass-stopping power (SRIM) defined as the Linear Energy Transfer, \(LET = \frac{dE}{dx} \div \rho \)
- Protons for most circuits cannot deposit enough energy locally to directly cause single-event upsets however, there are exceptions (e.g., optocouplers)
- Usually, protons induce upsets by dislodging atoms from their lattice sites or through nuclear interactions with lattice atoms
- Resulting secondary particles may deposit sufficient energy to cause single-event upsets
- Total deposited charge
 \[
 Q_I = \frac{1.6 \times 10^{-2} \cdot LET \cdot \rho}{E_p}
 \]
- Critical charge is highly device and circuit dependent
- Can be as low as 50 fC (equivalent to \(3 \times 10^5 \) electrons), or even less in modern highly scaled devices
Displacement Damage (NIEL)

- Atoms are knocked free from lattice site producing interstitial atoms and vacancies
- Combination of interstitial atom and vacancy called a Frenkel pair
- About 90% of vacancy pairs recombine within one minute after irradiation

G. P. Summers, 1992 IEEE NSREC Short Course
Geant can track particles from TeV to keV
Device simulators can handle tens of eV
What about thermalization processes?
LET Device Modeling

- Charge deposition originates from secondary ionization model and LET.
- Funneling
- Inherent BJT

- Drift-diffusion to track the evolution and collection of charge
- Mixed-mode for system level performance
- Griding along ion track difficult
- Track radius is empirical

Secondary Ionization Model

Assumptions (Shockley, 1961)

- band structure is ignored (no effective mass)
- scattering by high frequency phonons only
- fitting parameters are “averages” and constant

Parameters

- E_R – vibrational energy of Raman phonons
- E_i – threshold energy for e-h production
- L_R – mean free path between Raman modes
- L_i – mean free path between ionizations
 (also defined as $r = L_i/L_R$)

- Ionization probability: $P(E) = 1 - \exp[-(E - E_i)/rE_R]$
- Energetic particles will deposit energy in e-h pairs and phonons in a ratio dependent on the ionization probability.

\[
E_{\text{pair}} = 2E_f + E_i + rE_R \approx 2.2E_i + rE_R
\]

If $E_f \approx 0.6E_i$ (leftover energy that won’t be used for ionization)
Compact model of MOSFET

- LET (Linear Energy Transfer) creates ehps
- Parasitic BJT is turned on depending on LET
- *Without thermal modeling secondary rise and breakdown can NOT be predicted* (Walker, Microelectronics Reliability, 41(4), 2001, p.571)
• Generation region corresponds to epitaxial layer
• Variable resistance is temperature dependent
• Electrical and thermal model are coupled through the variable resistance
• Thermal feedback allows burnout of device

SEB Simulation Results

Observations of Diode Burnout

Soelkner, TNS, v. 47, no. 6, p. 2365.

Kabza, Intl Symp Pow Semi Dev & IC, 1994, p. 9
Model for Single-Event Burnout in Power Diode

Physical model

Without thermal effects

- Double hump feature matches previous results
- Second rise due to impact ionization
- For large temperatures, nominal current is non-negligible because of intrinsic carrier concentration

(A. Albadri, TNS, 52(6), 2005, p.2194)
Diode SEB Results

- Initial rise in current is due to e-h pair generation
- Second rise is due to impact ionization and short across the device
- Temperature at junction rises dramatically in short amount of time
- Impact ionization is a strong function of temperature
- Temperature feedback required for failure

Shockley works, so why not LET?

Shockley model $E_{\text{pair}} = 3.6 \text{ eV}$ assuming:

- $E_i \approx E_g = 1.12 \text{ eV}$
- $E_R = 0.063 \text{ eV}$ from dispersion relation
- $rE_R \approx 1.1 \text{ eV}$ from quantum yield experiments

<table>
<thead>
<tr>
<th>Source</th>
<th>Value (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McKay & McAfee (1953)</td>
<td>3.6 ± 0.3</td>
</tr>
<tr>
<td>Chynoweth & McKay (1957)</td>
<td>$2.5 - 3.0$</td>
</tr>
<tr>
<td>Vavilov (1959)</td>
<td>4.2 ± 0.6</td>
</tr>
<tr>
<td>Van Overstraeten & DeMan (1970)</td>
<td></td>
</tr>
<tr>
<td>Woods, Johnson & Lampert (1973)</td>
<td></td>
</tr>
<tr>
<td>Grant (1973)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

But LET ...

1. 3.6 eV is an *average*
2. Does not consider non-equilibrium effects
3. Does not consider temperature dependence
4. Does not consider spatial distribution of charge and heat
5. Does not consider band structure explicitly
Internal 1–page storyboard for radiation NIRT

Nano effects
- confined phonon dispersion and DOS
- surface state electron scattering (for recombination)
- defect migration

Energetic particle interacts with material

- **PKA**
 - ps
- **damage cascade**
- **Coulomb interaction**
 - fs–ps
- **ionization**
 - fs–ps
- **secondary particles**
 - nuclear reaction
 - <fs
- **recrystallization migration surface annihilation**
 - ps–us
- **Frenkel pairs**

Energy flow diagram

study focus
- PKA
 - NIEL – general model to estimate damage
 - MARLOWE – MD to calculate cascades

Coulomb / ionization
- LET – highly empirical, average (Shockley model)
- DFT – not really feasible here (outside scope)
- GEANT4 – MC–based mix of empirical and first principles

Recombination
- many classical models
- full–band MC (include surface state scattering, defects, confined phonons)
Nanocrystal/Radiation interactions

- Homogeneous nucleation
 - nucleation is a power of peak concentration
 - increase in energy lowers concentration
 - drop # defects, # interstitials

- Heterogeneous nucleation
 - SMIC’s as sites
 - increase in number due to increase in damage

Energy dependence of damage accumulation under normalized conditions, showing that low energy (near surface) damage results in less damage than deeper in the bulk. Adapted from Saleh, APL, v. 77, n. 1, p. 112, 2000.
Marlowe results

Proton irradiation of CdSe lattice

- 20 separate tracks in 1.2 μm cube, green points are recoils
- Damage is located at lower energy regions suggesting nanocrystals will be sensitive to energy range
Nanocrystal photoluminescence

CdSe nanocrystals

increasing dose rate →

<table>
<thead>
<tr>
<th>NC size (nm)</th>
<th>theoretical σ_{NC}</th>
<th>experimental σ_{NC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>1.14</td>
<td>5.19</td>
</tr>
<tr>
<td>2.2</td>
<td>0.11</td>
<td>2.58</td>
</tr>
</tbody>
</table>

(R.C. Feldman, unpublished)
Non-equilibrium Phonon Transport

Phonon transport

<table>
<thead>
<tr>
<th>number</th>
<th>$N = \sum_p \sum_{i=1}^{N_b} \langle n(\omega_i) \rangle D(\omega_i) \Delta \omega_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>occupation</td>
<td>$\langle n \rangle = \left[\exp \left(\frac{\hbar \omega}{k_B T} \right) - 1 \right]^{-1}$</td>
</tr>
<tr>
<td>temperature</td>
<td>$\frac{E}{V} = \sum_p \sum_{i=1}^{N_b} \frac{\hbar \omega_i D(\omega_i) \Delta \omega_i}{\exp \left(\frac{\hbar \omega_i}{k_B T} \right) - 1}$</td>
</tr>
</tbody>
</table>

Phonon deposition

- ion track
- source
- gate
- drain
- charge carriers migrate in field
- phonons travel in waves
- $0.06\text{eV/}\phi$
- ϕ is a phonon

Phonon scattering

- symmetry/insulated boundary
- thermalized boundary
- ion track
- phonon temperature
- elastic scattering

Phonon scattering parameters

- impurity:
 \[\tau_i^{-1} = \alpha \sigma |V_g|, \quad V_g: \text{group velocity} \]
 \[\sigma = \pi r^2 \left(\frac{\chi^4}{\chi^4 + 1} \right), \quad \chi = r |\mathbf{K}| \]

- normal:
 \[\tau_{NU}^{-1} = B_L \omega^2 T^3 \]
 \[\tau_N^{-1} = B_{TN} \omega T^4 \]

- Umklapp:
 \[\tau_U^{-1} = \begin{cases} 0 & \omega < \omega_{1/2} \\ B_{TU} \omega^2 / \sinh \left(\frac{\hbar \omega}{k_B T} \right) & \omega > \omega_{1/2} \end{cases} \]

(Walker, TNS, 51(6), 2004, p.3318)
Radiation-Induced Phonons

Increasing time

(Walker, TNS, 51(6), 2004, p.3318)
• How are phonons really generated?
• Melt radius is arguably a dubious parameter because temperature is an equilibrium quantity
• Highly scaled devices may fail due to thermal deposition of energy regardless of ionization

(Walker, TNS, 51(6), 2004, p.3318)
Simplified models such as LET, assume thermalization is trivial.
Monte Carlo Radiation Energy Deposition

- Will identify “interesting” events
- Can collect statistics on device behavior as a function of radiation environment

(R.A. Weller, Radiation Effects and Reliability Group, Vanderbilt)
Model integration

(R.A. Weller, Radiation Effects and Reliability Group, Vanderbilt)
Radiation Interaction Map

Internal 1–page storyboard for radiation NIRT

Energy flow diagram

- Energetic particle interacts with material
- PKA
 - Damage cascade
 - Recrystallization/migration/surface annihilation
- Ionization
 - E–h pairs with K.E.
 - Frenkel pairs
 - Phonons
- Nuclear reaction
 - Secondary particles
- Recombination
 - Ps–us
 - Many classical models
 - Full–band MC (include surface state scattering, defects, confined phonons)

Nano effects
- Confined phonon dispersion and DOS
- Surface state electron scattering (for recombination)
- Defect migration

Energy flow
- Coupling effects
- Physical process
- Energy carrier
- Study focus

PKA
- NIEL – general model to estimate damage
- MARLOWE – MD to calculate cascades

Coulomb/ionization
- MARLOWE?
- GEANT4

Recombination
- LET – highly empirical, average (Shockley model)
- DFT – not really feasible here (outside scope)
- GEANT4 – MC–based mix of empirical and first principles
Summary

- A great deal of research on reducing radiation effects in microelectronics can be leveraged for radiation detection.
- Better fidelity models are needed to capture physical interactions in scaled devices.
- Nanomaterials and structures?
- 100eV to 10eV energy range represents a transition between models and physics that is not sufficiently captured.
Extra Slides
Photons interact with materials through the a) photoelectric effect, b) Compton scattering, and c) pair production.

Ionization damage from high-energy photon, electrons and protons are qualitatively similar, but yields vary.
• 10 keV x-rays interact via the photoelectric effect
• Co-60 gamma rays (1.25 MeV) interact by Compton scattering
• but 10 keV x-ray to Co-60 correlation established
Diode SEB Simulation Results

Transient Response

Temperature at 1×10^{-10} sec

Temperature (K)
- 1500
- 1100
- 700
- 300

Junction

Current (A) vs. Time (sec)
energetic particle interacts with material

- damage cascade
- e–h pairs
- secondary particles
- Frenkel pairs
- phonons
- photons
- Auger electrons