MINIATURIZED SYSTEM LEVEL PACKAGING FOR OPTICAL INTERCONNECTS

Dr. Volkan H. Ozguz

Irvine Sensors Corporation
3001 Redhill Avenue
Costa Mesa CA 92626
HIGH PERFORMANCE COMPUTING

The overall goal is to demonstrate a combination of technologies that will enable system functionalities and performance that can not be afforded by today’s implementations.

Task: to design a system with 1 Tb/s or more data throughput.

Problem:
Planar electronic implementation can not support high data rates when system scales up (system grows larger, longer, slower interconnects).

Potential Solutions:
- *Increase electronic density* (e.g. 3D packaging and MCMs) but interconnect performance and layout problems.
- *Use optical interconnects* more interconnect speed than processing can handle?
- *Use superconducting interconnects* implementation temperature and physical constraints.
What optical interconnects are offering?
(concepts that we all know but need to be revisited every time)

• very high speed, large bandwidths (already in place: optical fibers)
• parallel, random laid-out interconnects (without crosstalk, at least optically?)
• electrical isolation (already in place: opto-couplers)
POTENTIAL PROBLEMS

• When supporting electronic crosses single chip boundaries, tolerances resulting from various packaging schemes accumulates in the optical system design: chip placement on MCM, package placement on the board, board-to-board variations
• Optical interface becomes complicated: the regularity is lost, arrays of optical I/O ports spaced apart from each other
• Larger areas need to be covered optically, or more than optical component has to be used

Solution:
• more compact electronic packaging techniques
• more integrated submodules
OBJECTIVE
To realize, compact, rugged reliable optically interconnected processing module that can be easily inserted in electronic systems

ACHIEVEMENT
Combination of ceramic MCM and plastic optical packaging for compact module

Members of the DARPA supported Consortium are UCSD, HONEYWELL, ISC, UCSB, U. PITT, KOPIN, U. DELAWARE
KEY APPROACHES IN 3DOESP

Issues in FSOI
- Compatibility with electronics
- Increase silicon real estate
- Reduce height and volume
- Lower cost
- Improve thermal stability
- Signal Synchronization
- Error-free transmission

3D-OESP solutions
- Plastic/ceramic snap-on optics package
- Use silicon chip stacks
- Hybrid optics increasingly using μ-optics
- Wafer scale OE + μ-optics + flip-chip
- General purpose
- Active compensation (High Power Systems)
- Serialization + minimal signal processing
- Encoding - Decoding
3D-OESP MULTI-CHIP FSOI MODULE

APPROACH A-A

Concave Mirror: Newport KPC034

Plano Convex Lens: Newport KPX079

Electrical In (10)

Electrical In (10+10)

Electrical out (10)

Electrical out (10+10)

VCSEL Chips

Si Chips

MSM Chips

CMOS chips

MSM chips

Alignment pins

V. Ozguz

OI Performance Computing

Irving Sensors Corporation

Unpublished work - all rights reserved
3D-OESP MULTI-CHIP FSOI MODULE

- Hybrid Fab. of oxide VCSELs and MSMs
- Sub-300 µA Threshold VCSELs
- 2.5 Gbit/sec link demonstration

Diamond interlaced stacking for high power dissipation 80W power at T=65 C

4x4 clusters (64 VCSELs) powered through the ASIC

850nm VCSEL lights are perceived as red glow by the CCD camera.
3D-OESP MULTI-CHIP FSOI MODULE

Results
• 48 channels
• 4 VCSEL chips (1x12)
• 4 MSM chips (1x12)
• 3 CMOS chips (Rx/Tx and routing)
• Integration on ceramic carrier
• 90% link efficiency
• -20dB Crosstalk
• 840 Mb/s-channel
• Single hop and multi-hop operation

• Electronics and Optics separated until final assembly step
• Passive assembly
• Permits rework (optical and electrical)
• Complete module snaps-on electrical system via I/O pins
• Same approach can be used with 2D-arrays for higher interconnect densities

Single Channel at 840 Mbits/sec
Final System Demonstrator: 256 Gbit/sec crossbar switching, < 100 W, < 150 cm³

- Application: FFT - (processor not rigidly bound to this application) - Perform multiple, successive radix-2 butterfly operations over multiple chips at 150 MHz
- System Characteristics: Chains of pipelined processors with optical communication
- Flow of data: Intense use of optical interconnect as data is “bounced” between chips during calculation
- Enable packaging test platform

- Fully packaged system comprising:
 - 3 silicon stacks with 16x16 OE device arrays
 - Electrical interface via flex cable and/or back side carrier
 - Free-space optics module
- Demonstrate interconnect operation at 1 Gbit/sec
OPTICAL INTERCONNECTS IN HIGH PERFORMANCE COMPUTING

• Techniques to reduce the overall size will be always needed
• Best example is the large scale integration techniques, more transistor per unit area (that created to problem to start with)
• PACKAGING and INTEGRATION is crucial
• Overall system design and implementation as a stand-alone, self supporting unit needs to be considered. Solutions to pieces of the problem is most of the time misleading
• Different interfaces may require different solutions
• DETAILS - INFRASTRUCTURE