
Nitrided Metallic 
Bipolar Foils in 
PEM Fuel cells

M.P. Brady, T.J. Toops, P.F. Tortorelli, 
K.L. More, H.M. Meyer, J. Pihl 

Oak Ridge National Lab

H. Wang and J.A. Turner 
National Renewable Energy Lab

F. Garzon and T. Rockward 
Los Alamos National Lab

F. Estevez, R. Procko, D. Connors 
AGNI-GenCell

J. Rakowski 
Allegheny Ludlum

D. Gervasio, W. Mylan, H. Kosaraju 
Arizona State University 



2 Managed by UT-Battelle
for the U.S. Department of Energy

Thin Stamped Metallic Bipolar Plates for 
Low-Cost & High-Volume Manufacturing 
•

 

Metal bipolar plates attractive due to their thinness and stampability
–

 

As thin as 50 microns
•

 

Metals limited by high interfacial contact resistance and corrosion resistance
–

 

coating or surface modification needed 

(Courtesy AGNI GenCell Inc)
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Thermally Grown Cr-Nitride Enables Corrosion 
Protection and Low Contact Resistance

•

 

Nitrides are corrosion resistant with low surface contact resistance
•

 

Chemical reaction at the metal surface, not a deposited coating
–

 

High temperature favors reaction of all exposed metal surfaces
–

 

No pin-hole defects 
–

 

Amenable to complex geometries
•

 

Stamp then nitride
–

 

Industrially established and inexpensive
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Cr-Containing
Bipolar Plate Alloy

Cr

Nitrogen-containing gas

Cr-Nitride

Cr-Containing
Bipolar Plate Alloy

Cr

Nitrogen-containing gas

Protective Cr-Nitride Layer

Metal

Protective Cr-Nitride Layer

Metal

10 m



4 Managed by UT-Battelle
for the U.S. Department of Energy

Crx N Surface on Model Nitrided Ni-50Cr
Exhibits and Maintains Low ICR

•

 

4100h in LANL bipolar corrosion test cell (Air/H2 pH 3 H2 SO4 + F- 80C)
•

 

No attack of Crx N and minimal metal ion dissolution
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Internal Cr-nitride

10 mm10 m 

Little Surface Cr-NitrideN2 Floods in

Model Fe-27Cr Alloy

Need Fe-Base Stainless Steel to Meet 
$5/kW Cost Goals for Auto Applications
•

 

Commercial Ni-Cr Alloys in range of ~$15-25/lb
–

 

Far too expensive for automotive use, 
and DOE target of $5/kW

•

 

Focus on Fe-based stainless steels (SS): ~$2-8/lb
•

 

However, simple Fe-Cr does not allow for a nitride 
surface layer
–

 

High N2 permeability leads to internal Cr- 
nitride

Cr2N

CrN

2.5 m Metal

Nitrided Ni-50Cr
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Cr2O3Cr2O3Internal Cr2N

Nitrogen

Internal Cr2N

Nitrogen

N-modified Cr2O3

Nitrogen
CrxN

N-modified Cr2O3

Nitrogen
CrxN

Nitrided
Bare metal Pre-oxidized Nitrided

Pre-oxidized

Pre-Oxidation followed by nitridation to 
form Crx N surface on stainless steels

•
 

Pre-oxidation method developed to facilitate nitride layer 
–

 
form Cr2 O3 by preoxidation to keep N2 at surface

–
 

convert surface Cr2 O3 to surface Crx N by nitridation

•
 

V addition to stainless steel assists conversion to nitride
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Overlap Yields Successful AlloyOverlap Yields Successful Alloy

Stampability
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V   Ni
Cost
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Protective 
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Protective 
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Goal is to Balance Stampability / Cost / 
Nitride Formation in 100μm Alloy Foils
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500 nm

CrxN

Cr2O3

SiO2
Alloy

Cross-Section TEM Analysis of Pre-Oxidized/Nitrided Structure

Mixed Oxide/Nitride Structures formed 
on Fe-20Cr-4V and 2205 Foils 
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•

 

Continuous Cr-nitride not observed as with 
model NiCr/FeCr material
–

 

Due to short pre-oxidation/nitriding cycle
–

 

lower Cr, V content to lower cost
•

 

Through-thickness Vx N for Fe-20Cr-4V 
–

 

better conductivity path

CrxN Cr2O3

SiO2
Alloy
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Nitridation Significantly Reduces Foil  
Interfacial Contact Resistance (ICR) 
•

 

ICR one of the main concerns with metallic bipolar plates
•

 

Nitriding alloy at surface significantly lowers ICR
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Nitrided Foils Corrosion Resistant 
Under Simulated Aggressive Conditions

Anode conditions
•

 

70°C in 1M H2 SO4 + 2 ppm 
F- held at +0.14V vs. SHE, 
H2 purged

•

 

Nitrided Fe-Cr-4V and 2205 
comparable to Nitrided 
Ni-Cr
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•

 

70°C in 1M H2 SO4 + 2 ppm F- held at +0.84V 
vs. SHE, aerated

•

 

Nitrided 2205 comparable to model Ni-Cr,
Nitrided Fe-20Cr-4V moderately higher 
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Nitrided Foils Exhibited Moderate 
Increase in ICR on Polarization 
•

 

7h polarization of nitrided foils under simulated aggressive anode and cathode 
conditions raised ICR beyond target value
–

 

remains still order of magnitude lower than untreated metal
–

 

test condition may be overly aggressive
–

 

7h polarized nitrided model NiCr/FeCr alloys showed only  small ICR increases
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PEM Fuel Cell Evaluation 
and 

Durability
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Stamped Bipolar Plate

Single-Cell PEM Fuel Cell Testing of 
Stamped Foils
•

 

Incompatibility of foils with commercially available 
fuel cells required new fuel cell design
–

 

16 cm2 active area, serpentine flow path
•

 

Design enables use of either metal foils or 
graphite plates

•

 

Evaluate performance and durability
–

 

V-containing alloys: 2205 and Fe-20Cr-4V
•

 

Untreated and nitrided
–

 

Untreated 904L-SS (Fe-25Ni-20Cr-5Mo)
–

 

Baseline comparison against graphite plate

1 – Metal foil or 
graphite plate

2 – 250 micron 
Viton gasket 
with channel

3 – 50 micron 
FEP gasket

4 – 380 micron 
Gas diffusion 
layer (GDL)

5 – 35 micron 
Gore MEA with 

Pt/C layer 
everywhere
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Evaluation of Performance and Durability
•

 

Initial performance using thin Gore PRIMEA 
membranes 
–

 

Membrane is 35 microns
–

 

Total MEA is 50 microns (2 mils)
–

 

Cut from center of large MEA
–

 

GDL is separate piece

•

 

1000 h durability of plates using thicker 
Nafion 117 MEAs
–

 

Membrane is 175 microns (7 mils)
–

 

Electrode and GDL integrated into 
membrane layer

–

 

Specifically designed for implementation 
in GenCell/ORNL PEMFC

•

 

Re-evaluate plates with fresh Gore MEA after 
1000h durability testing

Gore MEA + GDL

Nafion 117 MEA + GDL
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Polarization curve evaluation conditions
•

 

Operating Conditions
–

 

Temperatures: 78°C dew point, 79°C inlet, and 80°C cell 
–

 

Air: 25.5 psig, 2.5 x stoichiometric O2 flow, minimum 100 sccm
–

 

H2 : 25 psig, 1.2 x stoichiometric H2 flow, minimum 50 sccm
•

 

Break-in
–

 

Gore: 8 cycles of 30 min @ 0.6 V, 30 min @ 0.4V, and 1 min @ open circuit
–

 

Nafion: 16 cycles of 30 min @ 0.6 V, 30 min @ 0.4V, and 1 min @ open circuit
•

 

Performance Curves (V-I)
–

 

Constant voltage
–

 

Hold 20 minutes at 
each voltage

–

 

0.05V steps
–

 

Decreasing then increasing
•

 

average reported
–

 

Repeat three times

Voltage steps for polarization curves
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Initial Performance Assessment Using 35 micron Gore
PRIMEA Membrane (5510)

1000+ h Durability Evaluation Using 175 micron
Nafion 117 MEA while voltage cycling

Re-Evaluate Performance of 1000+ h Durability Tested 
Plates with Fresh Gore MEA 

Performance and Durability Evaluation
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Initial performance evaluation illustrates 
potential of nitrided foils
•

 

Third polarization curve shown
•

 

Nitrided Fe-20Cr-4V exhibited best initial behavior
•

 

Low initial graphite performance most likely due to slight differences in machined 
flow channels/lands versus stamped flow channels 

 
Initial Gore MEA
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2205-SS performance illustrates the 
effects of continuous oxide layer 
•

 

Initial coupon testing showed good ICR
–

 

Some scatter observed in ICR values; continuous oxide layer observed
•

 

Pre-oxidation/nitridation process negatively affects performance
•

 

Illustrates importance of having right alloy for starting point 
–

 

2205: Fe-22Cr-5Ni-0.2V; perhaps not enough Vanadium
•

 

No durability tests performed
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Performance and Durability Evaluation

Initial Performance Assessment Using 35 micron Gore
PRIMEA Membrane (5510)

1000+ h Durability Evaluation Using 175 micron
Nafion 117 MEA while voltage cycling

Re-Evaluate Performance of 1000+ h Durability Tested 
Plates with Fresh Gore MEA 
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Initial performance with Nafion-117
•

 

Similar relative performance trends observed with Nafion-117
–

 

However, 904L-SS performance declines relative to other materials at higher 
loads

 

Initial Nafion-117 MEA
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Voltage cycling implemented for 1000h 
durability evaluation
•

 

Voltage cycling for 
>1000 hours
–

 

30 min @ 0.6 V
–

 

20 min @ 0.7V
–

 

20 min @ 0.5V
–

 

1 min @ OCV 
•

 

Operating Conditions
–

 

78°C dew point, 
79°C inlet, and 
80°C cell 

–

 

Air: 25.5 psig, 
2.5 x stoich O2 flow, 
100 sccm min 

–

 

H2 : 25 psig, 
1.2 x stoich H2 flow, 
50 sccm min

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100
Time (minutes)

Vo
lta

ge
 (V

)

0

200

400

600

800

1000

C
urrent density (m

A
/cm

2)

Voltage(V)
Current(A)



22 Managed by UT-Battelle
for the U.S. Department of Energy

Performance maintained during voltage 
cycling 
•

 

Performance generally 
improves during voltage 
cycling with Nafion-117
–

 

graphite and Fe-20Cr-4V
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Initial Performance Assessment Using 35 micron Gore
PRIMEA Membrane (5510)

1000+ h Durability Evaluation Using 175 micron
Nafion 117 MEA while voltage cycling

Re-Evaluate Performance of 1000+ h Durability Tested 
Plates with Fresh Gore MEA 

Performance and Durability Evaluation
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Nitrided Fe-20Cr-4V: Performance maintained 
after 1000+ hours of voltage cycling
•

 

“Before and after” performance with Gore MEA shows <10% decrease
–

 

Most likely due to build-to-build variations 

Gore MEA performance
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Untreated 904L-SS
with Gore MEA
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Untreated 904L: Performance also maintained 
after 1000+ hours of voltage cycling

Gore MEA performance

•

 

Same trends observed during 
voltage cycling with Nafion-117

•

 

“Before and after” performance with 
Gore MEA shows <7% decrease

Initial
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Nitride layer protects MEA from metal 
contamination
•

 

No visible pitting or corrosion

•

 

XRF analysis implemented to 
quantify metals in MEA

•

 

Graphite and Nitrided Fe-20Cr- 
4V MEAs are clean
–

 

Fe, Cr, V levels are all near 
detection limits

•

 

904L-SS MEA much greater Fe 
than other samples
–

 

Although performance was 
not affected, suggests 
longer tests may have 
durability issues
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Summary
•

 
Thin stamped metallic plates can 
be nitrided and result in low ICR
–

 
Minimal warping

•
 

Nitride layer is durable under 
aggressive durability tests 
–

 
Sulfuric acid submersion

–
 

PEMFC voltage cycling

•
 

Nitrided layer minimizes metal 
contamination in MEA
–

 
Fe levels near background 
levels with graphite and 
nitrided metals
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Future directions and new partnership 
•

 

Lower-Cost Nitriding with Plasma 
Arc/Quartz Lamps 
–

 

Plasma arc and quartz lamps for 
rapid nitriding heating/cooling
•

 

potential nitriding in seconds 
to minutes instead of hours

–

 

Rapid heating may favor more 
nitride-rich surface

–

 

Single-cell testing planned for 
stamped and lamp-nitrided foils

•

 

Advanced single cell evaluation with 
new OEM
–

 

Include joining/welding 
considerations

Quartz Lamp Furnace
Modified for Nitriding

ORNL Plasma Arc Lamp



29 Managed by UT-Battelle
for the U.S. Department of Energy

Acknowledgements

•
 

G.W. Garner for performing the pre-oxidation nitridation exposures

•
 

Funding from the U.S. Department of Energy’s Fuel Cells Technology 
Program is gratefully appreciated



30 Managed by UT-Battelle
for the U.S. Department of Energy

Additional Slides
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Teaming and Primary Responsibilities 
•

 

Oak Ridge National Laboratory:
Alloy design, nitridation optimization, characterization, 
single-cell fuel cell design and testing

•

 

Arizona State University: 
Single-cell fuel cell design and testing

•

 

ATI Allegheny Ludlum: 
Alloy foil manufacture

•

 

AGNI-GenCell:
Design and stamping of bipolar plate flow-field features

•

 

Los Alamos National Laboratory:
Stack testing/performance assessment, characterization,
single-cell fuel cell design and test protocol

•

 

National Renewable Energy Laboratory:
Corrosion/contact resistance evaluation 
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Fe-Cr-V alloys show excellent corrosion 
resistance and low contact resistance  

•

 

Fe-20Cr-4V meets DOE target for 
interfacial contact resistance (ICR)

•

 

Series of Fe-Cr-V alloys demonstrate 
excellent corrosion resistance
–

 

Highly-aggressive simulation for 
anode-side environment

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160
2 

X
 IC

R
, m

- O
hm

*c
m

2

Compaction force, N/cm 2

DOE 2010 Goal

Solid diamonds: 7.5 h @ 0.84V vs SHE (air)
Hollow diamonds: 7.5 h @ 0.14 V vs SHE (H2)
Triangles: as-nitrided

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160
2 

X
 IC

R
, m

- O
hm

*c
m

2

Compaction force, N/cm 2

DOE 2010 Goal

Solid diamonds: 7.5 h @ 0.84V vs SHE (air)
Hollow diamonds: 7.5 h @ 0.14 V vs SHE (H2)
Triangles: as-nitrided

Fe-20Cr-4V



34 Managed by UT-Battelle
for the U.S. Department of Energy

2006 GenCell Cost Estimates for Stamped Bipolar Plates
(Nitriding Costs Not Included)

Foil Density
Thickness kg/kW $3/lb Alloy $5/lb Alloy $7/lb Alloy

50 μm 0.26 $2.31 $3.47 $4.58
100 μm 0.38 $3.15 $4.26 $6.57
200 μm 0.64 $4.86 $7.69 $10.51

Bipolar Plate Cost ($/kW)

Stamped Fe-Cr-V Alloys Can Potentially 
Meet $5/kW Transportation Cost Goals

•

 

Higher-Cr ferritic commercial alloy foils ~$3-7/lb :
–

 

E-BRITE® (Fe-26Cr-1Mo wt.%): $5-7/lb commercial price for foil
–

 

Alloy 444 (Fe-18Cr-2Mo wt.%): $3-5/lb commercial price for foil
–

 

Above alloys likely comparable to Fe-Cr-V alloy range 

•

 

Alloy/stamping costs leaves < $0.75/kW for nitriding costs
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Preliminary Cost Analysis by B. James, Directed Technologies
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Nitriding Costs Feasible at $0.75/kW

•

 

Automated, step-continuous conventional nitriding system at 500,000 systems per 
year, mark up not included
–

 

keys are short nitriding cycle and high furnace plate stacking density 

•

 

Nitriding by pulsed plasma arc lamp in range of $0.16-0.44/kW
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0.1 mm x 7.5” x 48”
Fe-20Cr-4V foil

Developmental foils synthesized, 
stamped with flow path and then nitrided

•

 

Developmental duplex and 
austenitic foils also 
manufactured

•

 

Commercially available 
2205-SS also nitrided
–

 

more accessible to 
developers

–

 

selected due to 
availability and Cr level

Produced at Allegheny 
Ludlum 

3.4 mm

4.4 m
m

Stamped at 
AGNI-GenCell

Nitrided at 
ORNL

Pre-oxidation 
900°C/15 min

Nitridation 
1000°C/1h



37 Managed by UT-Battelle
for the U.S. Department of Energy

V CrN O

Cross-Section TEM Analysis of Pre-Oxidized/Nitrided Fe-20Cr-4V 
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Cr2 O3

Fe-20Cr-4V: Vx N  dispersed in Cr2 O3 layer 

•

 

Crx N particles at surface
–

 

not retained in TEM prep
•

 

Through thickness Vx N paths but no 
continuous Crx N as with model alloys

•

 

Consequence of pre- 
oxidation/nitridation cycle to meet cost 
goals
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Crx N Cr2 O3

SiO2
Alloy

500 nm 500 nm

Crx N

Cr2 O3

SiO2
Alloy

Cross-Section TEM Analysis of Pre-Oxidized/Nitrided 2205
2205: Continuous Cr-Oxide Formed

•

 

Significant scatter in run-to-run surface O/N content
–

 

consequence of lack of strong nitride-forming element in 2205 (only Cr)
•

 

Few through-layer thickness nitride paths 
–

 

continuous inner oxide could compromise electrical conductivity
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1 μm

(Cr,V)x N light

(Cr,V)2 O3 darkMetal

Nitrided Fe-27Cr-6V

Continuous Cr-Nitride Surfaces Formed on
Model Nitrided Ni-50Cr and Fe-27Cr-6V Alloys

•Nitrided Fe-27Cr-6V Cr-nitride surface formed in mixed
nitrogen/oxygen environment over 24 h nitriding cycle

-long cycle and mixed N2

 

/O2 environment not practical for scale up

-used to understand and develop controllable pre-oxidation/nitridation
approach with short nitriding cycles to meet cost targets

-structures shown above from sheet material

Cr2N

CrN

2.5 m Metal

Nitrided Ni-50Cr
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Pre-Oxidized/Nitrided Fe-20Cr-4V Foils Tend
to Exhibit Less N at Surface than Sheet Material

AES Depth Profile of Pre-Oxidized/Nitrided Fe-20Cr-4V

•Foils more sensitive to O2

 

impurities in N2

 

-4H2

 

, more oxide at surface
-foil surface finish and microstructure/diffusion effect?

•Foils show small surface Fe peak-not observed in sheet material
-may contribute to observed ICR increase on polarization
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Run-Run Scatter in O/N at Surface of 
Pre-Oxidized/Nitrided 2205

•Lack of a strong nitride-forming alloy element (e.g. V)  contributes to
increased sensitivity to O2

 

impurities during nitriding

•Suggests evaluation of commercial alloys with Ti (e.g. 321 stainless)
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