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OBJECTIVE 
 
Some lattice defects, such as dislocations, interact with migrating species, e.g. vacancies, interstitial atoms 
and their clusters, via long-range strain fields.  In this paper, an equation for the mean dissociation time of a 
migrating particle from a trap is derived in terms of the potential well function for the interaction energy.  The 
distribution of dissociation times is studied by the Monte Carlo method, and the problem of particle exchange 
between spatially separated traps is considered. 
 
SUMMARY 
 
The main results can be summarized as follows: 
1. An equation for the mean dissociation time of a migrating particle from a trap has been derived.  It is 

independent of the saddle point energy profile within the well.  
2. Generally, the distribution of dissociation times deviates from an exponential function, especially in the 

regime of small dissociation times.  The probability function at the mean time may differ significantly 
from1− e−1 , which is for a random process.  The effect depends on the well shape (is stronger for 
shallower and/or wider wells) and on the saddle point energy profile within the well.   

3. The exchange frequency for diffusing particles between spatially separated wells is generally many 
orders of magnitude smaller than the frequency for dissociation from the well, and this is due to 
correlated recapture of diffusing particles by the same well.  

 
Note also that, in general, the information on the mean dissociation time alone and, hence, the effective 
binding energy associated with it, is not sufficient to characterise the process completely and the probability 
distribution function of dissociation times has to be taken into consideration.  Work is currently in progress to 
investigate the description of complexes with a non-exponential distribution of dissociation times by chemical 
reaction rate equations.  
 
PROGRESS AND STATUS 
 
I. Introduction 
 
Solving various problems of diffusion-reaction kinetics requires knowledge of the time a migrating particle 
spends trapped by lattice defects before dissociation.  This information allows considering longer time and 
length scales using a rate theory1 or a kinetic Monte Carlo approach, which treats complexes as single 
entities.  These dissociation times have been or can readily be obtained only in simple cases, e.g. for 
vacancy-solute pairs with short-range bonding.  In more complicated cases, the solution is generally 
unknown.  A particular example of such a case is that of a vacancy executing three-dimensional (3-D) 
random walk, which is trapped inside a Cu precipitate in an iron matrix (see Refs. [2] to [5] for molecular 
dynamics results).  Another example is that of a one-dimensionally migrating cluster of self-interstitial atoms 
trapped in a long-range field of an edge dislocation (see, e.g. Ref. [6] for observations in Ni and Mo).  Yet 
another example is that of an interstitial cluster trapped between Cu precipitates in Fe; it can penetrate inside 
one of them and this requires overcoming an energy barrier (see Refs. [4] and [5] for molecular dynamics 
results).  The importance of the processes mentioned above in microstructure evolution and changes of 
mechanical properties, especially under irradiation conditions, is discussed in Refs. [1] to [5] for Cu 
precipitation and, in Refs. [6] and [7], for dislocation decoration with interstitial clusters. In this paper, we first 
derive an equation for the mean dissociation time for a well of arbitrary shape in Sec. II.  We start with a 
simpler case of one-dimensionally diffusing particles in Sec. II A, and then generalise to higher-D diffusion in 
Sec. II B.  Some particular potential energy wells and limiting cases are considered in Sec. III.  Monte Carlo 
calculations of the probability distribution of dissociation times are presented in Sec. IV for two particular 1-D 
wells.  In Sec. V, we generalise the problem to the case of particle exchange between spatially separated 
wells for two particular cases: vacancy evaporation from void and interaction of interstitial clusters with 
dislocation.  The conclusions are drawn in Sec. VI. 
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RESULTS 
 
II. Mean Dissociation Time From Well 
 
A. One-dimensional diffusion 
 
Consider a particle that hops on a lattice containing a potential well U(xi )  (interaction energy in equilibrium 
positions i, see Fig. 1a) in the diffusion direction and ‘free’ states.  The ‘free’ states are those, where 
U(xi ) = 0  and all the migration barriers are the same as in perfect crystal.  The mean time-delay between 
jumps in these states is denoted by τ .  A dissociation event occurs when particle jumps from the well to a 
‘free’ state and an association event is a reverse jump.  The dissociation time τ diss  is the mean time from 
association to dissociation.  (This definition is discussed further in Sec. IV C and Sec. V.) 
 
Consider a well and one adjacent ‘free’ state in periodic boundary conditions.  In this system, a dissociation 
event is followed by an association event, hence for each time that particle spends time τ diss  on average in 
the well region, it spends time τ  in the ‘free’ state.  Hence, the probability to find particle in the ‘free’ state is 
equal to 

 
  
pfree =

τ
τ + τdiss

. (1) 

The same probability can be written through the partition function of the canonical ensemble 
Z = 1+ e−βU (xi )

well
∑ , where β = 1 / kBT , kB  is the Boltzmann constant, T is the temperature and unity 

corresponds to the ‘free’ state, where U = 0 , (see, e.g. Ref. [8]) as: 

 
  
pfree = 1+ e−βU (xi )

i=1

Ν

∑
⎛

⎝⎜
⎞

⎠⎟

−1

. (2) 

In this equation and further in the text, the summation is taken over all Ν  equilibrium states of the well.  
From Eqs. (1) and (2) one obtains 

 
  
τdiss = τ e−βU ( xi )

i=1

Ν

∑ = τΝ e−βU ( xi )

well
, (3) 

where the brackets denote averaging over sites representing equilibrium states of the well. 
 

 
 
FIG. 1. Schematic diagram showing the potential energy profiles for a migrating particle in a crystal 

containing a) a potential well and b) a potential well, where all the saddle energies are equal.  
U(x)  is the interaction energy in equilibrium states. 
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B. Higher-dimensional diffusion 

 
The analysis can readily be extended to two and three dimensionally diffusing particles.  Consider a well 
U(ri )  of Ν  states surrounded by a shell of adjacent ‘free’ states, m  in total, each separated from the well 
by one jump distance.  Assume that a particle in a ‘free’ state jumps successfully only to the well.  This 
assumption does not influence the results but makes the derivation easier.  It affects, however, the times 
spent by a particle in ‘free’ states.  If the mean value of these times, τ free , is known, the probability of finding 
the particle in a ‘free’ state can be written in two ways: as the ratio of times (left-hand side of the following 
equation) and via the partition function (right-hand side):  

 

   

τ free

τ free + τ diss

=
m

m + e−βU (ri )

i=1

Ν

∑
. (4) 

 Hence, the dissociation time is given by 

 
   
τdiss =

τ free

m
Ν e−βU (ri )

well
. (5) 

Now let us find τ free .  Under the assumption that a particle in a ‘free’ state jumps successfully only towards 
the well, the time spent on average by the particle in a ‘free’ state i before jumping back to the well is higher 
than τ  by the ratio of the total number of jump directions z  to the number of directions towards the well, ni : 

τ free
i = τ z / ni .  The mean time is the sum of these times weighted with relative frequency of visiting these 

states, pfree
i , which is equal to the ratio of the number of directions from the well to this particular site, ni , to 

the total number of directions from the well to ‘free’ sites, ni
i=1

m

∑ .  Hence  pfree
i = ni / ni

i=1

m

∑  and  

 
  
τ free = τ free

i pfree
i

i=1

m

∑ = τ z / n
free

, (6) 

where the brackets denote averaging over adjacent ‘free’ states.  Finally, by substituting Eq. (6) into Eq. (5), 
one obtains 

 

   
τdiss =

zΝ
m n

free

τ e−βU (ri )

well
. (7) 

This is a general solution valid for any dimensionality of diffusion.  In the case of 1-D diffusion, when the total 
number of jump directions is z = 2 , the number of directions from a ‘free’ state to the well is n = 1  and the 
number of ‘free’ states adjacent to the well is m = 2 , Eq. (7) reduces to Eq. (3). 
 
We emphasise that Eq. (7) depends on the energy of equilibrium states (the exponent is averaged over these 
states) but is independent of the saddle point energy profile within the well.  Note that τ  depends on the 
energy barrier in the perfect part of the crystal only.  (Obviously, the probability distribution of dissociation 
times does depend on the saddle point energy and this is considered below in Sec. IV.)  
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III. Mean Dissociation Times for Particular Wells 
 
A. 1-D square well 
 
For a square well and coordinate x (in units of jump length a )  

 

  
U (x) =

−E, xmin ≤ x ≤ xmax ,
0, x < xmin , x > xmax .

⎧
⎨
⎪

⎩⎪
 (8) 

Eq. (3) yields 
   τ diss = ΝτeβE , (9) 

where   Ν = xmax − xmin  is the total number of equilibrium positions inside the well.  Hence the frequency of 
dissociation events is given by 

 
  
νdiss = τ diss

−1 =
2
Ν

⎛
⎝⎜

⎞
⎠⎟

e−βE

2τ
. (10) 

The physical significance of Eq. (10) can be understood as follows.  The bracketed term stands for the 
probability to find a particle at one of the two well edges, τ −1  is the total jump frequency in perfect crystal in 
both directions, ½ describes the probability to jump towards the barrier and the exponential factor accounts 
for the decrease of the probability of successful jump due to the barrier. 
 
 
B. 1-D triangular well 
 
A particular case of a triangular shape well: 

 U (x) =
−E(1− x / xmin ), xmin ≤ x < 0,
−E(1− x / xmax ), 0 ≤ x ≤ xmax

⎧
⎨
⎪

⎩⎪
 (11) 

is a more realistic approximation to real situations with no single energy.  In this case: 

 
  
τ tri = 2τeβE

1− e−βE(1+ xmax
−1 )⎡

⎣
⎤
⎦

1− e−βE / xmax
 .    (12) 

It can readily be shown that, for deep enough triangular wells, such that eβE >> 1 , the dissociation time is 
smaller than for a square well of the same depth and width by the ratio of the thermal energy to the well 
depth.  This is due to a smaller effective binding energy. 
 
 
C. Void 
 
A void can be considered as a well for vacancies.  Since vacancies are always at the void surface, Ν = m  in 
Eq. (7).  Hence, for a large void of radius r0 , such that n free = z / 2 , and the vacancy binding energy 

U E− = , one obtains τ diss ≈ 2τeβE .  The factor of two in this equation accounts for an increase of the time 
spent by a vacancy in the void, because successful jumps are only in the direction away from the void.  The 
evaporation frequency is, hence, νdiss = e−βE / 2τ .  In equilibrium conditions this frequency equals to that of  
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the void-vacancy association events: CV
e / 2τ , hence the equilibrium vacancy concentration near the void is 

CV
e = e−βE  (see Sec. V for derivation).  This equilibrium concentration and Eq. (7) can be used to calculate 

the evaporation rate using the diffusion-reaction theory (see Sec. V below). 
 
 
D. Vacancy in solute precipitate 
 
For a vacancy and a large solute precipitate of radius r0  with a constant interaction energy between the 

vacancy and any site within the precipitate U = −E : n free = z / 2 , Ν = 4πr0
3 / 3Ω , where Ω  is the 

atomic volume, m = 4πr0
2a / 2Ω , where the surface layer is assumed to be of thickness a / 2 , and, hence, 

νdiss ≈ e−βEa / r0τ .  The ratio a / r0  accounts for the probability to find a vacancy near the surface.  Hence, 
the frequency of dissociation events is equal to the vacancy concentration near the surface times the 
frequency of jumps away from the precipitate, which seems to be an obvious description in such a simple 
case.  To take into account the interaction energy profile U(xi )  within the precipitate, one should use 

e−βU (ri )
well

-1
 for the probability of successful jump in this case.  This is useful in calculations of an enhanced 

vacancy concentration inside precipitate. 
 
For example, in conditions typical for thermal ageing, when the concentration in the matrix outside a 
precipitate is kept constant and equal to the equilibrium vacancy concentration, CV

e , at given temperature, 

the enhanced mean vacancy concentration in the precipitate C in  can be obtained using the detailed-
balance condition at the precipitate surface.  The frequency with which vacancies enter the precipitate is 
CV

e m nfree / zτ , while the frequency with which vacancies leave the precipitate is C in Ν / τ diss .  The 
equality of these frequencies implies that  

 
   

C in = CV
e e−βU (ri )

well
. (13) 

 
IV. Distribution Function of Dissociation Times 
 
A. Definitions and Monte Carlo scheme 
 
A more detailed description of the stochastic process of dissociation than by the statistical average value of 
dissociation time, Eqs. (3) and (7), is given by the probability density function of dissociation times, 
dP(t) / dt .  Here, P(t)  is the probability that a dissociation event occurs before time t .  For a random 
process without memory, such as the radioactive decay: 
   1− P(t) = exp(−t / τ diss )  (14) 
and the probability density function is given by 

   dP(t) / dt = exp(−t / τ diss ) / τ diss . (15) 
It will be shown below that this is valid in the cases characterised by a unique binding energy such as a 
single-site trap, but not for spatially distributed wells.   
 
To study the influence of the well shape on the distribution of dissociation times, we performed Monte Carlo 
calculations of particle diffusion in the same system as used for derivation of the mean dissociation times in 
Sec. II, i.e. it consisted of a well and one ‘free’ state with periodic boundary conditions. Two particular cases 
are considered below, namely 1-D square and triangular wells (see Sec. III A and B).  In the case of a square 
well, the jump frequencies of the diffusing particle in forward and backward directions, ν+  and ν− , were 

equal to those in perfect crystal: ν+ (x) = ν− (x) = 2τ( )−1
 for all but two frequencies for two border sites, 
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where ν right border
+ = ν left border

− = e−βE / τ .  In the case of triangular wells, the frequencies were calculated as 

 ν
± (x) = emβΔU ±

/ τ , where ΔU ± = ± U(x ±1) −U(x)[ ]/ 2  are the changes of the migration barriers due to 
the interaction energy (see Fig. 2).  The probabilities that particle jumps forward or backward are defined by 
ratios ν+ /ν total  and ν− /ν total , where ν total = ν

+ + ν−  is the total jump frequency.  The value < t >= ν total
−1  is 

the mean waiting time before a jump, which is generally site dependent.  The value τ  normally obeys the 
Arrhenius relationship for the temperature dependence with activation energy equal to the saddle point 
energy in perfect crystal ( E0  in Fig. 2).  In most of our calculations, τ  was a constant chosen to be the unit 
of time.  Some calculations revealing influence of the saddle-point energy profile on the distribution function, 
thus with τ  dependent on the position inside the well, are presented in Sec. IV D.  The calculations were 
performed until a specified number of dissociation events occurred.  The distribution of dissociation times 
was obtained as the number of dissociations within a specific time window (a bin of the distribution) divided 
by the total number of events and the bin width.  In our calculations, the bin width was taken as 0.1τ diss  and 
calculated using Eqs. (9) and (12) for the square and triangular wells, respectively.  The main purpose of 
calculations was to compare the probabilities calculated with those described by Eq. (15).  We use a 
dimensionless variable t / τ diss  and function τ dissdP(t) / dt  to represent the results, since they are 
independent of the mean dissociation time.  
 
B. Results for 1-D square wells 
 
The MC calculations were performed for wells of different width (50, 100 and 200 one jump distances) and 
depth (βE =3.87 and 7.74, which correspond to E =0.1 and 0.2 eV, respectively, at T =300K) and ~500,000 
dissociation events were accumulated in each case.  The range of well widths was chosen with a particular 
interest in the migration of a self-interstitial atom cluster in the long-range stress-field of an edge dislocation, 
see Refs. [6] and [7].  The calculations reproduced Eq. (9) with high accuracy, which was one of the tests for 
the code.  The main aim of the following calculations was to study the deviation of dP(t) / dt  from Eq. (15).  
The results are presented in Fig. 3.  Typical error bars are shown for one calculation (the upper parts of 
errors bars are omitted in order to keep presentation clear).  As can be seen, for wells deep and/or narrow 
enough (e.g. for βE =7.74 or Ν =50), the probability density approaches Eq. (15), which is characteristic of 
a random process without memory.  For shallow and/or wide wells, the distribution deviates from exponential 
dependence, especially at small times.  More specifically, the deviation occurs for such wells, where the 
mean dissociation time is not significantly longer than τ diff = Ν

2τ / 2 , which is the time corresponding to the 
diffusion length equal to the half of the well width l = Νa / 2 , where a  is the jump distance.  The diffusion 
length, i.e. the mean-free path, is defined from equation l2 = 2Dτ diff , where D = a2 / 2τ  is the diffusion 
coefficient in 1-D.  The last column of the legend in Fig. 3 contains necessary ratios τ diss / τ diff .  We note that 
wells for which τ diss ≈ τ diff  can hardly be treated as traps at all.  Thus, we conclude that for square wells 
strong enough to be considered as traps, i.e. with τ diss >> τ diff , the distribution under interest is described 
reasonably well by the exponential dependence.  
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FIG. 2. Schematic diagram illustrating calculation of energy barriers.  
 
C. Results for 1-D triangular wells 
 
Calculations similar to those described above for a square well were performed for triangular symmetrical 
wells, i.e. when xmin = xmax  in Eq. (11).  The statistics were accumulated for about 1,000,000 events.  Eq. 
(12) for the mean dissociation time was reproduced within reasonable accuracy, usually about 1%.  The 
distribution function of dissociation times is presented in Fig. 4.  As can be seen, the distribution deviates 
from the exponential dependence much more significantly than for square wells.  Similar to square wells, the 
deviation is stronger for shorter times and smaller ratio τ diss / τ diff .  This is because of a high fraction of 
dissociation events occurring before particle visited the deep region of the well.  It is evident that the higher 
the ratio τ diss / τ diff , the lesser the contribution of shallow regions to the mean time.  Unlike that for the 
square well, the probability of short time dissociation in a triangular well is always high, even for deep and 
narrow wells, and the distribution at short times has quite different slope in logarithmic scale.  This feature is 
due to geometry of the well, where shorter times correspond to smaller energy.  At long times the distribution 
becomes exponential but with different slope, as shown in the comparison with exponential function plotted in 
Fig. 4. 
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FIG. 3. Probability distribution of dissociation times of a migrating particle from wells of different depth E 
and width Ν .  The typical error bars are shown for one set of calculations (the upper parts of errors 
bars are omitted in order to keep presentation clear). 

 
Figure 5 shows the distribution of 1− P(t) , i.e. the probability that a dissociation event does not occur before 
time t, for triangular wells of different width and depth.  The error bars were very small for calculations of this 
type, not visible on the graph.  One calculation for a square well (labelled ‘Square’) is also shown and it 
demonstrates a dependence which is close to exponential decay. In contrast, the distributions for triangular 
wells deviate from simple exponential dependence.  The time dependence exhibits different behaviour at 
short and long times.  The function at short times is steep and decreases quickly, while an exponential 
dependence evolves at long times.  The curve for βE =3.87 and Ν =100, which is labelled ‘x=0’, is the 
distribution of escape times from the bottom of the triangular well.  That is, the trajectories of all the diffusing 
particles in this calculation started from x = 0  corresponding to the deepest position in the well.  In this 
calculation the mean dissociation time was about 15200τ  and more than an order of magnitude longer than 
that given by Eq. (12) and corresponding calculations, which is 1210τ .  We also note that this time was 
about twice higher than the corresponding value of 7230τ  for the square well of the same depth and width 
when all trajectories started from ‘x=0’, i.e. the middle of the well.  This does not seem trivial, since the simple 
average depth of the former well is smaller.  As seen from Fig. 5, this calculation also shows the exponential 
decay.  This indicates that the deviations from an exponential relationship are due to trajectories, which do 
not reach the bottom of the well.  In addition, we make an important observation.  When the time is equal to 
the mean dissociation time, the probability for the triangular wells is not equal to e−1  as expected for a 
random process, such as radioactive decay, described by Eq. (14).  This means that the events are not 
randomly distributed, i.e. Eq. (14) is not applicable, and hence actual distribution function is required to 
characterise the process.  It seems important to mention that, strictly speaking, such a process cannot be 
treated by chemical reaction equations, where the dissociation rate is the reciprocal of the mean dissociation 
time.  These equations predict exponential decay for the trap concentration, thus describe random process.  
The work is currently in progress investigating possibility of overcoming these problems. 

 
FIG. 4. Same as in Fig. 1 but for triangular wells.  One curve, labelled ‘SP’ has been calculated for the 

energy profile where all saddle-point energies are equal.  
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D. Influence of saddle-point energy profile on time distribution 
 
As has already been mentioned in Sec. II B, the mean dissociation time is independent of the saddle point 
energy profile within the well, and this follows from the general Eq. (7).  We verified this statement by 
calculations for a triangular potential well where all saddle-point energies were taken to be the same and 
equal to those in perfect crystal.  An example of such a well is shown in Fig.1b.  In the calculations 
performed, the time delay was defined according to the actual saddle-point energy by including an additional 
Arrhenius factor.  The results are presented in Fig. 4 in the curve labelled ‘SP’ for βE =3.87 and Ν =100.  
The mean dissociation time was the same as in corresponding calculation above for triangular well (see Sec. 
IV C) and given by Eq. (12) within accuracy of less than 2%.  The probability distribution was different, 
however, with the probabilities of shorter-time dissociations increased.  This is because there is no longer 
preference for a diffusing particle to jump towards deeper well regions.  In other words, in this calculation, the 
well represents a region where only jump frequencies, but not the probabilities of different jumps, are 
affected.   
 
Similar effect was studied in Ref. [9] for diffusion of vacancy and Cu atoms in a dilute Fe-Cu alloy.  The 
analysis showed that the diffusion mechanism of Cu atoms, namely the crossover from ‘exchange’ (when a 
vacancy executes only exchange jumps with Cu atom) to ‘drag’ (when the vacancy co-migrates with Cu 
atom) mechanisms depends critically on the saddle-point energy profile of the vacancy around Cu atom (see 
Ref. [9], especially section 3.2). 
 
V. Exchange Frequency between Wells 
 
In the preceding sections we used the term ‘dissociation’, which can be inappropriate in some cases where 
the term ‘escape’ would be a better word.  An important example is a dilute solution of traps.  In this case, a 
migrating defect escaping from a trap has a high probability of returning to the same trap after a short-time 
migration in pure crystal.  In diffusion-reaction kinetics, however, we are concerned mainly with events that 
result in complete dissociation in the sense that the memory is lost and the next reaction will occur with high 
probability at another trap.  In other words, the quantity of interest is the frequency with which diffusing 
objects are exchanged between wells.  This is the origin for the Eyring transmission factor in the reaction rate 
theory10.  A clear distinction between escape and dissociation events can be seen in the example of vacancy 
evaporation from voids.  The evaporation takes place at the void surface; hence, the total escape frequency 
is proportional to the surface area, i.e. the void radius squared.  The well-known result of the diffusion-
reaction theory gives proportionality to the void radius.  Obviously and as demonstrated below, this difference 
is due to correlated absorption of vacancies by the same void they are emitted from.  This indicates that 
accounting for correlated events can change even qualitative description of the process.  Note also that the 
events contributed to the short-time non-exponential part in the distribution function of dissociation times, see 
Sec. IV C, can also be viewed as correlated events and thus part of the same problem.  Below we consider 
this problem for two specific cases: vacancy evaporation from a void and de-trapping of interstitial cluster 
from dislocation. 
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FIG. 5. Probability that a dissociation event does not occur before time t for the wells of triangular shape of 

different width and depth.  One curve labelled as ‘Square’ was calculated for square well.  The 
curve labelled as ‘x=0’ shows the distribution of escape times from the bottom of the triangular well. 

 
A. Vacancy evaporation from void 
 
Consider a void of radius r0 , which emits τ diss

−1  vacancies per second per surface site, in a spherical 

coordinate system.  Vacancies migrate three-dimensionally with the diffusion coefficient D = a2 / 6τ .  The 
diffusion equation for vacancy concentration C  is 
 ∇2C = 0 . (16) 
To calculate the number of vacancies emitted from the void that reach some distance R  from the void 
surface we use absorbing boundary conditions at this distance 
 C(R) = 0 . (17) 
One more boundary condition must specify the vacancy-void interaction process.  Assuming that vacancies 
are absorbed by the void, which is a realistic scenario, the vacancy concentration at one jump distance a 
from the surface can be written as  
   C(r0 + a) / τ = νdiss +C(r0 + 2a) / 2τ . (18) 
The left-hand side of the equation describes the frequency with which vacancies leave the site.  The first term 
on the right-hand side stands for the production of vacancies due to evaporation from the void.  The last term 
on the right-hand side accounts for vacancies coming to this site from the sites further way from the void 
surface.  After representing the latter term using Taylor series, in the limit of r0 >> a , the boundary 
condition, Eq. (18), assumes the following form 
   C(r0 ) = 2τνdiss + ∇C(r0 )a . (19) 
Using this condition, one finds the concentration to be equal to 
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C = 2τνdiss

r −1 − R−1

r0
−1 − R−1 . (20) 

It can readily be estimated using the last two equations that the gradient of concentration in Eq. (19) is 
smaller than the other terms by a factor of a / r0  and does not contribute to Eq. (20).  This means that most 
vacancies emitted from the void return back to it.  As a result, the equilibrium condition for the concentration 
near the void surface is defined by the equality of frequencies of evaporation and jumps back to the surface 
and is not affected by the flux of vacancies away from the surface.  The vacancy equilibrium concentration at 
the void surface is readily obtained from Eq. (20) as CV

e = C(r0 ) = 2τνdiss . 
 
The total number of vacancies passing through a spherical surface of radius R  and area S = 4πR2  per unit 
time is equal to 

 
  
RV

a = −
SD
Ω

∇C(R) =
DCV

e

Ω
4πr0

1− r0 / R
, (21) 

where superscript ‘a’ denotes absorbing boundary.  There are three points to be made.  First, Eq. (21) 
becomes independent of the distance R  from the surface, when R >> r0 .  Thus, vacancies reaching this 
distance lose their memory and can be counted as dissociated from the void.  Second, despite the fact that 
the total vacancy emission frequency is proportional to the void surface area, the total vacancy flux far away 
from surface is proportional to the void radius.  This is a well-known result of the reaction-diffusion theory 
(see, e.g. Ref. [11]).  Third, as can be seen from Eq. (21), significant deviation from the proportionality to the 
void radius occurs at distances of the order of void radius.   
 
As discussed above most vacancies emitted return to the void.  The fraction of vacancies which do not return 
is equal to the ratio of the frequency defined by Eq. (21) and ~ 4πr0

2νdiss / a2 , which is for the total frequency 

of vacancy emission.  It is thus equal to a / r0 .  The same result can be demonstrated considering another, 
although unrealistic, scenario in which vacancies are reflected by the voids.  In this case all vacancies 
produced contribute to the flux far away from the void.  Indeed, in this case, we should multiply the left hand 
side of Eq. (18) by ½ to account for the fraction of unsuccessful jumps towards the void surface.  Then, only 
the gradient and source terms remain in the boundary condition, Eq. (19): 
   ∇C(r0 )a = −2τνdiss  (22) 
and the vacancy concentration becomes 

 
  
C =

2τνdissr0
2

a
1
r
−

1
R

⎛
⎝⎜

⎞
⎠⎟

. (23) 

The quantity defined by Eq. (21) modified for the case of reflecting boundary conditions (superscript ‘r’) is 
now proportional to the surface area: 

 

  
RV

r =
4πr0

2

Ω
2Dτνdiss

a
=

r0

a
⎛

⎝
⎜

⎞

⎠
⎟ RV

a , (24) 

and is higher than that for absorbing conditions by a factor of r0 / a . 
 
We also note that the first non-vanishing correction to the proportionality of the vacancy flux to the void radius 

is positive and proportional to the void radius squared, see Eq. (21), where r0 1− r0 / R( )−1
≈ r0 + r0

2 / R .  

This is the same result as obtained previously e.g. by Göselle (Ref. [12]) considering void capture efficiency.  
Thus, with increasing volume fraction more and more vacancies become absorbed at other voids and the 
proportionality to the void radius squared would be restored.  The first correction term just shows the right 
tendency. 
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B. Interstitial cluster exchange between dislocations 
 

Consider a random spatial arrangement of dislocations and interstitial clusters migrating one-dimensionally 
with the diffusion coefficient D = a2 / 2τ .  This problem is similar to that considered above in Sec. V A.  It is 
readily obtained that, with absorbing boundary conditions at the well boundary at x = 0 , Eq. (18), and at 
distance L  from the well, the cluster concentration is described by the following equation 

 
  
C = 2τνdiss 1−

x
L

⎛
⎝⎜

⎞
⎠⎟

. (25) 

The distance L  here can be interpreted as the mean distance between dislocations in 1-D and will be 
discussed further below.  In this case, other dislocations absorb clusters passing this distance and, hence, 
the memory is lost.  This process can be considered as cluster exchange between wells represented by 
dislocations.  The total flux of clusters emitted from the well at distance L  is  

 
  
J a = −D∇C(L) =

D
Ω

2τνdiss

L
. (26) 

We note that, in contrast to 3-D diffusion, the total flux for 1-D diffusion always depends on the distance; 
namely, it decreases with increasing distance (decreasing dislocation density).  
 
Similar to the problem of vacancy evaporation from a void considered above, one can show that, for 
reflecting boundary conditions, Eq. (22), the vacancy concentration and the flux of clusters are both L / a  
times higher.  Hence, the fraction of clusters, which do not return to the well after escaping from the potential 
well, and, hence, the frequency with which clusters are exchanged between dislocations, f  is equal to 
a / L : 
   f = νdissa / L . (27) 
Now let us make some estimates of the effect.  The mean distance between randomly arranged dislocations 
in 1-D is described by the dislocation density ρD  and capture radius d  as L = 2 /πρDd  (see, e.g. Ref. 

[13]).  The jump distance in bcc lattice is the distance between atoms in <111> direction: a = 3a0 / 2 , 
where a0  is the lattice parameter.  Hence, the frequency of cluster exchange between dislocations is 

   f = 3πνdissρDda0 / 4 . (29) 
 
For typical dislocation density ρD =1012 m-2, the capture radius d =100 nm estimated in Ref. [6] and a0 =0.3 
nm, the frequency is smaller than the rate of cluster emission from the well by about five orders of magnitude: 
f ≈ 4×10−5νdiss .   

 
Thus, the exchange frequency for a diffusing particle between spatially separated wells may be many orders 
of magnitude smaller than the frequency of dissociation from a well, and this is due to correlated recapture of 
the particle by the same well.  In addition, the effect depends strongly on the trap density. 
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