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OBJECTIVE:   

The objective of this study is to develop a hybrid atomistic-continuum method to obtain an elastic 
representation of radiation-induced defects in α-Fe. This will make available calculations of elastic 
interaction energies between defects in various strain environments within the framework of continuum 
elasticity theory. 

SUMMARY  

In this study, a hybrid method has been developed to couple the results of molecular statics calculations 
with classical isotropic elasticity theory to extract a continuum representation of various defects through 
the use of force multipoles. These calculations have provided a means to account for the changes in 
defect energetics due to local strain environment effects. In uniform strain environments, the use of the 
elastic dipole tensor is sufficient to calculate the interaction energy. However we find the use of higher 
order multipole tensors necessary to represent many defects and their interactions in environments with 
strain gradients, such as the vicinity of grain boundaries or other extended defects. In addition, isotropic 
elastic Green’s functions are found to provide material response very consistent with atomistic 
simulations when these higher order terms are implemented. We have made calculations of interactions 
between defects including Fe and He point defects, Fe self-interstitial clusters, He-vacancy clusters, and 
extended defects in α-iron.     

PROGRESS AND STATUS 

Introduction 

Internal structural components which operate in the nuclear fusion environment are subject to significant 
damage doses stemming from the onslaught of 14 MeV neutrons produced in the D-T cycle. The internal 
production of point defects such as self-interstitial atoms (SIA) and vacancies from elastic interactions, 
and helium from (n,α)-reactions lead to severe material degradation over time, including swelling [1] and 
low-temperature embrittlement [2]. The prediction of damage evolution and component lifetime is highly 
dependent upon accurate models of point defect production and interactions within the material. The 
development of truly predictive long-timescale simulation techniques has been quite scarce in recent 
history due to the trade-offs between computational efficiency and rigorous physical treatments. While an 
accurate physical model of damage accumulation and evolution requires a comprehensive understanding 
of point defect energetics and interactions, there has been an absence in many studies [3,4,5], of the 
consideration of local strain environment effects on defect migration properties and stability. The goal of 
this work is to combine atomistic simulation with elasticity theory to implement the method of force 
multipoles to represent defects, and use continuum elasticity calculations to quantify interactions between 
these defects and with various strain fields. These interactions can be made available to future KMC 
simulations to account for strain-biased diffusion, and give a physically-based description of the 
accumulation and evolution of damage in irradiated metals. 
 
Force Multipole Representation of Defects 

The insertion of a point defect into a perfect crystalline lattice creates a displacement field around the 
defect on surrounding atoms. This displacement field is typically modeled using one of multiple 
approaches. Eshelby [9] developed a very simple and elegant way to approach the problem within the 
confines of elasticity theory. He treated the point defect as a center of dilatation, modeled as a spherical 
inclusion within an elastic isotropic medium, whose strength may be determined from experiment. This 
model is only suited, however, to describe defects of high symmetry acting in materials with very low 
anisotropy. Another method, proposed by Kanzaki [6], involves representing the defect as an array of 
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forces located on neighboring atoms. Generally called the method of ‘Kanzaki forces’, this method has 
been successfully implemented in the past, for example, to give the atomic displacements around 
vacancies in Cu and Al [7].  However, this approach suffers from a few inherent limitations. Among 
them, the formulation requires the spatial extent of these forces to be as restricted as possible, typically 
to first nearest neighbor atoms. For this reason, the elastic response of the material must be modeled 
with complex ‘lattice’ Green’s functions that have no closed form expression [8], to account for the 
complex displacements inherent in a defected crystalline lattice. In addition, each point force will 
introduce a singularity, and additional effort will be required in the computations.  

For our application, we have found the method of ‘force-multipoles’ to be most beneficial. In this 
method, the defect is represented as a multipolar expansion of forces acting at the center of the defect. 
As in the Kanzaki approach, the addition of a point defect in a perfect crystal can be alternatively 
represented as a configuration of point forces acting on all affected, neighboring atoms. Consider a 
defect at the origin surrounded by N atoms (ν) with separation vectors lν. Following the formulations of 
Siems [10] and Teodosiu [11], the displacement field caused by a defect at the origin can expressed as 
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where G(x) is the elastic Green's tensor function of the material and Pν are the point forces acting on 
initial lattice atom locations lν. We note here that repeated indices imply summation. Expanding G(x-lν) 
in a Taylor’s series about x gives 
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Plugging this Green’s function expansion back into (1), the displacement field can be rewritten as 

 
1 1

( ) (0) (1) (2)
, ... ... , ,

0
( ) ( ) ( ) ( ) ( ) .( 1) ..

! k k

k
k

m ms q q q q ms s ms n ns ms nq n
k

n qsu G G G G
k

∞

=

−
= = − + −∑x x P x P x P x P , (3) 

where  

 
1 1

( )
...

1
.. , 1, 2,...... ,

k k

N
k

q q s q q sl klν ν ν

ν =

= = ∞∑P P      (4) 

are called the multipole moments of kth order. It is important to note that the k=0 moment represents a 
sum of the applied force vectors over all atoms, which equals zero for equilibrium conditions to be 
satisfied. The k = 1, 2 and 3 moments are called the dipole, quadrupole, and octopole moments and can 
be expressed as 
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The displacement equation (3) states that the elastic response of a defected material requires knowledge 
of the Green’s function of the material and the values of the multipole moments of the defect. We point 
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out that this differs greatly from the Kanzaki approach in that all forces and higher order moments occur 
at the center of the defect, and not on lattice sites. To lowest order, the defect can be represented by the 
dipole tensor as is usually the case for defects of high symmetry (vacancies, interstitials, etc).  

Solution Methodology 

We have recently developed a hybrid method to compute the values for the multipolar moments of 
lattice defects using molecular statics (MS) calculations and continuum elasticity theory. Thus far, our 
focus has been on radiation induced defects in the bcc alpha-iron lattice. These defects include self-
interstitial atoms (SIA), SIA clusters, helium point defects, and helium-vacancy clusters. Our method first 
requires an atomistic simulation of the defect in the host lattice to acquire the displacement field around 
the defect. For our molecular statics calculations we have chosen interatomic potentials well suited for 
simulation of these types of defects. For Fe-Fe, Fe-He, and He-He interactions we have chosen the well 
known Ackland [12], Juslin-Nordlund [13], and Lennard-Jones [14] interatomic potentials, respectively. In 
our atomistic calculations the defect was introduced in the center of the simulation box and a static 
relaxation (0 K) was implemented via conjugate gradient minimization to allow relaxation of the atoms. 
The lattice parameter used was 2.866 Angstroms. The supercell was a cube with an edge length of 18 
lattice parameters (~52 Angstroms) and periodic boundary conditions were applied on all sides. This cell 
size was found to be large enough to contain the full extent of the lattice distortions produced, with the 
total number of host Fe atoms being 11664. After performing the MS calculations, the next step is to use 
the atomic displacement information to obtain a multipolar representation of the defect. Taking another 
look at equation (3), we can alternatively view this equation as a matrix-vector multiplication of the form 

 { } [ ]{ }u G P= . (6) 

In this light, {u} is a 3N by 1 column vector containing the MS displacement vector components of N 
chosen neighboring atoms and can be expressed as 1 2 3 1 1 2 3 2 1 2 3{ } {{ , , } { , , } ....{ , , } }T

Nu u u u u u u u u u= . 
The column vector {P} represents the values of the chosen multipolar moments used to describe the 
defect. It has size N(k) by 1, where N(k) equals the total number of multipolar values chosen to be solved 
for. For example, if the dipole moment is sufficient to represent the defect, then N(k) = 9. This vector can 
be expressed as (1) ( )

11 12 33 1...1 1...2 3...3{ } {{ , ,... } ...{ , ,... } }k TP P P P P P P= . The matrix [G] represents the 
corresponding elastic Green’s function derivatives evaluated at the desired field point. This matrix has 
size 3N by N(k). We have found that the use of the isotropic elastic Green’s function provides adequate 
response of the material as compared to our MS calculations. This response function is well known and 
provides a tractable closed-form solution simplifying the necessary calculations. It can be expressed as 
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 where the Lamé’s constants λ and μ define the material, and r = i ix x . The multipole (k) value also 
implies the order of derivative of the Green’s function necessary for the calculations. We note these 
derivatives fall off as O(r-(k+1)). While the displacement field contributions decay rapidly for k>1, and the 
dipole moment dominates at longer distances, we have typically found the inclusion of up to the octopole 
tensor, to be necessary to accurately match the lattice displacements near the defect. With the values of 
{u} and [G] known from MS calculations and elasticity theory, respectively, equation (6) can be posed as 
a least squares optimization problem which can then be solved to obtain the multipole moment values 
{P}. This step has a significant benefit since displacements beyond the first few shells may also be used 
to extract information about the defect.   

The lifetime and fate of point defects operating in radiation damaged environments are governed 
by the many elastic interactions they may have with any number of other defects within the host material. 
These interactions affect the stability and migration tendencies of defects and have been a topic of great 
concern within the nuclear materials community for some time. Thus, it is of most importance to have a 
detailed, quantitative understanding of these interactions. Consider again a point defect at x modeled as 
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a configuration of point forces Pν acting on neighboring atoms ν, this time placed within an existing 
displacement field u. It is clear that the resulting interaction energy can be expressed as 
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Now expanding u(x+lν) in a Taylor’s series about x we have 
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Introducing this expression back into (8), allows the interaction energy to be expressed in terms of the 
multipolar moments as 
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Applications 

The focus of our research has been primarily on radiation induced defects in the bcc α-iron lattice. In this 
section we will highlight some representative results obtained for a small selection of defects that have 
been modeled. 

I. Fe SIA <110> dumbbell 

Self interstitial atoms (SIA) are generated in significant quantities in fission, and to a larger extent, fusion 
reactors. They are produced in the wake of displacement cascades caused by incoming fluxes of high 
energy neutrons. Studies of the energetics and mechanisms of migration for these point defects have 
been a topic of interest for many years. Single SIAs in α-iron take the form of a split dumbbell 
configuration. In the past, experimental studies [15], as well as ab-initio calculations [16,17], have 
concluded the ground state configuration to be the <110> dumbbell. In our MS calculations, we have 
found the formation energy to be 3.35 eV, which is in agreement with values reported previously by 
Terentyev, et al [18], but lower than those predicted by DFT. Implementing our hybrid method for 
multipolar representation of this defect, we have calculated the multipolar moments up to the octopole 
tensor (P(3)). Calculated values for the dipole tensor are given in table 1. In figure 1 we have plotted the 
displacements versus distance from the defect center. The plots on the left and right show the radial and 
Cartesian components, of the displacements, respectively. The circles in these plots are those obtained 
from MS calculations, while the points represent the calculated displacements using the multipolar 
representation via equation (3).   
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Figure 1. Displacement vs. radial distance plots for [110] Fe SIA. (a) radial (b) Cartesian components. 

 

We see very good agreement in the displacements predicted by the multipolar representation. First, it is 
important to note the complexity of the lattice response to this defect. In the first shell alone we see the 
very large expansion of the four atoms lying on the (110) plane with a contraction of the remaining four 
atoms. This immediately suggests any attempt to model this defect as an inclusion or center of dilatation 
would be in vain. In fact we have found that without the inclusion of the octopole moment, the dipole 
tensor alone struggles to replicate these phenomena. The largest contribution to elastic energy is 
contained within the first few shells around the defect, and we see very good agreement in this vicinity. 
To obtain an overall quantity to compare the accuracy of this new multipolar representation of the defect 
compared to the MS calculations, we have chosen to compare the predicted formation energy of both 
representations. To do this, we apply the multipole displacements to a perfect bcc Fe lattice and hold 
these new positions fixed. Next we evaluate the energy of this system using the Fe interatomic potential. 
This allows direct comparison of the formation energies. We find the multipolar representation to give a 
formation energy of 4.02 eV giving a percent difference of roughly 20% with the MS value. This over-
prediction stems from the inherent inability of continuum elasticity to account for the intricate atomic 
interactions that occur within the discrete atomic lattice. We also note this percent difference lies within 
the variation of several Fe interatomic potentials [23]. 
 We have recently studied the effect of deformation on the formation energy of SIAs in α-iron 
[19]. This problem is important in severe radiation conditions where the lattice undergoes deformations 
under applied loads. Ab-initio calculations were made for various strain loadings of volumetric and 
uniaxial type. These calculations were then compared to results from obtained using MS calculations 
with the above mentioned interatomic potential, and also with the multipolar representation of the defect 
using continuum elasticity (CE) formulations. The formation energy of a defect in a strained environment 
can be computed as 

 0
f f

intEE E= +  (11) 

where 
0
fE represents the equilibrium formation energy of the defect and intE is the elastic interaction of the 

defect with the strain field. As a reference, we have taken 0
fE to be that calculated by MS. In a 

homogeneous strain field, we see from equation (10) the interaction term can be computed as 

(a) 

 

(b) 
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 (1)
int ij ijE P ε= − .  (12) 

This equation implies that under constant strain, only the dipole moment contributes to the interaction 
energy. In the case of defect interactions with varying strain fields (dislocations, grain boundaries, other 
point defects), this will not be the case, and the higher order moments will contribute to the interactions. 
Results for formation energies of the [110] SIA under both strain modes can be found in figure 2. For 
volumetric strains, the applied strain tensor can be expressed as εij=εv/3 δij, and for uniaxial strains the 
only nonzero component was ε33.  
 

 

 

Figure 2. Formation energy vs. applied external strain for [110] Fe SIA. (a) Volumetric (b) Uniaxial. 

 
In the volumetric strain studies we found very good agreement in the energetic trends. The linear 
behavior of energetic favorability of defect formation under lattice expansion is predicted by the 
continuum approach and verified by the MS and ab initio calculations. The discrepancies in the values 
can be attributed to several causes. Above all, the formation energy of a defect will contain contributions 
of both elastic and electronic interaction with the host lattice. The MS calculations do not account for 
these electronic interactions though they do contain information about the lattice. The continuum elasticity 
solutions contain neither energetic contributions from the lattice structure nor the electronic interactions 
and thus predict lower formation energies compared to the ab-initio calculations. Under uniaxial strain we 
see near identical prediction of the formation energy in the MS and continuum calculations. However the 
predicted trends in both defects are not observed in the ab-initio results. This suggests highly influential 
electronic reconfigurations are at play in uniaxial deformations.  
 
II. Helium point defects 

Extrinsic radiation induced defects are well known to contribute to the mechanisms of damage 
accumulation and evolution in irradiated materials. Substantial quantities of helium atoms are generated 
within the α-iron lattice by (n,α) transmutation reactions. Helium is highly insoluble in iron and thus 
interstitials rapidly migrate with an energy barrier less than 20% than that of Fe interstitials [20]. We have 
undergone calculations of the multipole moments for helium in both octahedral and substitutional 
configurations. The results for these calculations are found in table 1.  Figure 3 (a) shows the radial 
displacement versus distance for the octahedral interstitial. 

(a) (b) 
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Figure 3. Radial displacement vs. distance plots for helium point defects in α-Fe. (a) Octahedral (b) 
Substitutional. 

We see excellent agreement in the first four atomic shells, with an over-prediction in the slightly 
anisotropic fifth shell, but good decay agreement in the shells that follow. We found it necessary to 
implement the octopole moment in order to get good matching for the displacements in the third and 
fourth shell. Comparing the formation energies between MS and the multipole representation, we found 
the percent difference to be only 0.89% between the continuum value (4.49 eV) and the MS value (4.45 
eV).  
 
The displacement field generated by the substitutional helium is somewhat more complex (see figure 3 
(b)). In our MS calculations we find a 0.307 pm radial contraction of the 8 nearest neighbors, contrasted 
by a 4.67 pm expansion of the 6 second nearest neighbors. This behavior is not well suited for classical 
elasticity and we find the use of the octopole tensor as the only way to account for the discontinuity. Our 
calculations give a percent difference of 33% and 2.3% in the radial displacements of the first two shells, 
respectively, and we find the octopole tensor to assume only six non-zero components. We note the 
large percent difference in the first shell is due to the very small contraction, and does not influence the 
defect energy to the extent the second shell does. 

 
 

Table 1. Computed dipole tensor values (in eV) for selected defects in α-Fe. (*P12/P21 given for HeV 
cluster) 

 

 P11 P22 P33 P12 P23 P13 

Octahedral Helium 5.37 5.37 8.73 0.00 0.00 0.00 

Substitutional Helium 3.51 3.51 3.51 0.00 0.00 0.00 

[110] Fe SIA Dumbbell 20.02 20.02 18.22 -9.107 0.00 0.00 

He12V4 Cluster 64.65 71.91 72.84 0.606/-0.095* 0.00 0.00 

 

 

 

 

(a) (b) 
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III. Helium vacancy clusters 

The rapid diffusion of helium within the host lattice is halted as these solute atoms meet their fate at 
system sinks such as dislocations, grain boundaries, and vacancy voids. Helium has long been known to 
stabilize voids against their otherwise collapse by vacancy emission [21], and lead to swelling in the 
material. The stability and migration energetics of helium-vacancy clusters (HenVm) have been studied in 
the past using atomistic simulations [20,21]. We have found our hybrid multipole method to accurately 
mimic the displacements seen in MS calculations of these defects. We describe here the results of our 
calculations for a He12V4 cluster. This defect was found to produce a highly anisotropic displacement 
field in the lattice and illustrates the point that when the higher order multipolar moments are included, 
then isotropic elastic Green’s functions are capable of predicting these non-uniformities. The defect was 
created by adding 12 atoms into 4 vacancies in a random fashion. Then dynamics were run at 100 K for 
1 ns allowing the cluster reach a more energetically favorable configuration. Lastly the defect and lattice 
were allowed to relax at 0 K. We do not suggest here that this particular final configuration is the ground 
state of the defect. Figure 4 shows the displacement field of the defect. 14 nonzero components 

 

Figure 4. Displacement vs. radial distance plots for a He12V4 cluster in α-Fe. (a) radial (b) Cartesian 
components. 

We chose to define the center of the defect to be the center of mass of the helium atoms within the 
cluster in the final configuration which explains the minor radial variations in the shell distances. We note 
the very close agreement in the atomic displacements within about 1.7 lattice parameters of the defect 
center. In this region the discrete lattice effects will be maximum, however we see isotropic elasticity is 
capable of reproducing this foreign nature. Furthermore, the fitting scheme was generated using the MS 
displacements of 40 neighboring atoms which includes all atoms within this region. The elasticity-
predicted decay beyond this point is seen to match well with the MS calculations.  We note the 
asymmetry of the dipole tensor for this defect as seen in table 1. It is found that P12 ≠ P21 which suggests 
the defect is not without moment. 
 
Elastic Interactions of Defects 
 
With the multipolar values known for various defects, equation (10) may be implemented to calculate 
interaction energy fields between defects. Plotted in figure 5 are the interaction energy contours of (a) an 
octahedral helium interstitial and (b) an Fe [110] SIA atom, with a He12V4 cluster residing at the center. 

(a) 

 

(b) 
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Figure 5. Iso-interaction energy contours (in eV) of (a) He octahedral (b) [110] Fe SIA dumbbell, with 
He12V4 cluster at the origin in α-Fe. 

The interaction energy contours in (a) show attraction between the defects at all positions on the (100) 
plane. This elastic attraction which leads to cluster growth is well known to exist between interstitial 
helium atoms and HeV clusters, and is confirmed by our elasticity calculations. The iron SIA on the other 
hand shows four distinct regions around the HeV cluster. Two regions that indicate a repulsive 
interaction, and two that show attraction. We propose that for a sufficiently strong repulsive interaction 
near the cluster, one of two phenomena may occur. The SIA will either rotate its orientation to a more 
energetically favorable configuration, or migrate to one of the attractive regions. Its choice will obviously 
depend on the energy barriers involved in those processes. In these plots we note that not all positions 
will be available to the point defects due to the presence of the host lattice, however we find the trends 
and energy scales very useful. 
  
We have also conducted calculations between extended- and point defects. Using the edge dislocation 
model given in Hirth and Lothe [22] for an infinite isotropic elastic solid, we have obtained interaction 
energy contours for the multipolar defects. These calculations are meant only to be approximations, 
especially near the dislocation core where the singularity causes divergence in the energy. Plotted in 
figure 6 are the interaction energy contours of (a) an octahedral helium interstitial and (b) an Fe [110] 
SIA atom, with an a0/2[111]{110} edge dislocation in iron.   
 

 

Figure 6. Iso-interaction energy contours (in eV) of (a) He octahedral (b) [110] Fe SIA dumbbell, with an 
a0/2[111]{110} edge dislocation in α-Fe. 

(a) (b) 

(a) (b) 
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In both plots of figure 6 we see the tendency for the interstitials to be drawn to the dislocation core while 
on the tensile side of the dislocation (repulsion is seen on the compressive side). We also see some 
higher order effects in the contours of both cases within roughly 5 a0 of the dislocation. These effects 
fade with distance as the dipole tensor term in equation (10) dominates the interaction. The strength and 
extent of interaction of the Fe interstitial with the dislocation is found to be roughly 2.5 times greater than 
that of the helium interstitial. 
   
Conclusion 

In this study, a hybrid method has been developed to couple the results of molecular statics calculations 
with classical isotropic elasticity theory to extract a continuum representation of various defects through 
the use of force multipoles. These calculations have provided a means to account for the changes in 
defect energetics due to local strain environment effects. The isotropic elastic Green’s function is found 
to provide material response very consistent with atomistic simulations when higher order moments 
describing the defect are implemented. We have found the use of the octopole tensor in many cases is 
necessary, and is able to capture anisotropies in the displacement field as well as discrete lattice 
irregularities, both of which are foreign phenomena within isotropic elasticity theory. 

We have also performed calculations of the interaction energies between multipolar defects and 
intrinsic extended defects in iron. Our solutions have thus far provided approximations for the energetics 
and general trends in the affinity of defects to show attraction or repulsion to other defects. We are 
currently developing hybrid methods to model dislocations and grain boundaries, to use in these 
calculations for increased accuracy. The method we describe and its outcomes will allow for more 
accurate models of defect diffusion and interaction within the radiation damage environment, where 
long- and short-range elastic interactions govern the accumulation and evolution of defects in the 
material. 
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