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OBJECTIVE 
 

The objective of this study is to develop the materials science of ductile-phase W-composites for plasma-
facing components in fusion reactors. Parametric study of a bridging model for W-Cu is discussed. 

 

SUMMARY 

A crack bridging model using calculated Cu stress-strain curves has been developed to study the 
toughening of W-Cu composites. A strengthening factor and necking parameters have been added to the 
model for the ductile-phase bridges to incorporate constraint effects at small bridge sizes. Parametric 
studies are performed to investigate the effect of these parameters. The calculated maximum applied 
stress intensity, aKmax, to induce a 1-mm stable crack is compared to the experimental stress intensity at 
peak load, Kpeak. Without bridge necking, increasing the strengthening factor improves the agreement 
between aKmax and Kpeak when plotted vs. logarithm of the displacement rate. Improvement can also be 
achieved by allowing necking with a larger failure strain. While the slope is better matched with this latter 
approach, the calculated value of aKmax is significantly larger than Kpeak. 

 

PROGRESS AND STATUS 

Updated Results 

In our previous report [1], the conversion of the displacement rate to strain rate was incorrect. In this 
report, we update the crack-bridging model using the corrected strain rate data. In addition, we include 
the effect of bridge necking. The 3-point bending specimen has a span L = 16.05 mm, a height w = 3.3 

mm, and a thickness b = 1.67 mm. The experimental midpoint displacement rates, 𝛿̇, were converted into 
a tensile strain rate, 𝜀̇, using the following 3-point bending formula [2], 

 𝜖̇ =
2𝑤(𝑛+2)

𝐿2 𝛿̇  (1) 

where n is the stress exponent for creep (n = 1 for elastic bending). Note that n depends on 𝜀̇ and does 
not correspond to the exponent appearing in the Dorn equation. The conversion is performed until the 
displacement rate converges to the experimental value within 1% relative error (see Table 1). 

 

To compare model results to experimental data, an equivalent dataset was considered. The model begins 
by considering an initial applied K, aK0, and a0/w, where a0 is the initial crack length. For the case treated 
here, a0 was 0.7 mm and w was 3.3 mm. A bridge radius of 5 µm was assumed with a Cu volume fraction 
of 0.4 to match previous SEM data on Cu area fraction in polished cross-sections. The bridges are 
uniformly distributed according to the volume fraction with the first one at 0.02 mm from a0. The Young’s 
modulus for W at 293, 679, and 905 K is 410, 393, and 385 GPa, respectively, and for Cu is 130, 110, 
and 95, respectively. The Young’s modulus of the composite was taken as the average value based on 
the volume fraction. 



 

  

Table 1. Conversion of the midpoint displacement rate, 𝛿̇, measured in experiments to the tensile strain 
rate, 𝜀̇, for the flow stress model of Cu [1]. 

 

T 
(K) 

𝛿̇ 
(mm/min) 

𝜀̇ 
(1/s) 

n 
 

cL y 
(MPa) 

ulteng 
(MPa) 

ulteng 
 

293 2.0 1.178e-1 135.900 33.75 79.5 209.9 0.2612 

 0.2 1.139e-2 131.300 34.37 78.2 206.2 0.2611 

 0.02 1.100e-3 126.700 34.98 76.7 202.5 0.2612 

 0.002 1.061e-4 122.100 35.60 75.1 198.7 0.2614 

 0.0002 1.022e-5 117.460 36.23 73.3 194.8 0.2618 

679 2.0 3.884e-2 43.198 36.47 74.9 175.4 0.2496 

 0.2 3.497e-3 38.637 38.49 69.8 165.1 0.2507 

 0.02 3.113e-4 34.101 40.56 63.6 154.4 0.2534 

 0.002 2.697e-5 29.582 42.67 56.0 142.8 0.2581 

 0.0002 2.294e-6 24.857 45.01 46.5 129.7 0.2658 

905 2.0 2.349e-2 25.470 40.53 71.8 151.1 0.2375 

 0.2 1.967e-3 20.997 44.33 62.4 135.3 0.2411 

 0.02 1.596e-4 16.638 48.33 50.2 117.9 0.2500 

 0.002 1.240e-5 12.393 52.98 35.0 98.1 0.2662 

 0.0002 9.128e-7 8.688 59.74 19.3 76.7 0.2890 

 

In the model, the crack growth was simulated under constant load. The criteria for crack growth was aKcrit 
= 8 MPa√m so that a crack will arrest when aKtip falls below 8 MPa√m. The maximum applied K (aKmax) 
was determined for each temperature and strain rate for which the crack was still bridged and stable after 
1-mm of crack growth. Determining aKmax for which crack arrest will still occur is roughly equivalent to 
measuring the peak load stress intensity, Kpeak, in the experiments, and allows for a direct comparison of 
datasets, one experimental and one simulated. In addition to recording aKmax, other calculated values 
were recorded as well: aKtip and the difference between aKmax and aKtip, denoted as ΔK, which represents 
the total closure force due to the bridges, or the net toughening due to the bridges. 

 

A strengthening factor, sfact, is introduced into the model to account for bridge size effects and tri-axial 
constraint. This factor linearly scales the stress strain curve to account for these effects that can act to 
greatly increase the fracture strength of small, constrained bridges. In this approach, stress in the stress-
strain curve is multiplied by sfact while the strain is unchanged. The value of sfact is determined as the 
strengthening factor needed to arrest a 1-mm crack at 905 K (2/3Tm) with a displacement rate of 0.0002 
mm/min. We arbitrarily take the value obtained using the smallest applied load. The resulting sfact is 3.9. 
This value is then used for other temperatures and strain rates.  

 

Using sfact = 3.9, the value of aKmax is then determined. The results are shown in Table 2. The value of 
aKmax is typically larger than Kpeak. Note that within a 1-mm crack there are 40 bridges. From Table 2 we 
see that the number of bridges is less than 40. However, if we increase the applied K, the crack becomes 
unstable. Figure 1a plots aKmax and Kpeak as a function of displacement rate. In Fig. 1a, a single-value shift 
has been applied to the aKmax data so that at 679 K (1/2Tm) and 0.0002 mm/min the value matches Kpeak. 

In this case, the shift is 14.5-18.3 = -3.8 MPa√m. The shift allows for a more convenient comparison 

between model and experimental data. The best match is obtained at the intermediate temperature 
(1/2Tm). We varied sfact to explore its effects and with sfact = 8 (Fig. 1b) the match of room-temperature 
(RT) and 1/2Tm curves are improved. However, the curve at 2/3Tm is less sensitive to sfact changes. 

 

 

 

 



 

Table 2. Model results showing computed values of critical parameters for stable bridged cracks with 
sfact = 3.9. 

Temp 
(K) 

Displ. Rate 
(mm/min) 

Strain Rate 
(1/s) 

# bridges 
ΔK 

(MPa√m) 
aKmax 

(MPa√m) 
Exp. Kpeak 

(MPa√m) 

293 2 1.178e-1 23 15.1 22.9 23.5 
293 0.2 1.139e-2 23 14.8 22.7 23.7 
293 0.02 1.100e-3 23 14.5 22.4 21.3 
293 0.002 1.061e-4 23 14.2 22.1 19.6 
293 0.0002 1.022e-5 23 13.8 21.8 20.5 

679 2 3.884e-2 22 12.1 20.0 17.6 
679 0.2 3.497e-3 22 11.3 19.1 17.0 
679 0.02 3.113e-4 23 11.2 19.2 15.2 
679 0.002 2.697e-5 25 11.2 19.1 15.2 
679 0.0002 2.294e-6 26 10.4 18.3 14.5 

905 2 2.349e-2 21 10.2 18.2 13.5 
905 0.2 1.967e-3 23 10.1 17.9 11.3 
905 0.02 1.596e-4 25 9.4 17.3 9.4 
905 0.002 1.240e-5 27 8.2 16.2 8.6 
905 0.0002 9.128e-7 31 7.2 15.2 4.9 

 

 

Figure 1. Experimental Kpeak (filled symbols) and computed aKmax (open symbols) for W-Cu bridge model 
vs. displacement rate at room temperature (RT), 679 K (1/2Tm), and 905 K (2/3Tm). A shift of -3.8 and -9.8 
MPa√m is applied to aKmax data in a) and b) respectively. 

 
We have added a new capability in the crack bridging model to include necking of the bridges before 
failure. At this moment, we take the necking model from [3] as follows: 

 𝑦(𝑥) = √𝑥 [𝑒(1−𝑥(𝑐+1)/2)]
1/(𝑐+1)

 (2) 

where x = /ulteng and y = /ulteng. Necking is applied when  > ulteng. Figure 2 illustrates the necking 
curve for several values of c. 



 

 

Figure 2. Illustration of the necking model for different values of c. Necking occurs when the strain is 

larger than the ultimate engineering strain, ulteng. 

 

To investigate the toughening behavior when necking is taken into account, we use sfact = 3.9 data and 
necking parameter c = 5 and vary the necking extension factor up to 2x. An extension factor of 2x necking 

denotes a failure strain of fail = 2ulteng. Table 3 summarizes the results for the 2x necking. Figure 3a 
shows the akmax plot with a shift of -6.3 MPa√m. Compared to Fig. 1a, necking improves the slope match 
of the RT and 1/2Tm curves. Note that 1.5x necking (not shown) yields very similar curves as the 2x 
necking. Next, with sfact = 3.9 and 2x necking, we simulate with a necking parameter c of 0, 2, 5, and 10. 
The data with c = 2 is presented in Table 4 and is plotted in Fig. 3b with a shift of -8.5 MPa√m. Reducing 
the value of c from 5 to 2 appears to improve the slope match for the 2/3Tm curve. Further improvement of 
the slope match at 2/3Tm can be obtained with a lower value of c, e.g. c = 0 as shown in Figure 4. In Fig. 
4, a shift of -12.5 MPa√m has been applied to aKmax.  



 

  

Table 3. Model results showing computed values of critical parameters for stable bridged cracks with 

sfact = 3.9 and necking condition of fail = 2ulteng with c = 5. Maximum necking denotes the ratio of the 

maximum strain with ulteng of the most stretched bridge. 

 

Temp 
(K) 

Displ. Rate 
(mm/min) 

# bridges 
# necking 
bridges 

max. 
necking 

ΔK 
(MPa√m) 

aKmax 

(MPa√m) 

293 2 26 6 1.25 17.9 25.8 
293 0.2 26 6 1.25 17.5 25.5 
293 0.02 27 7 1.49 18.1 25.7 
293 0.002 27 7 1.72 17.8 25.7 
293 0.0002 27 6 1.26 17.4 25.3 

679 2 26 6 1.27 15.2 23.2 
679 0.2 27 7 1.75 15.0 22.8 

679 0.02 27 6 1.23 13.9 21.8 
679 0.002 29 7 1.91 13.9 21.8 
679 0.0002 30 6 1.25 13.0 20.8 

905 2 26 7 1.60 13.3 21.2 
905 0.2 27 7 1.26 12.4 20.4 
905 0.02 29 7 1.22 11.6 19.5 
905 0.002 32 7 1.25 10.7 18.7 
905 0.0002 37 9 1.49 10.0 18.0 

 

Table 4. Model results showing computed values of critical parameters for stable bridged cracks with 

sfact = 3.9 and necking condition of fail = 2ulteng with c = 2. Maximum necking denotes the ratio of the 

maximum strain with ulteng of the most stretched bridge. 

 

Temp 
(K) 

Displ. Rate 
(mm/min) 

# bridges 
# necking 
bridges 

max. 
necking 

ΔK 
(MPa√m) 

aKmax 

(MPa√m) 

293 2 28 10 1.69 19.9 27.9 
293 0.2 28 10 1.66 19.6 27.6 
293 0.02 29 11 2.00 20.0 27.9 
293 0.002 29 11 1.73 19.6 27.5 
293 0.0002 29 11 1.55 19.2 27.2 

679 2 28 10 1.72 16.9 24.8 
679 0.2 28 9 1.44 15.8 23.8 
679 0.02 30 11 1.81 16.0 23.9 
679 0.002 31 11 1.63 15.4 23.3 
679 0.0002 33 13 1.89 15.0 23.0 

905 2 28 11 1.73 14.7 22.6 
905 0.2 28 8 1.32 13.1 21.0 
905 0.02 31 11 1.58 12.8 20.7 
905 0.002 34 11 1.48 11.8 19.8 
905 0.0002 39 13 1.63 11.1 19.0 

 



 

 

Figure 3. Experimental Kpeak (filled symbols) and computed aKmax (open symbols) for W-Cu bridge model 
vs. displacement rate at room temperature (RT), 679 K (1/2Tm), and 905 K (2/3Tm). A shift of -6.3 and -8.5 
MPa√m is applied to aKmax data in a) and b) respectively. 

 

 

Figure 4. Experimental Kpeak (filled symbols) and computed aKmax (open symbols) for W-Cu bridge model 
vs. displacement rate at room temperature (RT), 679 K (1/2Tm), and 905 K (2/3Tm). A shift of -12.5 
MPa√m is applied to aKmax. 

 

Discussion 

The discrete bridging model described here has been improved to include a more complete treatment of a 
Cu-bridge in terms of plastic flow as a function of strain rate and temperature, strengthening due to size 
effects and constraints, and necking with complete control over how the bridges unload and fracture. 
However, this treatment has some problematic issues associated with it. One is that both strengthening 
effects and necking effects can be used as adjustable parameters and they appear to provide similar 
effects on toughening calculations. This makes for difficulties in model validation. Secondly, the 
comparison with peak load stress intensity, while necessary at this point and convenient, is not as strong 
a validation test as desired. A better test of the model will be to simulate the load displacement curves as 
a function of strain rate and temperature. This will also prove challenging given that the observed failure 



 

mode is multiple cracking over a significant plastic zone that is not captured in the model of a single 
bridged crack. This research will continue to explore model validation and more informative fracture 
toughness testing, if possible. 
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