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8.3  A GENERALIZED ISING MODEL FOR STUDYING ALLOY EVOLUTION UNDER 
IRRADIATION AND ITS USE IN KINETIC MONTE CARLO SIMULATIONS  Chen-Hsi Huang and 
Jaime Marian (University of California Los Angeles) 
 

SUMMARY 
 
We provide an Ising Hamiltonian for kinetic simulations involving interstitial and vacancy defects in 
binary alloys. Our model, which we term `ABVI', integrates solute transport by both interstitial defects 
and vacancies, and thus represents a generalization to the widely- used ABV model for alloy evolution 
simulations. The Hamiltonian captures the three possible interstitial configurations in a binary alloy: 
A-A, A-B, and B-B, which makes it useful for irradiation damage simulations. We implement the ABVI 
Hamiltonian in kinetic Monte Carlo simulations and perform a verification exercise by comparing our 
results to published irradiation damage simulations in simple binary systems with Frenkel pair defect 
production and several microstructural scenarios, with matching agreement found.  
(This is the abstract of a paper submitted to: J. Phys.: Condensed Matter) 
 

1.0 Introduction 
 
Stochastic modeling of microstructural evolution in substitutional binary alloys using Monte Carlo 
methods is a relatively mature field, where alloy configurations are generated randomly, typically by 
direct atom exchange (the so-called `Kawasaki' dynamics) [1-5], or by (local) vacancy-mediated solute 
transport [3-13]. The time scale is recovered by using physical jump frequencies that depend on the 
energies of the configuration before and after the exchange in such a way that detailed balancing holds. 
These energies are calculated using a suitable Hamiltonian function, which - in most cases - depends 
only on the chemical nature of the species participating in an exchange, as well as on their separation 
distance. Such methods, aptly called `AB' or `ABV' - in reference to the atomic species involved -, 
generally write the Hamiltonian as a cluster expansion truncated to first or second nearest neighbor 
distances [3-5, 7, 8, 11, 12, 14]. The order of the cluster expansion is variable, although it is generally 
restricted by computational considerations to second order [3-6, 8, 12-14]. However, it is often 
advantageous to express the cluster expansion Hamiltonian in terms of an Ising model where the site 
occupancy variables reflect the different species involved. This is because of the extensive 
mathematical and computational infrastructure associated with the Ising system, which is one of the 
most widely studied, and whose behavior is best understood, models in computational physics [3-5, 8, 
14-17]. 

 
The ABV models are also of interest in irradiated materials, to study non-equilibrium phenomena such 
as radiation enhanced diffusion and segregation, and indeed have been applied on numerous times in 
irradiation damage scenarios [11, 18-21]. However, by their very nature, ABV simulations obviate the 
existence of self-interstitial atoms (SIA), which are companion to vacancies during their production in 
the primary damage phase [22]. Neglecting SIA (as well as mixed interstitial) involvement in solute 
transport can often be justified when interstitial diffusion is orders of magnitude faster than that of 
vacancies, and - more importantly - occurs in a (quasi) one-dimensional manner. This results in a point 
defect imbalance when SIAs reach defect sinks on time scales that are much shorter than those 
associated with vacancy motion, leaving vacancies as the sole facilitators of atomic transport [18, 23]. 
However, in certain cases interstitials play an important role in mediating solute diffusion, and their 
effect can no longer be dismissed when formulating global energy models for solute transport. A case 
in point is the recent discovery of solute drag by so-called `bridge' interstitial configurations in W-Re/Os 
alloys [24], although several other examples exist [25-27]. In such cases, the ABV Hamiltonian is 
insufficient to capture the contribution of SIAs to microstructural evolution. This has prompted the 
development of cluster expansion Hamiltonians that include interstitials as well as vacancies as defect 
species [28-33]. To date, however, an extension of such Hamiltonians to the Ising framework has not 
been attempted. That is the central objective of this paper. 
 
Here, we propose a generalization of the Ising model to ABVI systems of binary alloys subjected to 
irradiation. The paper is organized as follows: after this introduction, we describe our methodology in 
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detail in Section 2, providing a recipe to perform the ABV->ABVI extension. Subsequently, in Section 3 
we provide three different verification exercises in increasing order of complexity using published 
works. We finalize with a brief discussion and the conclusions in Section 4. 
 
2.0 Theory and Numerical Methods 
 
2.1 Cluster expansion Hamiltonians for binary alloys 
 
The most common approach to study the energetics of substitutional systems is the cluster expansion 
method, in which the energies of the different crystal configurations are defined by specifying the 
occupation of each of the N sites of a fixed crystal lattice by a number of distinct chemical species 
(which may include solvent and solute atoms, defects, etc.). This problem can become easily 
intractable, given the combinatorial nature of arranging N distinguishable atomic sites, and a number of 
approaches have been proposed to reduce the dimensional complexity of the problem [34-36]. A 
common simplification is to assume that the Hamiltonian H of the system can be calculated as the sum 
of all possible pair interactions, defined by their bond energies: 
 

H = �nα−βεα−β
α,β

                                                                                                                    (1) 

where α and β refer to a pair of lattice sites, n is the total number of different bond types, and ε is the 
energy coefficients. 
 
Further, a binary system containing two types of atoms (matrix) A and (solute) B, as well as vacancy 
defects is termed the `ABV' system, for which the pairwise cluster expansion Hamiltonian (1) can be 
expressed as an Ising Hamiltonian of the following form [3-5, 37]: 
 

H=H0+K � σi2
nn

<i,j>

σj2 + U � (σi2σ𝑗

nn

<i,j>

+ σ𝑗2σ𝑖)                                                                      (2) 

where <i,j> refers to a pair of lattice sites i and j, and σ are the occupancy variables: 

 

σ = �
1             A (matrix)
0            V(vacancy)
−1  B(solute atom)

                                                                                                       (3) 

H0 in eq. (2) is a constant independent of the configuration of lattice sites. The three coefficients K, U, 
and J are: 
 

K=1/4(εA-A+εB-B+2εA-B)+(εV-V-εA-V-εB-V) 

U=1/4(εA-A-εB-B)-1/2(εA-V-εB-V) 

J=1/4(εA-A+εB-B+2εA-B)+(εV-V-εA-V-εB-V) 
These constants give an idea about the kinetic behavior of the ABV system. The second term in the 
r.h.s. of eq. (2) gives the relative importance of vacancies in the system. A large value of K implies low 
vacancy concentrations, which in the limit of one single vacancy in the crystal converges to a constant 
value of K’z (N/2-1), where K’ = 1/4 (εA-A + εB-B + 2εA-B) - (εA-V + εB-V), and z is the coordination number 
[5]. The asymmetry factor U determines whether there is more affinity between A atoms and vacancies 
or B atoms and vacancies. U > 0 indicates a preference of A-V pairs. J determines the 
thermodynamics of the system, with J > 0 leading to an ordered solid solution, J < 0 to a 
phase-separated system, and J = 0 results in an ideal solid solution. The Hamiltonian can be extended 
from 1st nearest neighbors (nn) to higher nn by summing over all contributions: 
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H=H1st-nn+H2nd-nn+…                                                  (4) 
 
2.2 Generalization of the ABV Ising Hamiltonian to systems with interstitial atoms 
 
Next, we expand eq. (2) to a system containing A and B atoms, vacancies, and interstitial atoms, which 
we term `ABVI'. Interstitial atoms can be of one of three distinct types, but in all cases two (otherwise 
substitutional) atoms share a single lattice position: AA denotes a self-interstitial atom (SIA), AB 
represents a mixed interstitial, and BB is a pure solute interstitial. Adding these extra species to the 
cluster expansion Hamiltonian results in six total species, which results in the following expression: 
 

𝐻 = � �εα−βλiαλj
β

α,β

nn

<i,j>

                                                                                                                            (5) 

 
where α, β = A, B, V, AA, AB, BB and the occupancy variable λi

α=1 if lattice site i is occupied by type α 
and zero otherwise. The total number of independent terms in eq. (5) is 36. However, assuming that a 
pair vacancy-interstitial is unstable up to several nearest neighbor distances, we can eliminate all the 
_V-I_V_I (where I= AA, AB, BB) terms in the equation, thus reducing the total number of terms to 30.  
 
In the spirit of the ABV Ising model, we assign spin variables of different types to each of the species of 
the Hamiltonian: 

 

      2   AA (self-interstitial atom) 

      1   A (matrix atom) 

σ =   0   V (vacancy) and AB (mixed interstitial)                        (6) 

-1   B (solute atom) 

-2   BB (solute-solute interstitial) 

 
Although the set of spin variables for the ABVI model is not unique, the one chosen above uses the 
lowest-order integer possible and preserves the magnetization of the Ising model, i.e. the excess 
amount of solvent after the solute has been subtracted out. The convenience of choosing a zero spin 
variable for both the V and AB species brings about some complications in the Hamiltonian, however, 
which will be dealt with in Section 2.2.1. 
 
From their definition in eq. (5), the six independent λα variables can be written in terms of the spin 
variables furnished in eq. (6): 
 

𝜆𝐴𝐴 =
1

24
(𝜎4 + 2𝜎3 − 𝜎2 − 2𝜎) 

𝜆𝐴 =
1
6

(−𝜎4−𝜎3 + 4𝜎2 + 4𝜎) 

𝜆𝑉 = 𝜆𝐴𝐴 =
1
4

(𝜎4 − 5𝜎2 + 4)                                                                                              (7) 

𝜆𝐴 =
1
6

(−𝜎4+𝜎3 + 4𝜎2 − 4𝜎) 

𝜆𝐴𝐴 =
1

24
(𝜎4 − 2𝜎3 − 𝜎2 + 2𝜎) 
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Inserting the above expressions into eq. (5) and operating, the cluster expansion Hamiltonian is 
transformed into a generalized Ising system with integer spins: 
 

𝐻 = � [C44σi4σj4

<i,j>

+ C43�σi4σj3 + σi3σj4� + C42�σi4σj2 + σi2σj4� + C41�σi4σj + σiσj4�

+ C33σi3σj3 + C32�σi3σj2 + σi2σj3� + C31�σi3σj + σiσj3� + C22σi2σj2

+ C21�σi2σj + σiσj2� + C11σiσj + C40�σi4 + σj4� + C30�σi3 + σj3�

+ C20�σi2 + σj2� + C10�σi + σj� + C00                                                     (8) 

 
where Cmn are the coefficients of the cluster expansion. 
 
2.2.1 Corrections to the Hamiltonian to separate V and AB contributions 
 
By construction, both vacancies and AB interstitials share σ = 0 in eq. (8), which in turn makes λV = λAB 
= 1 leading to miscounting of both contributions. Corrections must therefore be adopted to recover the 
correct energy from the Hamiltonian. These corrections can simply be subtracted from the uncorrected 
Hamiltonian in eq. (8) as: 
 
Hcorrected= Huncorrected – [correction terms]                                  (9) 
 
The correction terms can be readily identified on inspection of eq. (1): 
 
[correction terms] = εV-VnAB-AB + εAB-ABnV-V + εA-VnA-AB  

+ εV-BnAB-B + εA-ABnA-V + εAB-BnV-B                      (10) 
 
where n is numbers of bonds. Tracking the number of bonds in simulations takes extra computational 
effort, and also implies deviating from a purely Ising treatment. It is thus desirable to express nAB-AB, 
nV-V, nA-AB, nAB-B, nA-V, and nV-B as summations of powers of the spin variables, as in eq. (8). In this 
fashion, the correction terms do not add any additional cost to the evaluation of the Hamiltonian but, 
instead, only alter the value of the coefficients in eq. (8). First, however, we must obtain expressions 
for all nα-β in terms of the spin variable σ.  
 
After discounting the nV-I terms (with I=AA, AB, BB), there are 18 nα-β and therefore 18 independent 
equations are needed. 10 of them can be obtained from the summations of σ-polynomials: 
 

�𝜎𝑖𝜎𝑗 = 4𝑛𝐴𝐴−𝐴𝐴 + 2𝑛𝐴𝐴−𝐴 − 2𝑛𝐴𝐴−𝐴 − 4𝑛𝐴𝐴−𝐴𝐴 + 𝑛𝐴−𝐴 − 𝑛𝐴−𝐴 − 2𝑛𝐴−𝐴𝐴 + 𝑛𝐴−𝐴

+ 2𝑛𝐴−𝐴𝐴 + 4𝑛𝐴𝐴−𝐴𝐴                                                                 (11) 

�𝜎𝑖2𝜎𝑗 + 𝜎𝑖𝜎𝑗2 = 16𝑛𝐴𝐴−𝐴𝐴 + 6𝑛𝐴𝐴−𝐴 − 2𝑛𝐴𝐴−𝐴 + 2𝑛𝐴𝐴−𝐴𝐴 + 2𝑛𝐴−𝐴 + 2𝑛𝐴−𝐴𝐴  

                                      −2𝑛𝐴−𝐴 − 6𝑛𝐴−𝐴𝐴 − 16𝑛𝐴𝐴−𝐴𝐴                                                  (12) 

�𝜎𝑖2𝜎𝑗2 = 16𝑛𝐴𝐴−𝐴𝐴 + 4𝑛𝐴𝐴−𝐴 + 4𝑛𝐴𝐴−𝐴 + 16𝑛𝐴𝐴−𝐴𝐴 + 𝑛𝐴−𝐴 + 𝑛𝐴−𝐴 + 4𝑛𝐴−𝐴𝐴 + 𝑛𝐴−𝐴

+ 4𝑛𝐴−𝐴𝐴 + 16𝑛𝐴𝐴−𝐴𝐴                                                              (13) 
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�𝜎𝑖3𝜎𝑗 + 𝜎𝑖𝜎𝑗3 = 32𝑛𝐴𝐴−𝐴𝐴 + 10𝑛𝐴𝐴−𝐴 − 10𝑛𝐴𝐴−𝐴 − 32𝑛𝐴𝐴−𝐴𝐴 + 2𝑛𝐴−𝐴  

                                  −2𝑛𝐴−𝐴 + 10𝑛𝐴−𝐴𝐴 + 2𝑛𝐴−𝐴 + 10𝑛𝐴−𝐴𝐴 + 32𝑛𝐴𝐴−𝐴𝐴            (14) 

�𝜎𝑖3𝜎𝑗2 + 𝜎𝑖2𝜎𝑗3 = 64𝑛𝐴𝐴−𝐴𝐴 + 12𝑛𝐴𝐴−𝐴 + 4𝑛𝐴𝐴−𝐴 + 2𝑛𝐴−𝐴 + 

                                  −4𝑛𝐴−𝐴𝐴 − 2𝑛𝐴−𝐴 − 12𝑛𝐴−𝐴𝐴 − 64𝑛𝐴𝐴−𝐴𝐴                                (15) 

�𝜎𝑖3𝜎𝑗3 = 64𝑛𝐴𝐴−𝐴𝐴 + 8𝑛𝐴𝐴−𝐴 − 8𝑛𝐴𝐴−𝐴 − 64𝑛𝐴𝐴−𝐴𝐴 + 𝑛𝐴−𝐴 − 𝑛𝐴−𝐴 − 8𝑛𝐴−𝐴𝐴 + 𝑛𝐴−𝐴

− 8𝑛𝐴−𝐴𝐴 + 64𝑛𝐴𝐴−𝐴𝐴                                                              (16) 

�𝜎𝑖4𝜎𝑗 + 𝜎𝑖𝜎𝑗4 = 64𝑛𝐴𝐴−𝐴𝐴 + 18𝑛𝐴𝐴−𝐴 − 14𝑛𝐴𝐴−𝐴 + 2𝑛𝐴−𝐴 + 14𝑛𝐴−𝐴𝐴  

                                    −2𝑛𝐴−𝐴 − 18𝑛𝐴−𝐴𝐴 − 64𝑛𝐴𝐴−𝐴𝐴                                                  (17) 

�𝜎𝑖4𝜎𝑗2 + 𝜎𝑖2𝜎𝑗4 = 128𝑛𝐴𝐴−𝐴𝐴 + 20𝑛𝐴𝐴−𝐴 + 20𝑛𝐴𝐴−𝐴 + 128𝑛𝐴𝐴−𝐴𝐴 + 2𝑛𝐴−𝐴 + 

                                +2𝑛𝐴−𝐴 + 20𝑛𝐴−𝐴𝐴 + 2𝑛𝐴−𝐴 + 20𝑛𝐴−𝐴𝐴 + 128𝑛𝐴𝐴−𝐴𝐴            (18) 

�𝜎𝑖4𝜎𝑗3 + 𝜎𝑖3𝜎𝑗4 = 256𝑛𝐴𝐴−𝐴𝐴 + 24𝑛𝐴𝐴−𝐴 − 8𝑛𝐴𝐴−𝐴 + 2𝑛𝐴−𝐴 + 

                                    +8𝑛𝐴−𝐴𝐴 − 2𝑛𝐴−𝐴 − 24𝑛𝐴−𝐴𝐴 − 256𝑛𝐴𝐴−𝐴𝐴                            (19) 

�𝜎𝑖4𝜎𝑗4 + 𝜎𝑖4𝜎𝑗4 = 256𝑛𝐴𝐴−𝐴𝐴 + 16𝑛𝐴𝐴−𝐴 + 16𝑛𝐴𝐴−𝐴 + 256𝑛𝐴𝐴−𝐴𝐴 + 𝑛𝐴−𝐴 + 

                                +𝑛𝐴−𝐴 + 16𝑛𝐴−𝐴𝐴 + 𝑛𝐴−𝐴 + 16𝑛𝐴−𝐴𝐴 + 256𝑛𝐴𝐴−𝐴𝐴                 (20) 
 
However, the above equations do not contain any nα-β with α or β= V, AB. Six more equations that do 
contain these terms can be obtained by counting numbers of six species Nα: 
 
zNAA = 2nAA-AA + nAA-A + nAA-AB + nAA-B + nAA-BB                          (21) 

zNA = nAA-A + 2nA-A + nA-V + nA-AB + nA-B + nA-BB                          (22) 

zNV = nA-V + 2nV-V + nV-B                                             (23) 

zNAB = nAA-AB + nA-AB + 2nAB-AB + nAB-B + nAB-BB                          (24) 

zNB = nAA-B + nA-B + nV-B + nAB-B + 2nB-B + nB-BB                          (25) 

zNBB = nAA-BB + nA-BB + nAB-BB + nB-BB + 2nBB-BB                          (26) 
 
where z is the coordination number. Combining eqs. (11) through (26), we have 16 equations with 18 
unknowns. In order to solve the system, we express everything parametrically in terms of two bond 
numbers, nAB-A and nAB-B*, and solve for the rest of the nα-β. nAB-A and nAB-B are then the only bond 
numbers that must be calculated on the fly in the kMC simulations. 
 
2.2.2 The corrected Ising Hamiltonian  
 
After solving for all nα-β, the corrected Hamiltonian can be obtained by substituting eq. (10) into eq. (9). 
Except for an additional term C0, the final expression of the corrected Hamiltonian is the same as the 
uncorrected one in eq. (8). However, the coefficients Cmn are now `corrected' to account for the AB/V 
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conflict. Based on the physical characteristics of each coefficient, each term in the Hamiltonian of the 
ABVI system can be grouped into three different configurational classes and one non-configurational 
group: 
 
* This choice is justified both by the fact that neither A-AB nor AB-B bonds are very likely to appear in 
the simulations, and because - as will pointed out below - AB interstitially jumps are the likeliest to 
change the global concentration of species, which results in the need to update the non-configurational 
constants in the ABVI Hamiltonian (cf. eq. (27)). 
 

𝐻corrected = � [C44σi4σj4 + C42�σi4σj2 + σi2σj4� + C22σi2σj2] +      (class 1)
nn

<i,j>

 

                     + � [C43�σi4σj3 + σi3σj4� + C41�σi4σj + σiσj4�
nn

<i,j>

+ C32�σi3σj2 + σi2σj3�

+ C21�σi2σj + σiσj2�] +                                                     (class 2) 

                     + � [C33σi3σj3
nn

<i,j>

+ C31�σi3σj + σiσj3� + C11σiσj ] +        (class 3) 

                     + � [C40�σi4 + σj4� + C30�σi3 + σj3� + C20�σi2 + σj2� + C10�σi + σj� + C00

nn

<i,j>

]

+ C0                                        (Non − configurational)       (27) 
 
Where the coefficients Cmn are: 
 
Class 1 

C44={(εAA-AA – 8εAA-A – 8εAA-B + 2εAA-BB – 8εA-BB – 8εB-BB + εBB-BB)+(12εAA-AB – 12εAB-AB + 

12εAB-BB)+(-48εA-V + 48εV-V – 48εV-B)+(16εA-A + 32εA-B + 16εB-B)}/576 

C42={(-εAA-AA + 20εAA-A + 20εAA-B – 2εAA-BB + 20εA-BB + 20εB-BB – εBB-BB)+(-36εAA-AB 

+36εAB-AB –36εAB-BB)+(216εA-V – 216εV-V + 216εV-B)+(-64εA-A – 128εA-B – 64εB-B)}/576 

C22={(εAA-AA – 32εAA-A – 32εAA-B + 2εAA-BB – 32εA-BB – 32εB-BB + εBB-BB)+(60εAA-AB – 

60εAB-AB+ 60εAB-BB)+(-960εA-V+960εV-V–960εV-B)+(256εA-A + 512εA-B + 256εB-B)}/576 

Class 2 

C43={(εAA-AA – 6εAA-A – 2εAA-B + 2εA-BB + 6εB-BB – εBB-BB) + (6εAA-AB – 6εAB-BB)+(-12εA-V 

+12εV-B)+(8εA-A – 8εB-B)}/288 

C41={(-εAA-AA + 12εAA-A – 4εAA-B + 4εA-BB – 12εB-BB + εBB-BB) + (-6εAA-AB + 6εAB-BB)+(48εA-V –

48εV-B)+(-32εA-A + 32εB-B)}/288 

C32={(-εAA-AA + 18εAA-A + 14εAA-B – 14εA-BB – 18εB-BB + εBB-BB) + (-30εAA-AB + 

30εAB-BB)+(60εA-V –60εV-B)+(-32εA-A + 32εB-B)}/288 
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C21={(εAA-AA – 24εAA-A – 8εAA-B + 8εA-BB + 24εB-BB – εBB-BB) + (30εAA-AB – 

30εAB-BB)+(-240εA-V +240εV-B)+(128εA-A – 128εB-B)}/288 

Class 3 

C33={(εAA-AA – 4εAA-A + 4εAA-B – 2εAA-BB + 4εA-BB – 4εB-BB + εBB-BB) + (4εA-A – 8εA-B + 

4εB-B)}/144 

C31={(-εAA-AA + 10εAA-A – 10εAA-B + 2εAA-BB – 10εA-BB + 10εB-BB – εBB-BB) + (-16εA-A + 32εA-B 

– 16εB-B)}/144 

C33={(εAA-AA – 16εAA-A + 16εAA-B – 2εAA-BB + 16εA-BB – 16εB-BB + εBB-BB) + (64εA-A – 128εA-B + 

64εB-B)}/144 

Non-Configurational 

C40={(εAA-AB + εAB-BB) + (-4εA-AB + 6εAB-AB – 4εAB-B) + (-4εA-V + 6εV-V – 4εV-B) }/24 

C30={(εAA-AB – εAB-BB) + (-2εA-AB + 2εAB-B) + (-2εA-V + 2εV-B) }/12 

C20={(-εAA-AB – εAB-BB) + (16εA-AB–30εAB-AB+16εAB-B) + (16εA-V–30εV-V +16εV-B) }/24 

C10={(-εAA-AB + εAB-BB) + (8εA-AB – 8εAB-B) + (8εA-V – 8εV-B) }/12 

C00= (εAB-AB+εV-V) 

C0=nAB-B/2(-εAB-AB+2εA-AB–2εA-V+εV-V)+nAB-B/2(-εAB-AB+2εAB-B–2εV-B+εV-V) 

+Z/2[NA(εAB-AB-2εA-AB)+NB(εAB-AB-2εAB-B)]–Z/2[NVεAB-AB+NAAεV-V–NABεV-V+NBBεV-V] 
 
This way of grouping the Cmn is not unique. We have chosen the three classes above to represent a 
given physical behavior along the lines of the coefficients K, U, J of the ABV Ising model. Loosely 
speaking, the physical meanings of each of the three classes are as follows: 

 
 Class 1 (even-even power terms) gives the relative importance of interactions between point 

defects (vacancies and interstitials). 
 Class 2 (even-odd power terms) gives the Annity between atoms and point defects. 
 Class 3 (odd-odd power terms) determines the equilibrium phase diagram. 
 
In the standard ABV model, defect (vacancy) hops do not change the global species concentrations. 
That means that the non-configurational class of terms in the Hamiltonian (27) does not change merely 
by vacancy jumps. However, the ABVI model now allows for defect transitions that change the global 
balance of species and in our case, there are two types of transitions that affect the species 
concentrations when they occur. The first one involves vacancy-interstitial re-combinations: 
 

AA+V -> A + A 

AB+V -> A + B 

BB+V -> B + B 
The second type is related to the interstitially mechanism, by which an interstitial atom displaces an 
atom from an adjacent lattice position so that it becomes the interstitial in its turn, able to displace 
another atom. This mechanism includes four and the most obvious one being a vacancy-interstitial 
recombination. 
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Reactions: 
 

AA + B -> A + AB 

AB + A -> B + AA 

AB + B -> A + BB 

BB + A -> B + AB 
 
Except when one of the above reactions occurs, the incremental energy formulation used to compute 
energy differences between the initial and final states allows us to discard the C0 during calculations. In 
order to truly represent a generalized Hamiltonian, the ABVI model Hamiltonian must reduce to the AV 
and ABV models in their respective limits (AV: no solute, vacancies; ABV: solute plus vacancies). 
Indeed, we have conducted verification tests of both particular cases and we have found matching 
results. This is the subject of Sec. 3, where we have simulated the time evolution of ABV and ABVI 
systems using the generalized Hamiltonian presented above. Our method of choice is kinetic Monte 
Carlo (kMC), which we describe in detail in the following section. 
 
2.3 Kinetic Monte Carlo Simulation 
 
In this section we discuss relevant details of the kMC simulation method in relation to our extended 
ABVI model. All simulations are conducted on a rigid lattice generated from monoclinic representations 
of face-centered cubic (FCC) and body-centered cubic (BCC) crystals. 2x2x2 unite cells for FCC and 
BCC crystal structures are provided in Figure 1. The simulations are generally conducted in the grand 
canonical ensemble, to allow for irradiation damage simulations when required. All kinetic transitions 
are assumed to be due to defect hops. In particular, we consider the vacancy and interstitially 
mechanisms to enable atomic transport. After every transition, the configuration of the system is 
updated and a new transition is considered. 

 
Figure 1: Crystal 2x2x2 cells for (a) FCC and (b) BCC lattices employed here. The vectors a1, a2, and 
a3 are primitive basis of crystal. 
 
2.3.1 Residence-time algorithm  
 
We use the residence-time algorithm (RTA) [38] to track the kinetic evolution of the system through a 
series of thermally activated transitions. The transition rates Rij connecting an initial state i to a final 
state j are calculated as: 
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rij = ν exp �−
ΔEij
kBT

�                                                                                                              (28) 

where ΔEij > 0 is an activation energy that will be discussed below, ν is the attempt frequency, and 
1=kBT is the reciprocal temperature. With the system in configuration i, an event is randomly chosen 
with a probability proportional to its rate, and the time advanced per kMC step is on average δti =(Σjrij)-1. 
In addition to thermally activated transitions such as those represented by eq. (28), we consider 
spontaneous events - for which, formally, ΔEij may be negative - such as recombination between 
vacancies and interstitials, absorption at sinks, etc. These events occur instantaneously with δt = 0. 
 
2.3.2 Activation energy models 
 
There are several models proposed to describe the activation energy, which are based on different 
interpretations of the atomic migration process (see for e.g., [32] for a recent review). The first model is 
the so-called saddle-point energy model (also known as `cut-bond' model in [11]) [10,18,39]. The 
activation energy is given by: 
 

ΔEij =  EXYSP −  �εX−n −  �εY−p                                                                                 (29)
p≠Xn

 

where Y refers to the defect (e.g. a vacancy), and X to the atom exchanging positions with Y. The later 
two summations are the bonding energies between X, Y and the adjacent neighbor sites n and p. In 
this model, the energy barrier is calculated as the difference between the energy of the system at the 
saddle point and that of the initial state, symbolized by the two summations in the r.h.s. of eq. (29). 
These summations can be computed using the ABVI Ising Hamiltonian formulas described in Section 
2.1. The saddle-point energy ESP XY is generally taken to be a constant [18], or is computed as a 
especial sum of bond energies of the jumping atom at the saddle point: EXYSP = ∑ εXq

SP,Y q [10, 39]. 
 
The second model is the so-called kinetic Ising model [12,40] (or final-initial system energy, as is 
referred to by Vincent et al. [11]). In this model, the activation energy is dependent on the energy 
difference of the system ΔHij between the initial i and final states j, as well as a migration energy Em, 
which is a constant determined by the type of defect-atom exchange. Two different forms of activation 
energy are proposed within this model. The first form is given by [12]: 
 

 ΔEij =  �
Em + ΔHij,      if ΔHij > 0
Em,                    if ΔHij < 0                                                                        (30) 

 
This form assumes that the energy barrier of transitions from higher to lower energy states is the 
migration energy Em, and Em + ΔHij otherwise. An alternative, which is used in this work, is given by [11, 
40]: 
 

 ΔEij = Em + ΔHij
2

                                                                                                          (31) 

 
In this case, the migration energy is considered to be the energy difference between the saddle point 
and the average energy between states i and j, Em = ESP - (Hi + Hj)/2. This definition of Em results in an 
expression for ΔEij that does not depend of the final state energy Hj. The schematic diagram of the 
activation energy models is shown in Figure 2. It can be shown that all the three activation energy 
models satisfy the detailed balance condition, i.e.: 
 

 
rij
rji

= exp �− ΔHij
kBT

�                                                                                                          (32) 
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The different characteristics of each of these models have been discussed in detail by Soisson et al. 
[32]. In the saddle-point energy model, the height of the energy barrier is not dependent on the energy 
of the final state, which agrees with the theory of thermally- activated processes. Also, the energy 
barrier dependence on configurations can be fitted directly from empirical potentials or ab initio 
calculations. For its part, the kinetic Ising model assumes that the migration energy depends on the 
average of the energy difference between the initial and final states. This approach links the energy 
barrier to the local chemical environment, with the advantage that no knowledge of the saddle-point 
energy is required. In this case, the dependence of energy barrier can be easily fitted to more than just 
1st-nn (which is the extent of the broken-bond model). It is also possible to evaluate energy barrier of 
events other than defect jumps such as recombination and surface reactions (defect annihilation and 
vacancy creation), described below in Sec. 2.3.4. 
 

 
 
Figure 2: The three different models of activation energy. 
 
2.3.3 Computing bond energies from electronic-structure calculations  
 
Bond energies to parameterize eq. (27) and associated constants Cmn can be calculated using a 
suitable atomistic force fields such as semi-empirical potentials, density-functional theory (DFT, etc. 
Considering 2nd-nn interactions, the following parameters can be used to write a set of equations from 
which to calculate the bond energies: 
 
 The cohesive energy of the pure metal A or B can be written as: 

 

EAα = −
z1
2
εA−A

(1) −
z2
2
εA−A

(2)                                                                                  (33) 

EBα = −
z1
2
εB−B

(1) −
z2
2
εB−B

(2)                                                                                   (34) 

 
where z1 and z2 are coordination numbers of the first and second nearest neighbor shells, and the 
super index (i) refers to the nn shell. Care must be exercised when computing each cohesive energy to 
ensure that the crystal lattice corresponds to the equilibrium crystal lattice at the desired temperature. 

 
 The pair interactions between an A atom and a B atom εA-B can be obtained from the enthalpy of 

mixing: 
 

Emix = −
z1
2

(εA−A
(1) + εB−B

(1) − 2εA−B
(1) ) −

z2
2

(εA−A
(2) + εB−B

(2) − 2εA−B
(2)           (35) 
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 The formation energy of vacancy is calculated by removing an atom from a perfect lattice position 

and placing it at the physical limits of the system. For a vacancy in a perfect A-atom matrix 
containing N lattice sites: 
 

Ef
V = NEcohA − (N − 1)EcohA − z1εA−V

(1) − z2εA−V
(2)                                           (36) 

 
 Similarly, the formation energy of an interstitial pair in an A-atom matrix can be written as: 

 
EfI = EcohA − z1εA−I

(1) − z2εA−I
(2)                                                                             (37) 

 
where I= AA, AB, BB. 

 
2.3.4 Events 
 
In kMC the kinetic evolution is determined by a series of independent events that represent state 
transitions. Within the ABVI model, we consider events mediated by point defect mechanisms, In this 
work, we consider five distinct types of events, which we discuss below. 
 
(i) Defect jumps: vacancies move by exchanging positions with one of the z1 1st nn atoms: 
 

V + a -> a + V 
 
where a=A, B. Interstitials, for the part, move via the interstitially mechanism introduced above. 
Interstitials are assumed to be of the dumbbell or crowdion structure, i.e. two atoms sharing one lattice 
site: 
 

I(a1-a2) + a1 -> a1 + I(a2-a1) 
 
where an interstitial composed of two atoms a1 and a2 (a1, a2=A,B) jumps into a neighboring lattice 
site occupied by atom a1, giving rise to a new interstitial composed of atoms a2 and a1.  
 
(ii) Recombination: when a vacancy and an interstitial within a distance less than a critical distance rc, a 
recombination event occurs. The generic reaction is: 
 

I(a1-a2) + V -> a1 + a2 
 
Re-combinations events occur spontaneously, with δt = 0. 
 
(iii) Annihilation at defect sinks: in this work two types of defect sinks are used. The first one is a perfect, 
artificial defect sink, as suggested by Soisson [29]. A thin slab of the simulation box is designated to 
act as a perfect defect sink (a simple model of grain boundary). When a defect jumps into a lattice 
position belonging to the slab, it instantly disappears. To preserve the alloy composition, a `reservoir' is 
used such that when a vacancy is absorbed at the sink, an atom is randomly chosen from the reservoir 
and placed at the sink site; for interstitials, one of the two atoms is randomly chosen and stored in the 
reservoir; the other atom remains on the sink site. Another inexhaustible sink is a free surface. The 
lattice beyond the free surface is considered to be part of a `vacuum' such that atoms adjacent to 
vacuum lattice sites are defined as `surface atoms'. When a vacancy jumps onto a site occupied by a 
surface atom, it first switches its position with the atom, and then the vacancy becomes a vacuum site: 
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V + as -> as + v 
where as refers to a surface atom, and v is a vacuum site. The mechanism for interstitial annihilation is 
more complex. When an interstitial jumps onto a surface atom site, an instantaneous recombination 
between the interstitial and the vacuum site occurs (vacuum sites are a special class of vacancies). 
The reaction can be described as: 
 

I(a1-a2) + v -> a1 + a2 

 
(iv) Thermal vacancy emission: when surfaces, grain boundaries, dislocations, etc., are present they 
can act as thermal sources of defects. Due to the relatively high energy of interstitial defects compared 
to vacancies, interstitial emission is often considered negligible. A thermal emission can be regarded 
as the inverse of a vacancy annihilation event. For a free surface, a vacancy is created just below the 
surface by having a vacuum site exchange positions with a surface atom: 
 

v + as -> as + V 
 

The rate of vacancy emission can become sizable at high temperature, and should not be discarded as 
an efficient vacancy generation mechanism with a strong effect on the system kinetics. 
 
(v) Frenkel pair generation: when considering irradiation with light particles (e.g., electrons), V-I pairs 
are generated in the lattice. As implemented in our method, when a Frenkel pair insertion occurs, two 
lattice sites are randomly chosen, one becomes a vacancy and the other becomes an interstitial 
formed by the two atoms involved: 
 

a1 + a2 -> V + I(a1-a2) 
 
Frenkel pairs are introduced at a rate consistent with the imposed irradiation dose rate (usually 
measured in displacements per atom per second, or dpa/s). A compilation of all the reactions and 
events discussed in this section is provided in Table 1. 
 
Table 1: Event reactions considered in this work. V: vacancy, A: matrix atom, B: solute atom, AA: self 
interstitial, AB: mixed interstitial, BB: pure solute interstitial, v: vacuum atom, As: surface matrix atom, 

Bs: surface solute atom. 
 

Vacancy jumps Interstitial jumps Recombinations Frenkel pair generation 

V+A->A+V 

V+B->A+B 

AA+A->A+AA 

AA+B->B+AA 

BB+A->B+AB 

BB+B->B+BB 

AB + A → �A + AB
B + AA 

AB + B → �A + BB
B + AB 

AA+V->A+A 

AB+V->A+B 

BB+V->B+B 

A+A->AA+V 

A+B->AB+V 

B+B->BB+V 
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Defect annihilation 
Thermal emission 

Ideal sink Surface 

V->A 

V->B 

AA->A 

BB->B 

AB → �AB 

V+As->As+v 

V+Bs->Bs+v 

AA+v->A+As 

BB+v->B+Bs 

AB + v → �A + 𝐵𝑠
B + 𝐴𝑠

 

v+As->As+V 

v+Bs->Bs+V 

 
3.0 Results 
 
This section consists of various verification checks undertaken to ensure the correctness of our 
approach. The first tests are designed to check the `downward' consistency of our model, i.e. 
comparing against AV and ABV models with reduced complexity w.r.t. the ABVI Hamiltonian*. 
Subsequently, we compare our method with KMC simulations of three different ABVI systems 
published in the literature. In all simulations, atoms are initially assigned randomly to lattice sites so as 
to achieve a perfect solid solution as a starting configuration. 
 
*The AV case – as studied by Reina et al. [12] – was trivially reproduced by our method, and for brevity 
we omit any further discussion on it. 
 
3.1 ABV system: Precipitation of Fe-Cu alloys 
 
First we simulate the system considered by Vincent et al. [11]: a Fe-0.6% at. Cu alloy occupying a 
periodic BCC lattice arranged into a rhombic computational box with 80x80x80 primitive cells 
containing 512000 atoms and a single vacancy, which has similar box size of Vincent et al. work. The 
Hamiltonian includes 2nd-nn interactions with energy coefficients given in Table 2. The energies of 
mixing for 1st and 2nd-nn are 0.26 and 0.24 eV, which suggest a strong tendency toward phase 
separation [41]. The temperature is fixed at 773 K. During the simulations, the vacancy may become 
trapped in solute precipitates, which does not lead to any further microstructural evolution and stalls 
the simulations. To correct for this, Vincent et al. proposed to increment the kMC time only when the 
vacancy is surrounded by at most one solute atom. As well, to account for an unrealistically high 
vacancy concentration, the kMC time step was rescaled according to: 
 

δt =
CV0

CVkMC
δtkMC                                                                                                           (38) 

 
where CV0 = exp �−EfV/kBT� is the thermodynamic vacancy concentration. However,  
 
Vincent et al. adjust their kMC time by comparing the kinetic evolution directly with experiments. By 
way of example, they matched a cluster mean radius of 0.9 nm in their to a time of 7200 s. For 
consistency, we adopt the same approach here. The initial and final configurations are shown in Figure 
3. The kinetic evolution of precipitation is quantified by calculating the cluster mean radius of solute 
atoms as a function of time. It is assumed that a B atom belongs to a cluster if one of its 1st-nn is also a 
B atom of the cluster. The cluster size is computed from the expression [9]: 
 

R� = a0 �
3N
8π
�
1
3

                                                                                                               (39) 
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which assumes a spherical cluster shape, and where Ṝ is the cluster mean radius, N is the number of 
solute atoms in the cluster, and a0 is the lattice constant of the BCC lattice. As in ref. [11], clusters 
containing three or less atoms are not counted towards the calculation of Ṝ. Figure 4 shows our data 
compared to those of Vincent et al. At about 105 s, a transition in Ṝ occurs, where the cluster size 
grows abruptly before leveling off at longer times. Although our model captures the timescale of Ṝ, a 
factor of 1.6 was found among our data and theirs. This may be due to different cluster mean radius 
calculation methods or an unspecified shift in the results in order to fit the experimental data. 
 
Table 2. Bond energies for the Fe-Cu ABV system. A represents Fe atoms, B Cu atoms, and V is the 

vacancy. 
 

1st-nn interactions (eV) Migration energy (eV) 

𝜀𝐴−𝐴
(1)  𝜀𝐴−𝐴

(1)  𝜀𝐴−𝐴
(1)  𝜀𝐴−𝑉

(1)  𝜀𝐴−𝑉
(1)  𝐸𝑚𝑉−𝐴 𝐸𝑚𝑉−𝐴 

–0.611 –0.480 –0.414 –0.163 –0.102 0.62 0.54 

2nd-nn interactions (eV) Jump frequency (s-1) 

𝜀𝐴−𝐴
(2)  𝜀𝐴−𝐴

(2)  𝜀𝐴−𝐴
(2)  𝜀𝐴−𝑉

(2)  𝜀𝐴−𝑉
(2)  𝜈𝐴𝑉 𝜈𝐴𝑉 

–0.611 –0.571 –0.611 –0.163 –0.180 6 x 1012 6 x 1012 

 

 
(a)                               (b) 

Figure 3. Initial (a), t = 0, and final (b), t = 28368 s alloy configurations. The red dots represent solute 
atoms (B atoms). Solvent atoms and the vacancy are omitted for clarity. 



Fusion Reactor Materials Program December 31, 2015 DOE/ER-0313/59 – Volume 59 

151 

 
Figure 4. The cluster mean radius of the ABV Fe-Cu system. The red line represents the results in this 
work; the black filled squares are the data from Vincent et al. [11] 
 
3.2 ABVI system: Solute segregation at sinks 
 
In this test, we reproduce the work of Soisson et al. [29]. The system consists of a BCC 256x64x64 
rhombic crystal lattice containing an A-5%B alloy, vacancies and interstitials defects. A perfect planar 
defect sink is placed in the middle of the crystal and kMC simulations of (radiation-induced) 
segregation at the defect sink are performed. Frenkel pairs are generated at a rate of G = 10-6 dpa/s 
following the mechanism described in Sec. 2.3.4. 
 
Segregation at the sinks is governed by the onset of solute fluxes in the system. These fluxes are 
mediated by defect migration to and absorption at the sink. The solute flux can be controlled by setting 
the defect migration energies such that exchanges with B atoms are preferred over exchanges with A 
atoms (or vice versa), resulting in enrichment or depletion of solute at the defect sink. While Soisson et 
al. use a saddle-point model to obtain the activation energy (cf. Sec. 2.3.2), here we employ a kinetic 
Ising model, and so in order to make our model as close to theirs as possible, we use their bond 
energies directly and adjust the migration energies Em so as to match the kinetic evolution. The 
parameters used are shown in Table 3. There are four sets of parameters. The first two, ABVI-1 and 
ABVI-2, correspond to a system with relatively low energy of mixing (Emix = 0.216 eV), representing 
under saturated solid solutions with high solubility limits. The other two, ABVI-3 and ABVI-4 
correspond to a system with Emix = 0.680 eV leading to supersaturated solid solutions. Systems ABVI-1 
and ABVI-3 Em are set to have a net flux of B atoms accumulating at the sink (EmV−A < EmV−B; (EmI−A >
EmI−B), whereas ABVI-2 and ABVI-4 result in solute depletion at the sink – known as inverse Kirkendall 
effect –(EmV−A > EmV−B; (EmI−A < EmI−B). For simplicity, migration energies of vacancies and interstitials are 
set to produce the same segregation tendency for each set of parameters. Other details considered by 
Soisson et al., such as recombination radii, event sampling, etc., are also followed here[#]. The spatial 
solute concentration profiles are shown in Figure 5. 
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Table 3. Parameters for the ABVI system (after Soisson et al. [29]). `A' and `B' denote solvent and 
solute atoms, respectively. `V' represents vacancies and `I' all types of interstitial defects. All energies 

given in eV. Attempt frequencies given in Hz. 
 

Kinetic parameters 

ABVI-1 ABVI-2 ABVI-3 ABVI-4 

high solubility low solubility 

enrichment depletion enrichment depletion 

νAV = νAV = νAV = νAV 5x1015 5x1015 5x1015 5x1015 

εA−A = εB−B –1.07 –1.07 –1.07 –1.07 

εA−B –1.043 –1.043 –0.985 –0.985 

εA−V = εB−V –0.3 –0.3 –0.3 –0.3 

εA−I = εB−I 0 0 0 0 

EmV−A 0.95 1.1 0.8 1.05 

EmV−B 1.05 0.9 1.2 0.95 

EmI−A 0.5 0.35 0.55 0.2 

EmI−B 0.5 0.65 0.45 0.8 

 
#With one exception: the Frenkel pair distance is not set in this work. 
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(a)                                   (b) 

  
(c)                                    (d) 

Figure 5. Spatial solute concentration profiles at different doses for the under saturated alloy for the (a) 
solute enrichment and (b) solute depletion cases at T = 800 K. The supersaturate case for (c) solute 
enrichment and (d) solute depletion at the same temperature are also shown. The nominal solute 
concentration of the alloy is CB = 0.05 and the dose rate is 10-6 dpa/s. 
 
In the under saturated alloy, no precipitation in the bulk is observed. As the dose increases, the 
concentration of B atoms near the sink is enhanced (reduced) for the enrichment (depletion) parameter 
set. For the enrichment case ABVI-1, a solute concentration drop at the center of the system is 
observed. This can rationalized in terms of interstitially jumps. After the solute concentration rises near 
the sink, interstitials must traverse a solute-rich region in order to reach the sink. As interstitials 
penetrate the near-sink region, they will increasingly become of the AB type. Because εA-B > εB-B, A 
atoms located in this solute-rich region are energetically unfavorable. Therefore, interstitials jumps 
favor the avoidance of A-B bonds, which results in enhanced matrix atom transport to the sink. This 
phenomenon was not observed in Soisson's work because they used a saddle-point energy model that 
gives a nonlocal activation energy (does not depend on the atomic environment of the jumping atom). 
Increasing the driving force for solute transport toward the sink (e.g., by setting EmI−A=0.6; EmI−B= 0.4), 
the drop at the sink disappears. Snapshots for ABVI-1 and ABVI-4 at three different doses are shown 
in Figure 6. 
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(a)                     (b)                     (c) 

 
(d)                     (e)                     (f) 

Figure 6. Snapshots of ABVI-1 system (under saturated, enrichment) at (a) 2.56x10-3 (b) 2.01x10-2 and 
(c) 2.01 dpa. For the ABVI-4 case (supersaturated, depletion), configurations are shown at (d) 8.78x10
 -4 (e) 2.63x10-2 and (f) 0.258 dpa. Only solute atoms are shown. 
 
For the low solubility alloy, on the other hand, bulk precipitation does occur, as one would expect given 
the low marginal difference between bulk and sink segregation driving forces. As Figure 5 shows, the 
solute spatial profiles are much more fluctuative than their high solubility counterparts, especially for 
depletion case (ABVI-2 vs. ABVI-4). This of course is a manifestation of the formation of precipitates in 
bulk. In the depletion case, the mean free path for solute diffusion is quite low, due to a high number 
density of precipitates acting as trapping sites. Therefore, the depletion dynamics is slow. Soisson et al. 
observed a less intense bulk precipitation than shown here, possibly also due to the different in 
activation energy models employed. In any case, the global qualitative features of the alloy evolution 
kinetics are matched by both methods. 
 
33. ABVI system: Radiation-induced segregation at surfaces 
 
The last verification example that we tackle in this paper is that of a finite system containing a binary 
alloy under irradiation. This mimics the case considered by Dubey and El-Azab, which studied binary 
Au-Cu alloy under irradiation using a two-dimensional continuum reaction-diffusion model bounded by 
a free surface [42]. These authors use effective rate theory to solve the ordinary differential equation 
system representing defect kinetics with spatial resolution. As such, our method differs fundamentally 
in that it is substantiated in a discrete lattice description, and so the comparison between both 
approaches must account for this distinction. Our lattice system, however, is constructed so as to 
create two free surfaces along one of the dimensions of the computational cell, with periodic boundary 
condition used for the other two. Adjacent to the free surfaces, several layers of `vacuum' atoms are 
introduced (cf. Sec. 2.3.4 for the mechanisms involving these vacuum atoms). In this fashion, the 
surface is always univocally defined as the interface between atomic lattice sites and vacuum sites, 
which provides a convenient way to study the surface roughness as simulations progress. Due to the 
high formation energy difference between interstitials and vacancies, we disregard the possibility of 
thermal SIA emission from the surface and focus only on vacancies. 
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Considering free surfaces introduces both a defect sink and a source. In addition to Frenkel-pair 
generation by irradiation, point defects can also be emitted thermally from the surface. Following 
Dubey and El-Azab, Frenkel-pair generation rate is set at 1.0 dpa/s. Regarding thermal vacancy 
emission from the surface, we allow vacancies to be created at all surface sites. In each step, the rates 
of all the possible creation paths, i.e. all 1st-nn jumps from surface sites towards the interior of the box, 
are calculated and added to the global kMC event list [+]. 

 
[+] Vacancy emission can occur from any surface site. Given the large number of such sites, we 
precompute all the thermal emission rates at the beginning, and then simply update the list when the 
local chemical environment around the surface site changes during the kMC simulation. 

 
The annihilation of defects at surfaces is also considered, as described in Sec. 2.3.4. After Dubey and 
El-Azab, we study a face-centered cubic binary Au-Cu alloy using the energetics provided in Table 4 
based on a study by Hashimoto et al. [43]. The computational box dimensions are 660x270x4 primitive 
cells, with a vacuum buffer of 20 atomic layers on either side of the free surface, along the x-direction. 
The atomic bulk size in x and y-dimension is similar to system in Dubey and El-Azab's work. The setup 
in z-dimension is designed to mimic 2D conditions as used in ref. [42]. Contrary to Soisson et al. (cf. 
Sec. 3.2), jumps of mixed interstitials are calculated considering both directional possibilities, e.g. 
AB+A->B+AA, or AB+A->AB+A (cf. Table 1), with their total rate weighted by a factor of 1/2 to preserve 
the correct sampling statistics. 
 
Table 4. The parameters for the Au-Cu ABVI system. `A' are Cu atoms, `B' are Au atoms. X, Y= A, B; 

Z= A, B, V, v. 
 

Bond energies (eV) 

εX−Y εV−X εAA−X εAB−X εBB−X 

–0.1425 –0.01625 0.24625 0.12875 0.14625 

Migration energies (eV) 

EmV−A EmV−B EmI−AA EmI−AB EmI−BB 

0.88 0.76 0.3 0.377 0.12 

Conversion energies (eV) 

EcAA→AB EcAB→AA EcBB→AB EcAB→BB  

0.3 0.5 0.12 0.32  

 
In this work, we set the vacuum energy level as the zero reference, i.e. εv-X = 0 (where X= A, B, V, v), 
and the energies of atoms on the surface are simply tallied in terms of the number of missing surface 
bonds. The defect bond energy parameters then can be obtained from formation energies of vacancy 
and interstitials using the formulas described in Sec. 2.3.3. The surface energy per area and formation 
energies are acquired from Dubey and El-Azab's paper. In addition, following the work of Hashimoto et 
al., a conversion energy is applied when interstitial defects change their type after a diffusive jump. On 
some occasions, the activation energy for interstitially jumps can become negative, which we simply 
interpret as a spontaneous event within the kMC cycle. 

 
Our kMC simulations are run up to a maximum dose of 0.04 dpa. The spatial solute concentration 
profiles along the x-dimension at 650 K as a function of dose are shown in Figure 7. From the figure, 
the enrichment of solute atoms near the surfaces can be clearly appreciated, which is accompanied by 
local depletion in the subsurface region. Segregation near the surfaces increases with dose, in 
agreement with Dubey and El-Azab's work. These authors also studied the degree of segregation as a 
function of time M(t), defined as: 
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M(t) = �(C(x, t) − C�)dx                                                                                                   (40)

ls

0

 

 
where ls is an arbitrary segregation distance, C(x, t) is the instantaneous solute concentration profile, 
and C is the average solute concentration of the whole system. Here, we replace the integral by a 
discrete sum over lattice positions, with ls defined as the distance from the surface at which the local 
concentration is within 10% of the background global concentration. To avoid noise due to lattice 
fluctuations, we apply a Savitzky-Golay smoothing filter [44] prior to the determination of ls. The 
evolution of M as a function of dose and temperature is shown in Figure 8. Our results are in 
agreement with those of Dubey and El-Azab, with M increasing with dose monotonically in all cases. 
However, the evolution with temperature shows two distinct trends. First, M increases with temperature 
up to a critical value of approximately 650 K. Then, it gradually decreases until, at T = 900 K, the 
degree of segregation is practically zero. The causes behind this behavior are well understood [45]. 
Essentially, at low temperatures, vacancy mobility is limited, leading to high excess vacancy 
concentration and high recombination rates. As a consequence, segregation is low due to small defect 
fluxes to surfaces. At higher temperatures, vacancy and interstitial diffusion are activated resulting in 
net solute segregation. However, above 650 K, significant numbers of vacancies start to be emitted 
from the surfaces, leading to high back diffusion rates and again high recombination rates. The two 
effects result in a reduced solute segregation to the surfaces. Therefore, the maximum degree of 
segregation occurs at intermediate temperatures, consistent also with Dubey and El-Azab's findings. 
 

 
Figure 7. Solute concentration profile at 650 K for different doses. 
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Figure 8. Evolution of the degree of segregation at different temperatures. 

 

The KMC simulations are capable of providing morphological features that continuum methods cannot 
furnish. For example, our method can be used to study the evolution of roughness of the surfaces. 
Snapshots of the surface of the system with 660x32x32 primitive cells at 500 K at different doses can 
be seen in Figure 9, revealing a clear surface morphology evolution as a function of dose. Also, it can 
be seen that the concentration of solute atoms at the surface increases evidently, as explained above. 

 
(a)                                   (b) 

Figure 9. Snapshots of surface roughness at (a) t = 0, and (b), t = 0.02 s for a 660x32x32 alloy at 500 
K. Red dots represent solvent (A) atoms, while solute atoms (B) are represented as green dots. 
 
4.0 Conclusions 
 
We have proposed an extension of the standard ABV Hamiltonian to discrete binary systems 
containing interstitial defects. The chosen framework for this extension is the Ising model, where three 
new values for the spin variables are considered: `+2', Huang & Marian 24 representing pure 
self-interstitials (A-A), `-2', representing pure solute interstitials (B-B), and `0', for mixed interstitials 
(A-B). The reason for choosing these values is to preserve one of the essential magnitudes of the Ising 
model, the magnetization N-1Σiσi, or, in the ABVI context, the excess solute concentration. The main 
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advantage behind expressing a cluster expansion Hamiltonian as an Ising Hamiltonian is that 
thermodynamic information about the system can more easily be construed in the Ising framework. For 
example, the values of the constants of class 3 identified in eq. (27) uniquely determine the 
thermodynamic phase diagram of the ABVI model (much like constant J in eq. (2) determines the 
structure of the ABV system). Indeed, one of the aspects of greatest interest associated with the ABVI 
model is to study how the presence of interstitials alters the behavior of substitutional binary alloys.  

 
However, we leave this thermodynamic analysis for a specific binary system with well characterized 
bond energetics for a future study, and, instead, in this paper we have focused on verification by 
comparing against a number of selected published studies. The main tests that we have conducted 
include discrete lattice ABV and ABVI for dilute Fe- Cu alloys, as well as comparison against a 
spatially-resolved mean-field study of solute segregation at free surfaces in irradiated Au-Cu alloys. In 
all cases, basic metrics related to the timescale and/or some governing kinetic parameters were 
reproduced with good agreement. In terms of computational cost, our Ising ABVI model scales in a 
similar manner as second-order cluster expansion Hamiltonians with similar cutoff radius – as it 
should,– given that no advantage is lost by simply recasting a cluster expansion Hamiltonian into the 
Ising form.  

 
Thus, in conclusion, we present an ABVI Hamiltonian, cast as an Ising model Hamiltonian, for discrete 
event simulations that can be considered a generalization of ABV models. Our model has been verified 
against existing parameterizations of cluster expansion Hamiltonians using kinetic Monte Carlo 
simulations, with good agreement observed. We will study the thermodynamic behavior of our 
Hamiltonian in a future publication. 
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