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7.4 A VARIATIONAL FORMULATION OF THE VOLTERRA DISLOCATION RECONSTRUCTION OF 3-
D MOVING CRACKSA. Sheng, G. Po, N.M. Ghoniem (University of California, Los Angeles)  
 
OJBECTIVE 
 
The evolution equations governing a Volterra dislocation-based reconstruction of moving 3-D cracks are 
formulated using a variational approach based on the Principal of Maximum Entropy Production rate 
(PMEP). 
 
SUMMARY 
 
Modeling crack growth in three-dimensional geometries poses a challenging problem especially for FEM-
based techniques such as EFEM or XFEM, which display some degree of mesh dependence.  
Additionally, existing methods are unable to investigate the interaction between cracks and other defects 
present in real materials.  An alternative method developed in the framework of discrete Dislocation 
Dynamics is presented which provides a solution to these challenges by being completely mesh-
independent and capable of coupling cracking with crystal plasticity.  The Discrete Crack Mechanics 
method is a dislocation-based fracture mechanics technique that represents cracks using arrays of 
Volterra dislocations.  In this report, a variational formulation based on the Principle of Maximum Entropy 
Production rate is given of the evolution equations for cracks coupled with crystal dislocations along with 
examples of its implementation. 
 
PROGRESS AND STATUS 
 
Introduction 
 
The resemblance between the elastic fields of cracks and dislocation arrays has long been recognized 
and is the foundation for the Discrete Crack Mechanics (DCM) method outlined in this report [1, 2].  In 
DCM, cracks are represented by arrays of discrete Volterra dislocations that are henceforth referred to as 
crack dislocations in order to distinguish them from crystal dislocations.  DCM is an extension of the 
discrete Dislocation Dynamics (DD) method originally developed to investigate the evolution of crystal 
dislocation patterns [3, 4, 5].  In DD, dislocations are represented by parametric space curves and their 
interactions in 3-D are completely resolved.  In DCM, crack dislocations are represented in the same 
manner allowing us to not only model cracks with complex shapes but also capture interactions between 
multiple cracks as well as between cracks and crystal dislocations.   

Crack propagation occurs when the J-integral, or equivalently, the stress intensity factor K of a crack 
exceeds a critical value unique to the material.  The J-integral, which can be shown to be equivalent to 
the unbalanced PK force on the leading dislocation in DCM, is what drives the motion of the crack tip.  In 
this report, we present a variational formulation of the evolution equations for a system containing cracks 
as well as crystal dislocations.  This approach utilizes the Principal of Maximum Entropy Production Rate 
(PMEP) to find the equations governing the motion of cracks and crystal dislocations, which are 
considered irreversible fluxes contributing to the internal entropy production of the system.   

Dislocation-Based Fracture Mechanics 
 
A loaded crack is completely described by a distribution of crack dislocation loops with suitable Burger’s 
vectors b.  The crack tip loop, or leading dislocation, is fixed and determines the size and shape of the 
crack.  Enclosed by this loop is a series of additional loops referred to as trailing dislocations which, as a 
result of the applied load, their mutual interactions, and their interactions with the crack-tip loop, 
experience a configurational force known as the Peach-Koehler (PK) force.  When tractions are applied to 
an elastic body, forces cannot be transferred across crack surfaces, which remain traction-free.  This 
condition is satisfied when the PK forces on the trailing crack dislocations are balanced.  The leading 
dislocation however, experiences an unbalanced PK force that drives crack growth if the corresponding K 
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exceeds the fracture toughness of the material KC.  The equations governing the motion of crack tips and 
crystal dislocations are derived in the following section. 

Quasi-Static Crack Motion 
 
The Principal of Maximum Rate of Entropy Production, or PMEP, states that generalized fluxes in an 
evolving system maximize the internal entropy production rate.  In continuum mechanics, the expression 
of the second law of thermodynamics is referred to as the Clausius-Duhem statement [5].  For a body Ω 
with no sources of internal entropy production other than cracks and crystal dislocations, the Clausius-
Duhem statement is given by: 
 

                                                             −𝜌𝜌0�̇�𝜓 + 𝜎𝜎𝑘𝑘𝑘𝑘𝑣𝑣𝑘𝑘,𝑘𝑘 = 𝜃𝜃𝜃𝜃 ≥ 0                                                          (1) 
 

where 𝜌𝜌0 is the mass density per unit volume, 𝜓𝜓 the Helmholtz free energy density, 𝜎𝜎𝑘𝑘𝑘𝑘 the Cauchy stress 
tensor, 𝑣𝑣𝑘𝑘,𝑘𝑘 the distortion rate, 𝜃𝜃 the absolute temperature, and 𝜃𝜃 the rate of internal entropy production.  
The distortion rate may be written in terms of the elastic distortion tensor 𝛽𝛽𝑖𝑖𝑘𝑘𝐸𝐸 , the plastic distortion tensor 
𝛽𝛽𝑖𝑖𝑘𝑘𝑃𝑃 , and the crack distortion tensor 𝛽𝛽𝑖𝑖𝑘𝑘𝐶𝐶  by: 
 

                                                                  𝑣𝑣𝑖𝑖,𝑘𝑘 =  �̇�𝛽𝑖𝑖𝑘𝑘𝐸𝐸 + �̇�𝛽𝑖𝑖𝑘𝑘𝑃𝑃 + �̇�𝛽𝑖𝑖𝑘𝑘𝐶𝐶                                                                              (2) 
 
The plastic distortion tensor is given by [6]: 
 

                                                               𝛽𝛽𝑖𝑖𝑘𝑘𝑃𝑃 = ∫ 𝑏𝑏𝑖𝑖𝑃𝑃𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝑑𝑑𝑎𝑎𝑘𝑘′
 
𝑆𝑆𝑃𝑃                                                                          (3) 

 
where 𝑆𝑆𝑃𝑃the surface is bounded by the crystal dislocation loop and 𝑏𝑏𝑖𝑖

𝑝𝑝 is the crystal dislocation Burger’s 
vector.  Similarly, the crack distortion tensor is given by:   
 

                                                            𝛽𝛽𝑖𝑖𝑘𝑘𝐶𝐶 = ∫ 𝑏𝑏𝑖𝑖𝐶𝐶(𝒙𝒙′)𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝑑𝑑𝑎𝑎𝑘𝑘′
 
𝑆𝑆𝐶𝐶                                                                       (4) 

 
where 𝑆𝑆𝐶𝐶 the surface is bounded by the crack tip dislocation loop and 𝑏𝑏𝑖𝑖𝐶𝐶(𝒙𝒙′) is the crack dislocation 
Burger’s vector, which is a function of the position 𝒙𝒙′ on the crack plane.  If the Helmholtz free energy 
density 𝜓𝜓 is taken to be of the form: 
 

                                                                      𝜓𝜓 ≡ 𝜓𝜓(𝜷𝜷𝑬𝑬,𝜷𝜷𝑷𝑷)                                                                                    (5) 
 

then its material time derivative is given by: 
 

                                                                 �̇�𝜓 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖

𝐸𝐸 �̇�𝛽𝑖𝑖𝑘𝑘𝐸𝐸 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖

𝑃𝑃 �̇�𝛽𝑖𝑖𝑘𝑘𝑃𝑃                                                                                (6) 

 
Substituting equations 2 and 6 into equation 1 and combining like terms gives: 
 
                                      �−𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖

𝐸𝐸 + 𝜎𝜎𝑖𝑖𝑘𝑘� �̇�𝛽𝑖𝑖𝑘𝑘𝐸𝐸 + �−𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖

𝑃𝑃 + 𝜎𝜎𝑖𝑖𝑘𝑘� �̇�𝛽𝑖𝑖𝑘𝑘𝑃𝑃 + 𝜎𝜎𝑖𝑖𝑘𝑘�̇�𝛽𝑖𝑖𝑘𝑘𝐶𝐶 = 𝜃𝜃𝜃𝜃 ≥ 0                                          (7) 

 
Since elastic deformation is recoverable, it does not contribute to the internal entropy production rate and 
thus the first term in equation 7 gives the constitutive relation: 
 

                                                                         𝜎𝜎𝑖𝑖𝑘𝑘 = 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖

𝐸𝐸�
𝛽𝛽𝑃𝑃

                                                                (8) 

 



Fusion Reactor Materials Program June 30, 2016 DOE/ER-0313/60 – Volume 60  

158 
 

In the second term is a stress-like quantity, 𝜏𝜏𝑖𝑖𝑘𝑘 = 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖

𝑃𝑃 , represents a change in the lattice energy due to 

a change in local plastic deformation.  Using this definition, the Clausius-Duhem statement may be 
rewritten as the products of generalized forces and fluxes: 
 
                                                          1

𝜃𝜃
�𝜎𝜎𝑖𝑖𝑘𝑘 − 𝜏𝜏𝑖𝑖𝑘𝑘��̇�𝛽𝑖𝑖𝑘𝑘𝑃𝑃 +

𝜎𝜎𝑖𝑖𝑖𝑖
𝜃𝜃
�̇�𝛽𝑖𝑖𝑘𝑘𝐶𝐶 = 𝜃𝜃 ≥ 0                                                     (9) 

For convenience in the followings steps we use the following definition for the L.H.S. of equation (9), 
which contains all of the contributions to the internal entropy production rate: 
 
                                                           𝜑𝜑 ≡ 1

𝜃𝜃
�𝜎𝜎𝑖𝑖𝑘𝑘 − 𝜏𝜏𝑖𝑖𝑘𝑘��̇�𝛽𝑖𝑖𝑘𝑘𝑃𝑃 +

𝜎𝜎𝑖𝑖𝑖𝑖
𝜃𝜃
�̇�𝛽𝑖𝑖𝑘𝑘𝐶𝐶                                                      (10) 

 
While equation 9 constrains 𝜃𝜃  to be the product of the generalized forces and fluxes, alone it is 
insufficient for determining the evolution equations for the system.  To obtain the evolution equations, we 
must combine PMEP and equation 10 to formulate a constrained functional for 𝜃𝜃 using the method of 
Lagrange multipliers: 
 
                                                             𝛱𝛱 = ∫ [𝜃𝜃 + 𝜆𝜆(𝜃𝜃 − 𝜑𝜑)] 

𝛺𝛺 𝑑𝑑𝑑𝑑                                                       (11) 
 
It can be shown that the value of the Lagrange multiplier 𝜆𝜆 is determined by 𝜆𝜆 = 𝑛𝑛/(1 − 𝑛𝑛) where 𝑛𝑛 is the 
order of 𝜃𝜃 in the generalized fluxes.  Taking 𝜃𝜃 to be a quadratic functional of the irreversible general 
fluxes 𝒘𝒘𝑷𝑷 and 𝒘𝒘𝑪𝑪, which are the dislocation velocity and crack tip velocity respectively, one obtains: 
 
                               𝜃𝜃[𝒘𝒘𝑷𝑷,𝒘𝒘𝑪𝑪] = ∮ 𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝐵𝐵𝑖𝑖𝑘𝑘𝑃𝑃𝑤𝑤𝑖𝑖𝑃𝑃𝑤𝑤𝑘𝑘𝑃𝑃𝑑𝑑𝑙𝑙′ + ∮ 𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝐵𝐵𝑖𝑖𝑘𝑘𝐶𝐶𝑤𝑤𝑖𝑖𝐶𝐶𝑤𝑤𝑘𝑘𝐶𝐶𝑑𝑑𝑙𝑙′

 
𝐿𝐿𝐶𝐶

 
𝐿𝐿𝑃𝑃                        (12) 

 
The first term corresponds to the energy dissipated by motion of the dislocation loop 𝐿𝐿𝑃𝑃, while the second 
term is associated with the energy dissipated by motion of the crack tip loop 𝐿𝐿𝐶𝐶  during crack growth.  
Substituting equations 10 and 12 as well as the Lagrange multiplier value 𝜆𝜆 = −2 into equation 11 gives: 
 
          𝛱𝛱 = ∫ �2

𝜃𝜃
�𝜎𝜎𝑖𝑖𝑘𝑘 − 𝜏𝜏𝑖𝑖𝑘𝑘��̇�𝛽𝑖𝑖𝑘𝑘𝑃𝑃 +

2𝜎𝜎𝑖𝑖𝑖𝑖
𝜃𝜃
�̇�𝛽𝑖𝑖𝑘𝑘𝐶𝐶 − ∮ 𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝐵𝐵𝑖𝑖𝑘𝑘𝑃𝑃𝑤𝑤𝑖𝑖𝑃𝑃𝑤𝑤𝑘𝑘𝑃𝑃𝑑𝑑𝑙𝑙′ − ∮ 𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝐵𝐵𝑖𝑖𝑘𝑘𝐶𝐶𝑤𝑤𝑖𝑖𝐶𝐶𝑤𝑤𝑘𝑘𝐶𝐶𝑑𝑑𝑙𝑙′

 
𝐿𝐿𝐶𝐶

 
𝐿𝐿𝑃𝑃 � 

𝛺𝛺 𝑑𝑑𝑑𝑑      (13) 
 
Taking the material time derivatives of equations 3 and 4 give the plastic and crack distortion rates to be: 
 
                                                        �̇�𝛽𝑖𝑖𝑘𝑘𝑃𝑃 = ∮ 𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝑏𝑏𝑖𝑖𝑃𝑃𝜖𝜖𝑘𝑘𝑘𝑘𝑗𝑗𝑤𝑤𝑘𝑘𝑃𝑃𝑑𝑑𝑙𝑙𝑗𝑗′

 
𝐿𝐿𝑃𝑃                                                  (14) 

 
                                  �̇�𝛽𝑖𝑖𝑘𝑘𝐶𝐶 = ∮ 𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝑏𝑏𝑖𝑖𝐶𝐶(𝒙𝒙′)𝜖𝜖𝑘𝑘𝑘𝑘𝑗𝑗𝑤𝑤𝑘𝑘𝐶𝐶𝑑𝑑𝑙𝑙𝑗𝑗′

 
𝐿𝐿𝐶𝐶 + ∫ �̇�𝑏𝑖𝑖𝐶𝐶(𝒙𝒙′)𝛿𝛿(𝒙𝒙 − 𝒙𝒙′)𝑑𝑑𝑎𝑎𝑘𝑘′

 
𝑆𝑆𝐶𝐶                           (15) 

 
Substituting equations 14 and 15 into 13 and utilizing the sifting property of the Dirac 𝛿𝛿 function, 𝛱𝛱 may be 
written as a functional of the irreversible generalized fluxes 𝒘𝒘𝑷𝑷, 𝒘𝒘𝑪𝑪, and �̇�𝒃𝐶𝐶 which can be thought of as a 
“crack opening displacement flux”: 
 

𝛱𝛱�𝒘𝒘𝑷𝑷,𝒘𝒘𝑪𝑪, �̇�𝒃𝑪𝑪� = ∫
2𝜎𝜎𝑖𝑖𝑖𝑖
𝜃𝜃

 
𝑺𝑺𝑪𝑪 �̇�𝑏𝒊𝒊𝑪𝑪𝑛𝑛𝑘𝑘𝑑𝑑𝑎𝑎 + ∮ �

2𝜎𝜎𝑖𝑖𝑖𝑖
𝜃𝜃
�𝑏𝑏𝑖𝑖𝐶𝐶(𝒙𝒙′)𝜖𝜖𝑘𝑘𝑘𝑘𝑗𝑗𝑤𝑤𝑘𝑘𝐶𝐶𝜉𝜉𝑗𝑗� − 𝐵𝐵𝒊𝒊𝒊𝒊𝑪𝑪𝑤𝑤𝒊𝒊𝑪𝑪𝑤𝑤𝒊𝒊𝑪𝑪� 𝑑𝑑𝑙𝑙  

 
𝐿𝐿𝐶𝐶   

                                                +∮ �2
𝜃𝜃
�𝜎𝜎𝑖𝑖𝑘𝑘 − 𝜏𝜏𝑖𝑖𝑘𝑘�𝑏𝑏𝑖𝑖𝑃𝑃𝜖𝜖𝑘𝑘𝑘𝑘𝑗𝑗𝑤𝑤𝑘𝑘𝑃𝑃𝜉𝜉𝑗𝑗 − 𝐵𝐵𝑖𝑖𝑘𝑘𝑃𝑃𝑤𝑤𝑖𝑖𝑃𝑃𝑤𝑤𝑘𝑘𝑃𝑃� 𝑑𝑑𝑙𝑙

 
𝐿𝐿𝑃𝑃                                     (16) 

 
By taking the variation of 𝛱𝛱 with respect to its arguments and imposing stationarity: 
 

𝛿𝛿𝛱𝛱 =  ∫ �
𝜎𝜎𝑖𝑖𝑖𝑖
𝜃𝜃
𝑛𝑛𝑘𝑘� 𝛿𝛿�̇�𝑏𝑖𝑖𝐶𝐶𝑑𝑑𝑎𝑎 + ∮ �1

𝜃𝜃
𝜖𝜖𝑖𝑖𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘𝑗𝑗𝑏𝑏𝑗𝑗𝐶𝐶 𝜉𝜉𝑘𝑘 − 𝐵𝐵𝑖𝑖𝑘𝑘𝐶𝐶𝑤𝑤𝑘𝑘𝐶𝐶� 𝛿𝛿𝑤𝑤𝑖𝑖𝐶𝐶𝑑𝑑𝑙𝑙

 
𝐿𝐿𝐶𝐶

 
𝑆𝑆𝐶𝐶   

                                            +∮ �1
𝜃𝜃
𝜖𝜖𝑖𝑖𝑘𝑘𝑘𝑘�𝜎𝜎𝑘𝑘𝑗𝑗 − 𝜏𝜏𝑘𝑘𝑗𝑗�𝑏𝑏𝑗𝑗𝑃𝑃 𝜉𝜉𝑘𝑘 − 𝐵𝐵𝑖𝑖𝑘𝑘𝑃𝑃𝑤𝑤𝑘𝑘𝑃𝑃� 𝛿𝛿𝑤𝑤𝑖𝑖𝑃𝑃𝑑𝑑𝑙𝑙 = 0 

𝐿𝐿𝑃𝑃                                     (17)  
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one obtains the equations of motion governing the evolution of the system.  From the third term comes 
the celebrated Peach-Koehler force per unit dislocation length: 𝜖𝜖𝑖𝑖𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘𝑗𝑗𝑏𝑏𝑗𝑗

𝑝𝑝 𝜉𝜉𝑘𝑘 and the lattice force per unit 
dislocation length: 𝜖𝜖𝑖𝑖𝑘𝑘𝑘𝑘𝜏𝜏𝑘𝑘𝑗𝑗𝑏𝑏𝑗𝑗

𝑝𝑝 𝜉𝜉𝑘𝑘.  The first and second terms give the governing equations for crack motion.  
The first term requires that the crack surface remain traction free, as discussed in the previous section: 
 
                                                         𝜎𝜎𝑖𝑖𝑘𝑘𝑛𝑛𝑘𝑘 = 0    on crack surface 𝑆𝑆𝐶𝐶                                                   (18) 
 
The second term indicates that the crack tip velocity is proportional to the unbalanced PK force acting on 
it, mimicking the motion of a crystal dislocation: 
 
                                                               1

𝜃𝜃
𝜖𝜖𝑖𝑖𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘𝑗𝑗𝑏𝑏𝑗𝑗𝐶𝐶 𝜉𝜉𝑘𝑘 = 𝐵𝐵𝑖𝑖𝑘𝑘𝐶𝐶𝑤𝑤𝑘𝑘𝐶𝐶                                                         (19) 

 
Implementation and Examples 
 
The procedure for simulating crack growth is described as follows: 
 

1. A leading dislocation loop corresponding to the shape of the crack is inserted into the body to 
which a prescribed load or displacement is applied. 

2. Trailing dislocation loops are inserted and allowed to equilibrate according to the PK force acting 
on them. 

3. If the K calculated along the leading dislocation is found to be below the fracture toughness KC , 
the crack is static and the simulation is terminated. 

4. If K at any segment along the leading crack dislocation exceeds KC , the loop is advanced 
according to equation 19. 

5. Steps 2-3 are repeated until K no longer exceeds KC or the body is fractured completely. 
 
Three examples in which DCM is used to model crack growth are provided below.  The first example 
shows the growth of a penny-shaped crack in a cylinder to which a constant traction is applied as shown 
in Figure 1a.  The second example is the growth of a penny-shaped crack in a cylinder to which a fixed 
displacement is applied as shown in Figure 1b.  
 

 
 

Figure 1. (a) Constant stress “dead-load” loading (b) Fixed displacement “fixed-grips” loading. 

In the third example, a penny-shaped crack in a rectangular pillar is shown to grow preferentially towards 
the closest boundaries due to the increased boundary effect.  The material used in all three examples has 
a shear modulus of G = 18.5 GPa, a Poisson’s ratio of ν = 0.27, and a fracture toughness of KC = 2.5 
MPa-m1/2. 
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Crack Growth Under Constant Applied Stress 
 
In this example, a constant traction is applied to the upper and lower surfaces of a cylinder with a height 
of h = 8 mm and a radius of r0 = 4 mm.  The cylinder contains a penny-shaped crack with an initial radius 
of r = 400 μm.  As shown in Figure 2, the stress intensity factor of the crack increases as the crack 
propagates. 
 

 
 
Figure 2. K/KC vs. r/r0 curve showing the increase in K/KC as the crack grows under dead-load conditions. 

 
Crack Growth Under Fixed Displacement 
 
In the second example, a fixed displacement of 10 μm is applied to the upper and lower surfaces of a 
cylinder with a height of h = 8 mm and a radius of r0 = 4 mm.  A penny-shaped crack with an initial radius 
of r = 400 μm is placed in the center of the cylinder.  Figure 3 shows that the stress intensity factor of the 
crack increases as the crack propagates but at a lower rate than the crack under a dead load.  This is due 
to the fact that under fixed-grip conditions, the material relaxes and essentially becomes more compliant 
as the crack grows.  
 

 
 

Figure 3. K/KC vs. r/r0 curve showing the increase in K/KC as the crack grows under fixed-grip conditions. 
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Preferential Crack Growth Due to Boundary Effects 
 
In the third example, a rectangular pillar with a height of h = 4 mm, a width of w = 2.5 mm, and a 
thickness of t = 1 mm contains a penny-shaped crack at its center with an initial radius of r0  = 0.25 mm as 
shown in Figure 4.  A constant traction of 155 MPa is applied to the top and bottom surfaces of the pillar. 
 

 
 

Figure 4. Rectangular pillar with a penny-shaped crack at its center. 

 
The crack edges closest to the free boundaries of the pillar propagate at a faster rate than the edges that 
are further from the free boundaries as shown in Figure 5.  This is because of the fact that the crack 
edges nearer to the free boundaries experience larger PK forces due to an increased boundary effect.  
The result is an elongation of the initially circular crack into an elliptical shape as it propagates.  Note that 
the crack opening displacement also increases since more loops are required to achieve an equilibrium 
configuration as the crack increases in size. 
 

 
 

Figure 5. Crack profile along the major and minor axes of the pillar at (a) 822 simulation steps, (b) 2057 
simulation steps, (c) 4515 simulation steps, (d) 4956 simulation steps (complete fracture). 
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