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Abstract

The implementation of a recently-developed interatomic potential describing the interactions of
helium in bece iron is described. This He-Fe potential was based on an empirical fit to the results
of ab initio calculations of both the formation and relaxation energies of small helium defect
structures in iron. The fitting database included substitutional and interstitial helium, as well as
small helium and helium-vacancy clusters. In contrast to previous He-Fe pair potentials, fitting
the ab initio forces and energies required the use of a three-body interaction term. The
implementation of this potential for atomistic simulations using molecular dynamics presented
certain challenges which are discussed here to facilitate its further use in materials research,
particularly to investigate the behavior of iron-based alloys that may be employed in fusion
energy systems.

Introduction

Helium produced by nuclear transmutation has a substantial impact on radiation-induced
microstructural evolution [1-4] and is therefore a concern for DT fusion reactor environments.
Since no materials irradiation facility exists that can produce prototypical levels of helium and
atomic displacements, computational modeling and simulation plays a primary role in
understanding the impact of helium. Although computational tools have advanced appreciably in
recent years, most relevant atomistic work on the effects of helium in iron have employed a
relatively old pair potential to describe the He-Fe interactions [5]. The underlying assumption of
the adequacy of a pair potential to describe these interactions was challenged by recent ab initio
calculations [6,7], leading to the development of a three-body Fe-He interatomic potential [8,9].

The purpose of this report is to provide details on how the three-body potential was implemented
in a molecular dynamics (MD) simulation code, and to correct typographical errors in some of
the coefficients that were published previously [9]. Results of a large number of MD simulations
investigating the behavior of the potential and a comparison with the Wilson [5] and a more
recent pair potential [10] are included in this volume in a report by Stewart, et al. [11].
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Description of Fe-He Three-body Potential
(i) Total Potential Energy

The total potential energy of a Fe crystal doped with He is given by

Iy,—1 Iy,
tutal ZUFe(p )+ z z UFeFe( l]) Z z UHeHe( l )
i=l j=i+l i=l j=i+l (11)
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The first and second summation terms in Eq. (1.1) correspond to a pure iron, embedded atom
potential. Three different iron matrix potentials have been studied, including the Finnis and
Sinclair potential [12], the 1997 Ackland et al. potential [13], and the 2004 Ackland et at.
potential [14]. The third term on the right hand side of equation (1.1) describes helium-helium
interactions through the pair potential developed by Aziz et al. [15]. The last two terms on the
right hand side of Eq. (1.1) correspond to two-body helium-iron interactions and three-body
helium-iron-iron interactions Ref. [9]. This summary shall clarify only those last two terms in

Eq. (1.1).

Note that all the function names in Eq. (1.1), e.g. @, ¢ etc., have been changed in order to present
the equation in more conventional form. The summation index description on the right hand side
of Eq. (1.1) has also been changed compared to that is written in Ref. [9] in order to correct some
errors. Indeed the second term in Eq. (1) in Ref. [9] is given in such a way that leads to double-
count each pair contributions; the third term leads to double-count each pair also (and does not
omit when j=1i), the fourth term incorrectly omits the pair when ;=i (considering they are

from different subsets), and the fifth term double-counts all Fe-He-Fe triplets. The summation
indexes in the first term on the right hand side of Eq. (1.1) are also written in a different way
compared to that in Ref. [9] in order to be consistent with summation index description used in
that other terms.

(if) Two-body He-Fe Interaction

The helium-iron two-body potential energy is given by
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where r;; is the distance between He, (i), and Fe atom, ( j), given by

2 2 2
=yl =) + (0, -0) + (5, -2) @2
The variable 4 in Eq. (2.1) is related to r;; as follows
v, —rn
A="—, (2.3)
.=

where the parameters 7, and 7, are cutoff parameters given in Table 1. The parameters a, b, and p
in Eq. (2.1) are also presented Table 1. The distances and energies in Eq. (2.1) are given in
Angstroms and eV, respectively. Note that by mistake Eq. 4 in Ref. [9] was presented as a
function of x instead of 7. To be clear, in this summary, lowercase x variables correspond to the

x positions of atoms. The use of x in Eq. (3) of Ref. [9] has been changed to A. Note also, that
the parameter p, in Eq. (2) in Ref. [9] was omitted here since it was fit to be zero.

The forces on He and Fe atoms arising from the two-body potential (2.1) can be
calculated using

F=-VU. (2.4)
Taking into account the third Newtonian law
=—F. (2.5)

J

gl

Based on Eqn. (2.5), it is sufficient to calculate the force acting on only one of the Fe (or
the He) atoms. Taking into account Eq. (2.4) the x-component of the force on the j-th atom is
given by:
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Forces in the y and z directions can be calculated by replacing the x; and x, terms with
the corresponding y; and y, or z, and z, values, respectively. The force on the i atom, F; , is

is given by Eq. (2.5).
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(iii) Three-body He-Fe-Fe Interaction

The potential energy function for the helium-iron-iron three-body interaction is given by
Uperere (7700 ) = f (1) £ (7 )08 (0, = 7). (3.1)

where r;; and rj are the distances between the helium atom located at a position (i) and two Fe
atoms located at positions (j) and (k), respectively, and 6 is the angle between the

corresponding vectors 6 and r, . The function f(r) is given by

a, 1r=<i,,
f@%{

a(l—A)3(1+3A+6A2)7 By <r<r,, (3.2)

A= F—hs

T3 =13
where the parameters a, 1,3 and r.3 are given in Table 2 together with the parameter . Note that
the angle 0;; varies from zero to m. Instead of using the variable a” for the scaling factor, as is
used in Ref. [9], the parameter « is used since the use of “a” may be confusing since it is

normally used for the lattice parameter.

Taking into account that the distances 7; and r, are determined by the coordinates of

atoms as follows:

=l =) + (=) (-2 (33)

the angle 6, is given by:

j
g
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It can be also shown that the third Newtonian law in the case takes the following form

F,=—(F,+F,). (3.5)

Thus it is enough to calculate forces on two atoms only, e.g. on two Fe atoms. By using Eq. (2.4)
the x-component of the force acting on j-Fe atom can be presented as follows:

12101t

dx;
(3.6)
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where:
0, 7;<1,
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(3.7)

dcos(eﬁk) (x, —x,) (xj—x,,)

= —cos(@iik)—z.

dx, il | iz

The y and z components of the force can be obtained from equations (3.6) and (3.7) by replacing

x coordinates with y and z coordinates, respectively. The force acting on the k-Fe atom can be

obtained from the same equations by replacing j-coordinates with k-coordinates and vice versa.
Finally, the force acting on the He atom is given by Eq. (3.5).

Table 1. Parameters for pair potential given by Eq. (2.1).

b =-2.142600207811 | a, =—285.7450302953 | p, =0.167753
b, =32.965470333178 | a, =794.5913355517 | p,=0.00
b, =—52.893449935488 | a, =-856.9376372455 | p, =2.432258
b, =30.970079966695 | a, = 452.5323035795 | p, =3.727249
b, =—6.398785336260 | a, =—117.6519447529 | r, =4.1

a, =12.0878858024 r =44

Table 2. Parameters for three-body potential given by Egs. (3.1) , (3.2).

a 0.7
hs 1.75
T 2.2
X 0.44

Thus the set of equations (1.1)-(3.7) along with the iron matrix parameters in Refs. [12-15]
represents a full and comprehensive description of the potential energy and forces acting on He
and Fe atoms in an Fe crystal doped with He.

Energy and Force Acting On the He Atom In a Given Triplet Configuration

The complex nature of the forces and the energy landscape for a given Fe-He-Fe triplet are
illustrated in Figs. 1 to 3 which are presented to provide a visualization of the three-body
potential. The results are from calculations for a single Fe-He-Fe triplet. The most significant
observation that can be drawn from these figures is the strong angular dependence of the three-
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Figure 1. Energy of Fe-He-Fe triplet as a function of 0 and rj, where r;; is equal to 1.8 Angstrom.

body term. As discussed in Ref. [9], the angular dependence and value of y were chosen to
guarantee the tetrahedral site provided the lowest interstitial formation energy. This leads to a
relatively weak dependence on the distance between helium and either iron atom in the triplet
when the angle is near that associated with the tetrahedral location, 0;;~1.92 rad. For example,
energy minimum of the He-Fe-He triplet at this angle shown in Fig. 1 only weakly depends on
the He-Fe separation but varies strongly with the angle. The absolute force on the helium atom is

om (cV/A)

0.0

Absolute value of force on He at

4:}3 1
: qﬂ (R'ad"‘an) 30

Figure 2. Absolute value of the force acting on the He atom as a function of 8 and ry where rj; is
equal to 1.8 Angstrom.

similarly minimized as shown in Fig. 2. The decision to use the triplet angle to stabilize the

tetrahedral interstitial is in contrast to the recent pair potential by Juslin and Nordlund [10] in

which a steep radial (He-Fe spacing) was used to accomplish this purpose. A comparison of the
two approaches as yielded significant differences [11].
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Figure 3. Force acting on the He atom in the (a) x-direction and (b) y-direction in the x-y plane
as a function of 0 and rj, where 1;; is equal to 1.8 Angstrom.

Additional information on the forces on a helium atom near the tetrahedral position is given in

Fig. 3 which shows the forces in two principle directions for a helium atom located in a {100}
plane. In both cases the force is near zero and relatively insensitive to He-Fe distance near the
specified angle.

Influence of Three-body Term on He Atom Migration

The influence of the three-body term on the He migration path is shown in Figs. 4 to 8, for which
the calculations were done for one He atom in an unrelaxed Fe lattice. Fig. 4 shows the energy
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change for a He atom passing from one tetrahedral site to another along a <110> direction (illustrated in
Fig. 5), which is the energetically favored migration path as mentioned in Ref. [9]. It is clear that
the addition of the 3-body term changes both the magnitude and the shape of the energy barrier.
The local energy minimum produced in the intermediate region in the case of three-body
potential relates to the types of Fe-He-Fe triplets that arise in this intermediate configuration. The
five nearest neighbors in this region are shown in Fig. 5.

0.3 -
—e— 2 body
0.25 4 —i— 2+3 bOdy
0.2
S
2
& 0.15
Q
ot
w
0.1 1
0.05 -
0 : : : ‘ ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08 09 1
Fraction of 110 tetrahedral migration distance
Figure 4. Migration energy barrier for a He atom passing from one tetrahedral site to another along
a <110> direction. Note that both energy curves have been shifted such that the He atom in the
tetrahedral sites has an energy equal to zero. This data are obtained for an unrelaxed lattice.

Figure 5. <110> He migration in bce Fe. The five nearest neighbors during this migration are
darkened. Provided by Dr. Y. Matsukawa, ORNL (now University of IL)

The Fe-He-Fe triplets formed in the intermediate region either (a) form an angle close to the
preferential angle, and/or (b) have at least one long distance vector. Both (a) and (b) lead to
smaller energy contributions for the given triplet. So, instead of a smooth energy barrier for
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migration given by the purely repulsive two-body potential shown in the figure, the 3-body
contribution produces a meta-stable triangular site found half way through the migration shown
Figure 5.

6.6 1 —e— 2 body repulsive E
2 body + 3 body
6.4 —aA— VASP energies

Energy (eV)

0 0.2 0.4 0.6 0.8 1

Fraction of octahedral to octahedral <100> migration distance

Figure 6. Energy of a He atom moving along a <100> direction from one octahedral site to another.
Note that the He atom goes through a tetrahedral site mid-way. This data is for an unrelaxed lattice.

Figure 7. <100> Octahedral interstitial He migration in bec Fe. The six nearest neighbors for the final
octahedral configuration are darkened. Provided by Dr. Y. Matsukawa, ORNL (now University of IL).

The migration path described energetically in Figure 6 can be seen in Figure 7. The 2-body
repulsive energy shown in Figure 7 produces an octahedral to tetrahedral site energy difference
of 124 meV. When the 3-body term is added, the energy difference is 711 meV, which is much
closer to the VASP energy difference of 670 meV. Also, the 2-body repulsive potential makes
the tetrahedral site a local energy maximum (by a small amount), whereas with the 3-body term
added, the tetrahedral site is a local energy minimum. This migration path from one octahedral
site directly to another passes through a tetrahedral site which is mid-way through the motion.
The energy minimum along this path is clearly the tetrahedral site. The energy landscape for He
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migration along the <010> and <001> orthogonal (relative to Figures 6 and 7) principle
directions is shown in Figure 8, illustrating that the tetrahedral site is a local energy minimum in
each principle direction.
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Figure 8. Energy of a He atom moving along the other two principle directions relative to

Figures 6 and 7, showing the tetrahedral site as a local energy minimum in each principle
direction.

Summary

The procedure, equations, and coefficients necessary to implement the new ORNL Fe-He three-
body potential have been described. The energy landscape provided by this new potential is
substantially more complex than that of a simple pair potential, but provides results in good
agreement with ab initio calculations. Significant differences in the behavior of He and He-
vacancy clusters have been observed when comparing results obtained with the three-body
potential with that obtained with pair potentials [11], and the use of the new potential is
recommended.
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